

Measurement of the B^{\pm} production cross-section in pp collisions at $\sqrt{s} = 7$ and 13 TeV

Wenhua Hu

(On behalf of the LHCb collaboration)

Central China Normal University

JHEP12(2017)026

Outline

- Introduction
- Signal yield
- Efficiency
- Systematic uncertainties
- Results
- Summary

Beauty production

• Based on FONLL (fixed order next-to-leading logarithm) approach, the production cross-section is predictable

Beauty production cross-section

The measurement of the ratio can largely cancel some uncertainties.

B^{\pm} production cross-section in pp collisions

Experiment	Luminosity	\sqrt{S} (TeV)	Range	Total Cross Section(μ b)
CMS	48.1 pb ⁻¹	13	$\begin{array}{l} 10 \; (17) \leq p_T < 100 {\rm GeV} , \\ y < 1.45 \; (2.1) \end{array}$	$15.3 \pm 0.4 \pm 2.1 \pm 0.4$
ATLAS	2.4 fb ⁻¹	7	$0 < p_T < 120$ GeV, y < 2.25	$10.6 \pm 0.3 \pm 0.7 \pm 0.2 \pm 0.4$
LHCb	362 pb ⁻¹	7	$0 < p_T < 40 { m GeV},$ 2 < y < 4.5	$38.9 \pm 0.3 \pm 2.8$
$\frac{\mathrm{d}\sigma(B^{+})/\mathrm{d}p_{\mathrm{T}}}{10} [\mu b / (\mathrm{GeV}/c)]$	LHCb <i>s</i> = 7 TeV JHEP08(2013)	- LHCb (2.0 < y BF uncertainty FONLL (2.0 < $B^+ \rightarrow J/\psi P$	y < 4.5) y < 4.5) x^{+} $f = \frac{1}{40}$ $f = \frac{40}{T}$ (GeV/c)	d at 7 TeV but no Ilt at 13 TeV

LHCb detector

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}y \mathrm{d}p_{\mathrm{T}}} = \frac{N_{B^{\pm}}}{\mathcal{L} \times \varepsilon_{\mathrm{tot}} \times \mathcal{B} \left(B^{\pm} \to J/\psi \, K^{\pm}\right) \times \mathcal{B} \left(J/\psi \to \mu^+ \mu^-\right) \times \Delta y \times \Delta p_{\mathrm{T}}}$$

- N_{B^+} : number of B^+ signal events in each bin of $\Delta y \times \Delta p_T$
- ε_{tot} : total efficiency in each bin of $\Delta y \times \Delta p_T$
- \mathcal{L} : integrated luminosity
- $\mathcal{B}(B^+ \rightarrow J/\psi K^+)$: branch fraction, Bella^[3] and BABAR^[4]
- $\mathcal{B}(J/\psi \rightarrow \mu^+\mu^-)$: branch fraction, 2016 version of PDG^[5]
- $\Delta y \times \Delta p_T$: bin width for p_T^B and y^B

Data sample and selection

- Data sample and Selection
 - 1.0 fb⁻¹ , 7 TeV , 2011; 0.3 fb⁻¹ , 13 TeV, 2015

Description	μ^{\pm}	<i>K</i> +	J/ψ	B^+
P_T	> 0.7 GeV	> 0.5 GeV	-	[0, 40] GeV
PID	> 0	-	-	-
track $\chi^2/ndof$	< 3	< 3	-	-
vertex $\chi^2/ndof$	-	-	< 9	< 9
Mass	-	-	[3.04, 3.14] GeV	-
t	-	-	-	> 0.3 ps

Extract B^+ signal

- Fit data in each bin of $\Delta y \times \Delta p_T$
- Result of 3.5 < p_T < 4.0 *GeV*, 2.5 < y < 3.0 as an example

- black : data points
- blue : fit results
- red : signal (Double-sided Crystal Ball)

Green : combinatorial background (Exponential) brown: Cabibbo suppressed background, $B^+ \rightarrow J/\psi \pi^+$ (Double Crystal Ball) Efficiency

$\varepsilon_{tot} = \varepsilon_{Acc} \times \varepsilon_{Reco\&Sel} \times \varepsilon_{Track} \times \varepsilon_{PID} \times \varepsilon_{Trig} \times \varepsilon_{GEC}$

Efficiency	Description	Sample
\mathcal{E}_{ACC}	acceptance	Simulation
E _{Reco&Sel}	reconstruction and selection	Simulation
\mathcal{E}_{Track}	tracking	Data & Simulation
\mathcal{E}_{PID}	particle identity	J/Ψ data
\mathcal{E}_{Trig}	trigger	Data & Simulation
\mathcal{E}_{GEC}	global events cut	Data & Simulation

GEC : require nSPD hits < 900 to reject high-multiplicity events

Acceptance efficiency

Courses	Uncertainty (%)			
Sources	$7 { m TeV}$	$13 { m TeV}$	$R(13~{ m TeV}/7~{ m TeV})$	
Luminosity	1.7	3.9	3.4	Limited knowledge
Branching fractions	3.9	3.9	0.0	• of $\mathcal{B}(B^+ \to J/\psi K^+)$
Binning	2.6	2.7	0.0	→Bin size and fit model
Mass fits	2.7	1.3	1.5	
Acceptance	0.2	0.1	0.2	
Reconstruction	0.1	0.1	0.2	
Track	1.6	2.6	1.0	→ Efficiency
PID	0.4	0.1	0.4	> Limited complexize
Trigger	3.5	2.6	4.4	
GEC	0.7	0.7	1.0	
Selection	1.0	1.1	0.1	
Weighting	0.2	0.2	0.3	
Total	7.0	7.4	5.9	

Double-differential production cross-section

Good agreements between data points and theoretical predictions

Single differential production cross-section

2017/12/20

Ratio and total cross-section

• Ratio of cross-section, *R*(13 TeV/7 TeV)

• Total cross-section (2.0 < y < 4.5)

 $\begin{aligned} \sigma(pp \to B^{\pm}X, \sqrt{s} &= 7 \text{ TeV}) &= 43.0 \pm 0.2(stat) \pm 2.5(syst) \pm 1.7 (Br) \,\mu b \\ \sigma(pp \to B^{\pm}X, \sqrt{s} &= 13 \text{ TeV}) &= 86.6 \pm 0.5(stat) \pm 5.4(syst) \pm 3.4 (Br) \,\mu b \\ R(13 \text{ TeV} / 7 \text{ TeV}) &= 2.02 \pm 0.02(stat) \pm 0.12(syst) \end{aligned}$

- First precise measurement of the B^{\pm} production cross-section at 13 TeV of LHCb.
- Result at 7 TeV is updated with 1.0 fb⁻¹.
- All measured results are in agreement with theoretical calculations based on the FONLL approach.

Backup

References

[1] M. Cacciari, M. L. Mangano, and P. Nason, Gluon PDF constraints from the ratioof forward heavyquark production at the LHC at ps = 7 and 13 TeV, Eur. Phys. J.C75 (2015) 610, arXiv:1507.06197.

[2] LHCb collaboration, R. Aaij et al., Measurement of B meson production cross-sectionsin protonproton collisions at ps = 7 TeV, JHEP 08 (2013) 117, arXiv:1306.3663

[3] Belle, K. Abe et al., Measurement of branching fractions and charge asymmetries for two-body B meson decays with charmonium, Phys. Rev. D67 (2003) 032003,arXiv:hep-ex/0211047.

[4] BaBar collaboration, B. Aubert et al., Measurement of branching fractions and charge asymmetries for exclusive B decays to charmonium, Phys. Rev. Lett. 94 (2005) 141801,arXiv:hep-ex/0412062.

[5] Particle Data Group, C. Patrignani et al., Review of Particle Physics, Chin. Phys.659 C40 (2016), no. 10 100001.

Fit model

 $PDF(x; M, \sigma, p, N_{sig}, N_{bkg}) = N_{sig}F_{CB}^{ds}(x; M, \sigma) + N_{bkg}F_{EXP}^{bkg}(x; p) + \left(\frac{\mathcal{B}(B^+ \to J/\psi\pi^+)}{\mathcal{B}(B^+ \to J/\psiK^+)}\right)N_{sig}\frac{\varepsilon_{J/\psi\pi^+}}{\varepsilon_{J/\psiK^+}}F_{CB}^{Cabibbo}(x; M)$

- double-sided CB function for signal
- exponential function for combinatorial background
- a combination of two single-sided CB functions for $B^+ \rightarrow J/\psi \pi^+$
- ignore other decay modes out of the fit region as $D^0 \rightarrow L/a/kK^0$ $D^0 \rightarrow L/a/kK^0$ and $\lambda \rightarrow L/a/kK^0$ and $\lambda \rightarrow L/a/kK^0$

 $B^0 \to J/\psi K^0, B^0_s \to J/\psi \phi, \lambda_b \to J/\psi p K \text{ and } \lambda_b \to J/\psi p \pi$