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Abstract:
Introduction:
We here present our findings on 2 types of feeder layers, one composed of mouse embryonic fibroblasts (MEF) and the second one of mouse
skeletal myoblasts (C2Cl2) feeder cells.

Methods:

The 2 feeder layers present a dramatic variance of intrinsic stiffness (142.68 ± 17.21 KPa and 45.78 ± 9.81 KPa, respectively).

Results and Conclusion:
This information could be used for a better understanding of cells and cell microenvironment mechano-physical characteristics that are influencing
stem cell commitment, in order to develop a suitable engineered tissue for cardiac and skeletal muscle repair and a bio-actuator.
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actuator.
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1. INTRODUCTION

Muscle cells present intrinsic mechanical function, given
by high energy conversion abilities of adenosine triphosphate
(ATP)  chemical  energy  [1,  2].  As  other  stem  cells,  they  are
able  to  self-repair  and  self-renewal  [3].  For  these  peculiar
properties  muscle  cells  and  tissues  have  been  proposed  as
attractive  materials  to  be  use  as  “bio-actuator”,  which  is
defined  as  a  motor  driven  by  living  materials,  i.e.  biological
molecules [4], living cells [5] and living tissues [6]. Moreover,
muscle  cells  appear  to  be  an  optimal  cell  source  for  bio-
actuators,  because  of  their  mechano-physical  properties  of
being   “soft”  [7]   and  of  having   a  micro-scale  size,  that

* Address correspondence to this author at the Cell-Materials Interaction Group,
Biomaterials  Unit,  International  Center  for  Materials  Nanoarchitectonics
(MANA),  National  Institute  for  Materials  Science  (NIMS),  Tsukuba,  Japan;
Tel: 0000-0001-7835-2522; E-mail: taniguchi.akiyoshi@nims.go.jp

allows the development of bio-microactuators.  Maturation of
muscle  stem  cells  is  greatly  affected  by  the  extracellular
microenvironment they interact with. As other adult stem cells,
they  usually  reside  in  a  stem  cell  niche,  where  a  complex
interplay  of  biological  and  physical  features  maintain  their
multipotentiality. Main component of the extracellular context
is  the  extracellular  matrix  (ECM).  Studies  regarding  ECM
structural  proteins  (e.g.  fibronectin,  laminin,  collagen)  and
soluble molecules (e.g. hormones, growth factors) have already
been the subject of intense investigation. Because of the hostile
environment  that  cells  encounter  when  transferred  in  vitro,
stem cells  often require the support  of  a  feeder  layer,  placed
between culture dishes and cells. Feeder layers are composed
of mitotically inactivated cells that are still able to supplement
the  cells  seeded  on  top  with  beneficial  signals,  without  their
own further growth or division. The most common feeder cells
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currently used are mouse embryonic fibroblasts (MEF) cells.
Other  cell  types  utilized  for  stem  cell  culture  support  are
testicular stromal cells, as JK1, and embryonic mesenchymal
stem cells (10T1/2) [8, 9]. Alternatively, human adult uterine
endometrial  cells  (hUECs),  human  adult  breast  parenchymal
cells (hBPCs), and human embryonic fibroblasts (hEFs) have
also been used as  feeder  cells  [10,  11].  Feeder  systems have
been often used in induced pluripotent stem cells (iPSCs) and
embryonic stem cells  (ESCs) cell  culture [12,  13].  However,
several studies demonstrated that other cell type functionality is
also  improved  when  feeder  layers  are  used  to  support  their
growth.  In  particular,  myoblast  growth  and  differentiation
appeared  to  be  positively  regulated  by  fibroblast  substratum
[14],  with  the  metabolites  released  from  cells  applied  as  a
substratum being crucial. We have previously discovered that a
set  of  genes  encoding  for  the  expression  of  cytokines  and
chemokines are upregulated in myoblast feeder layer compared
to fibroblasts feeder layer cells,  and that those molecules are
responsible  for  the  stimulation  of  myogenic  differentiation
[15]. However, there is currently no clear understanding of the
entire group of factors involved in the process. Influence of the
extracellular  microenvironment,  including  the  impact  of  its
physical  properties,  is  known  to  be  important  for  stem  cell
commitment [16, 17]. In this regard, ECM physical properties
have  been  considered  as  cues  affecting  or  directing  cell  fate
function. Several studies demonstrated that stem cell adhesion,
growth  and  differentiation  can  be  regulated  by  physical
interactions with local ECM [18 - 20]. Among them, substrate
stiffness showed a great influence on stem cell behavior [20,
21] and several groups worked on recreating the specific tissue
mechanical  microenvironment  in  vitro,  using  both  synthetic
and natural materials [22]. In particular, the behavior of muscle
stem cells appeared to be highly sensitive to substrate stiffness
[23 - 25].

A wide range of materials is currently being investigated
with  the  purpose  of  recreating  an  in  vitro  system  able  to
decouple  the  elasticity  parameter  for  studying  the  direct
influence  of  mechanical  properties  on  muscle  cells.  We
previously demonstrated that films composed of a mixture of
2-branched  and  4-branched  poly-ε-caprolactone  (PCL),
showing no variation in substrate nanotopography and having
diverse  stiffness  values,  could  affect  cardiac  and  skeletal
muscle cells behavior [26, 27]. In addition, when biologically
related  cells  (rat  skeletal  myoblasts)  and  non-related  cells
(mouse  embryonic  fibroblasts  and  normal  human  dermal
fibroblasts) were used as feeder layers in between PCL films
and  C2Cl2,  a  significant  difference  could  be  found  in  the
percentage  of  differentiated  myotubes  in  the  two  systems.
These  results  suggest  that  different  cell  types  have  defined
response to  the  microenvironment  mechanical  characteristics
and  that  those  feeder  cells  have  intrinsic  elasticity  affecting
C2Cl2 myogenesis [27].

The most common technique used to detect cell stiffness is
through the  Atomic Force Microscope (AFM).  Many studies
have demonstrated the specificity of AFM method to determine
single  cell  stiffness  [28  -  31].  Other  methods  include  tensile
test  of  cells  seeded  on  gels,  micropipette  aspiration  [32],
optical  trap  detection  [33  -  35]  and  magnetic  twisting
cytometry  [36].  We  here  propose  a  novel  measurement

technique for the bio-mechanical properties, such as adhesion
force, stiffness and beating force of living materials (cell sheet,
3D tissues and native tissue) for the evaluation of bio-actuators
and for medical application [7, 37]. Peculiarity of this method
is  expressed  by  the  ability  of  measuring  the  mechanical
property  of  an  integrated  multiple  group  of  cells  and  of  the
ECM. In fact, other techniques have already proved that cells
derived  from  various  parts  of  the  body  display  different
mechanical  properties,  however,  no  other  stiffness
measurement  systems  known  was  able  to  quantify  these
characteristics. In order to confirm our hypothesis of different
feeder  layers  mechanical  properties  influencing  C2Cl2

myogenic  differentiation,  we  here  investigated  their
mechanical  properties,  considering  cell  sheets  developed  as
feeder  cells  layers.  Thus,  we  analyzed  the  stiffness  of  the
feeder  layers  made  by  two  cell  types:  MEF  and  C2Cl2.

2. MATERIALS AND METHODS

2.1. Cell Culture

Skeletal myoblasts behavior was studied using mouse cell
line  C2Cl2  (CRL-1772;  ATTC,  Rockville,  Maryland,  USA).
Mouse  embryonic  fibroblasts  (MEF)  were  purchased  from
Applied  stem  cell  (CF-1  MEF;  California,  USA).  Both  cell
types were cultured in Dulbecco's Modified medium with 4.5
g/L  Glucose  (DMEM;  Nacalai  Tesque  Inc.,  Kyoto,  Japan)
supplemented  by  10%  Fetal  Bovine  Serum  (FBS;  Life
Technologies,  Gaithersburg,  Maryland,  USA)  and  1%
penicillin/streptomycin solution at 5000 µg/mL (Invitrogen), in
a  condition  of  37  °C  in  5%  CO2.  Every  2  days,  cells  were
treated  with  0.25%  trypsin/1  mM  ethylenediaminetetraacetic
acid  (EDTA,  Nacalai  Tesque  Inc.)  and  transferred  to  a  new
tissue  culture  polystyrene  (TCPS;  Iwaki  Co.,  Tokyo,  Japan).
When required, C2C12 and MEF were treated with Mitomycin
C.

2.2. Feeder Layer Preparation

C2Cl2  and  MEF  feeder  layers  were  obtained  by  treating
confluent cell layers with Mitomycin C. First, C2Cl2 and MEF
were seeded on TCPS with a confluence of 1.0 × 106 cells/cm2

C2Cl2  and  2.0  ×  106  cells/cm2,  respectively.  Different  cell
number was used to overcome C2C12 and MEF cell doubling
time difference (12h for MEF versus 24h in C2Cl2 [38, 39].

After 24 h, cells were treated with 10 µg/mL Mitomycin C
(Sigma-Aldrich  Co.,  St.  Louis,  USA)  for  2  h,  trypsinized,
resuspended in complete medium and plated for use in 0.1%
gelatin-coated plate (Sigma-Aldrich Co.).

2.3.  Measurement  of  Cell  Mechanical  Properties:  Cell
Sheets Preparation and Tensile Test

C2Cl2  and  MEF cells  were  used  to  prepare  two  different
types  of  cell  sheets.  First,  60  mm  polystyrene  dishes  coated
with  temperature-responsive  polymer  poly  (N-
isopropylacrilamide)  (PIPAAm)  (UpCell,  CellSeed,  Tokyo,
Japan), were pre-incubated with 2 mL FBS each. After 6 hours,
FBS  was  removed  and  cells  detached  from  normal  culture
dishes were seeded on PIPAAm and cultured at 37 °C and in
5%  CO2  for  3  days.  Because  C2C12  doubling  time  is  faster
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than MEF cells (12h for MEF versus 24h in C2C12 [38, 39],
the 2 types of cells were seeded at different densities: 1.0 × 106

C2Cl2 cells were seeded for myoblast cell sheet formation, and
2.0  ×  106  MEF  were  plated  on  PIPAAm,  in  order  to  obtain
same cell density. After 3 days, tensile testing was performed
following the procedure previously described [40]. The strain
speed was adjusted to 0.5% per sec (0.1mm/s), instead of 1%
per  sec  (0.2  mm/s).  A  lower  speed  is  believed  to  give  less
influence to the measurement of real stiffness value attributed
to the cell sheets, through this methodology [41]. Additionally,
the thickness of cell sheet was assumed as 10 μm.

3. RESULTS

We  previously  demonstrated  that  biological  related  and
non-related  feeder  cells  affected  in  different  ways  myogenic
differentiation of C2Cl2 myoblasts seeded on top [27]. We also
showed that feeder layers formed by cells of different or same
species of cells seeded on top, did not influence their ability to
support cell growth [15, 27].

In  order  to  analyze  if  mechanical  properties,  such  as
stiffness,  could differ  in  feeder  layers  made by the unrelated
cell types, we first assumed that cells in a feeder layer could be
in a similar condition to cell sheets generated by temperature-

responsive  technology.  The  assumption  was  made  on  the
principle that in both systems, cell proliferation is inhibited. In
case of feeder layer conditions, cell proliferation is obstructed
by  a  phenomenon  known  as  contact  inhibition,  where  cells
coming in contact with other cells stop proliferating in in vitro
conditions. Contact inhibition is in fact, a powerful anticancer
mechanism of healthy cells that is lost in cancer cells [42]. In
feeder systems, mitotic activity was blocked by the treatment
with  10  µg/mL  Mitomycin  C.  In  cells  seeded  on  PIPAAm
temperature-responsive  dishes,  cell-cell  contact  and  cell
detachment from the substrate before tensile test inhibited cell
ability  to  grow.  Cell  morphology  of  feeder  layers  and  cells
cultured  on  PIPAAm  dishes  was  compared  to  confirm  our
hypothesis.  Both inactivated fibroblasts (Fig. 1A) and in cell
sheet  mode  (Fig.  1C),  showed  same  cell  morphology.
Myoblasts feeder cells treated with Mytomycin C (Fig. 1B) and
seeded  on  temperature-responsive  dishes  (Fig.  1D)  showed
similar features after three days of culture.  Cells that require
feeder systems, such as iPSCs and ESCs, can sense the overall
feeder layer mechanical properties, rather than individual cell
elasticity  that  compose  the  feeder  layer.  In  order  to  measure
such structure, tensile mechanical test was chosen as a method
of measurement over AFM technique, from which single cell
or different parts of cell stiffness can be assessed.

Fig. (1). C2Cl2 and MEF feeder layers. Bright field images of Mytomycin C treated MEF (A) and C2Cl2 (B) and MEF and C2Cl2 cells seeded on
PIPAAM dishes (C and D, respectively), cultured for 3 days. Scale bars: 100 µm.
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Fig. (2). Schematic representation of the experiment. C2Cl2 and MEF cells were seeded on different PIPAAm termperature-responsive dishes (1) and
culture for 3 days at 37 °C and 5% CO2 (2). In order to perform the tensile test, culture dishes were then transferred at RT to allow cells detachment
and formation of C2Cl2 and MEF cell sheets (3).

Thus,  feeder  cell  elastic  properties  were  measured.  We
previously successfully developed a tensile  testing technique
that  permits  measurement  of  cells  sheet  stiffness,  where
detached  cell  sheets  were  tested  for  their  tensile  mechanical
characteristics.  A  schematic  representation  of  the  adopted
system is given in Fig. (2). In this study, MEF cell sheets and
C2Cl2  cell  sheets  elasticity  were  measured  through  tensile
testing technique, as previously developed (Supp. video 1). In
Fig.  (3),  force-strain  and  stress-strain  curves  of  MEF  (blue
lines) and C2Cl2 cell sheets (red lines) show the stride by which
each  cell  sheet  was  stretched  during  the  tensile  test.  The
Young’s  Modulus  values  obtained  by  each  experiment  were
grouped  and  average  values  for  MEF  cell  sheets  and  C2Cl2

were given (Fig. 4). As expected, when the two cell sheet types
stiffness  values  were  compared  between  each  other,  we
observed  that  MEF  cell  sheets  had  higher  stiffness  values
(142.68 ± 17.21 KPa) as compared to cell sheets made by C2Cl2

(45.78 ± 9.81 KPa).

4. DISCUSSION

Bio-mechanical  properties  of  cells  and  tissues  are
important parameters for their application in the medical field
and the bio-actuator. Endogenous forces produced by cells and
their  extracellular  matrix  (ECM),  as  well  as  contacts  with
neighboring cells, are believed to influence tissue mechanical
environment and cell fate and function [18, 43].

Fig.  (3).  Force-strain  (A)  and  stress-strain  (B)  curves  of  MEF (blue
lines) and C2Cl2 cell sheets (red lines), showing mechanical properties
of MEF and C2Cl2 feeder layers.
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Fig. (4). MEF and C2Cl2 Young’s Modulus.

Currently, the most used approach for the evaluation of cell
stiffness  is  the  AFM technique [29,  44].  This  system is  very
efficient  in  determining  single  cells  stiffness  and  elastic
property differences within one cell accurately. The accuracy
of the method resulted in the ability of telling differences in the
local Young’s Modulus within the same cell, depending on the
specific area of the cell where the measurement was performed
[45].  However,  this  method  was  not  able  to  give  bulk
information about a group of cells considered as one system.
Moreover, even though independent research groups were able
to evaluate cell stiffness, still large discordance in the absolute
stiffness  values  persists,  suggesting  that  there  is  no
standardization  for  cell  stiffness  evaluation  at  present.  The
method developed from our group allowed us to measure the
Young’s  Modulus  of  a  multicellular  structure  (an  artificial
tissue), as a feeder layer or a cell sheet. This method does not
suffer  from  the  bias  due  to  random  local  measurements  and
directly averages the stiffness of the in vitro cell construct [40].
Additionally,  rather  than  giving  information  on  the  local
stiffness,  this  method also considers  the contribution of  cell-
cell  interaction  and  the  resistance  due  to  the  presence  of  the
extracellular matrix. Furthermore, the peculiarity of performing
tensile test of cells surrounded by culture medium, overcomes
the  issue  of  inaccuracy  due  to  cell  tendency  to  dry,  a
phenomenon  occurring  in  other  measurement  methods  [40].

In  this  study,  fibroblasts  feeder  layers  showed  a
significantly  higher  stiffness  value  as  compared  to  C2C12
feeder cells. Fibroblasts are known to play a critical role in the
formation  of  scar  by  massively  producing  ECM  proteins  as
collagen,  fibronectin  and  elastins  [46],  and  building  a  stiff
replacement tissue. This result strengthens our hypothesis that
our method could detect ECM and cell-cell contact influence in
substrate  elasticity  together  with  intrinsic  single  cell
mechanical  feature.  In  fact,  it  was  already demonstrated that
cell  sheet  mechanics  is  directed  not  only  by  focal  adhesion
traction  forces  but  also  by  the  forces  transmitted  by
intercellular  junctions  to  neighboring  cells.  On  the  contrary,
C2C12 myoblasts cells are committed to generate contractile
functional units for muscle tissues and thus need to be highly
compliant.  Hence,  our  findings  are  in  accordance  with  the
knowledge of in vivo mechanical properties of fibroblasts and
myoblast  cells.  The  stiffness  values  obtained  appeared  to  be

higher  than  values  obtained  by  other  methods,  as  AFM
measurements,  where  skeletal  myoblasts  appeared  to  have  a
Young’s Modulus of 12-15 KPa and fibroblasts around 17 KPa
[29,  47  -  49].  This  result  can  be  explained  by  the  difference
between  the  2  measurement  methods  of  tensile  test  and
indentation  measurements  (i.e.  AFM).  Additionally,  in  our
system, cell sheet fixing before tensile test performance has to
be  considered  in  the  measurement  force  for  the  initial
cytoskeleton  tension  and  its  reorganization  [40].  These  two
types  of  forces  have  not  been  quantified  so  far,  but  clear
differences between mechanical properties of single cells and
cell sheets could be detected when cells were analyzed for their
response to substrate stiffness changes [50, 51].

During the tensile test performed in this study, a difference
in the  elastic  and plastic  deformation of  MEF and C2Cl2  cell
sheets  could  be  detected.  MEF  system  showed  higher  and
faster elastic deformation compared to C2Cl2 after the first 0.02
sec of stretching (Fig. 3).

CONCLUSION

Conditions of muscle cells and tissues like differentiation
represent important parameters for applying these cells to the
medical field and the bio-actuator.

Many  studies  have  already  shown  that  mechanical  and
several  biological  factors  are  involved  in  muscle  cell
differentiation.  In  this  study,  we  demonstrated  that  cells  and
their  microenvironment  biomechanical  properties,  such  as
stiffness, differ significantly among specific cell types. Many
techniques  have  already  been  developed  for  measuring  the
mechanical properties of single cells. However, these methods
were not able to give bulk information about a group of cells
considered as one system. Besides, the technique developed by
our  group  for  measuring  feeder  cell  mechanical  properties,
performing  tensile  tests  of  cell  sheets  generated  by  different
cell types, provided additional information in comparison with
other stiffness measurement methods. Fibroblast feeder layers
appeared  to  have  higher  stiffness  as  compared  to  myoblast
feeder  cells.  This  result  could  explain  our  previous  study
showing that myoblasts feeder cells could improve myogenic
differentiation of C2Cl2 seeded on top. The molecular basis of
the  mechanotransduction  process  leading  to  these  results,
meaning  how  mechanical  properties  are  converted  to
biochemical  signals  during  these  co-culture  experiments,  are
still unclear and further investigations are required.
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