Title

Measurement of the branching fraction and decay rate asymmetry of $B-\rightarrow D \pi+\pi-\pi 0 K-$

Permalink

https://escholarship.org/uc/item/5kw1m9zg

Journal

Physical Review D - Particles, Fields, Gravitation and Cosmology, 72(7)

ISSN

1550-7998

Authors

Aubert, B
Barate, R
Boutigny, D
et al.

Publication Date

2005-10-01
DOI
10.1103/PhysRevD.72.071102

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, availalbe at https://creativecommons.org/licenses/by/4.0

Peer reviewed

Measurement of the branching fraction and decay rate asymmetry of $\boldsymbol{B}^{-} \rightarrow \boldsymbol{D}_{\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{\mathbf{0}}} \boldsymbol{K}^{-}$

B. Aubert, ${ }^{1}$ R. Barate, ${ }^{1}$ D. Boutigny, ${ }^{1}$ F. Couderc, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ E. Grauges, ${ }^{2}$ A. Palano, ${ }^{3}$ M. Pappagallo, ${ }^{3}$ A. Pompili, ${ }^{3}$ J. C. Chen, ${ }^{4}$ N. D. Qi, ${ }^{4}$ G. Rong, ${ }^{4}$ P. Wang, ${ }^{4}$ Y. S. Zhu, ${ }^{4}$ G. Eigen, ${ }^{5}$
I. Ofte, ${ }^{5}$ B. Stugu, ${ }^{5}$ G. S. Abrams, ${ }^{6}$ M. Battaglia, ${ }^{6}$ A. W. Borgland, ${ }^{6}$ A. B. Breon, ${ }^{6}$ D. N. Brown, ${ }^{6}$ J. Button-Shafer, ${ }^{6}{ }^{5}$ R. N. Cahn, ${ }^{6}$ E. Charles, ${ }^{6}$ C. T. Day, ${ }^{6}$ M. S. Gill, ${ }^{6}$ A. V. Gritsan, ${ }^{6}$ Y. Groysman, ${ }^{6}$ R. G. Jacobsen, ${ }^{6}$ R. W. Kadel, ${ }^{6}$ J. Kadyk, ${ }^{6}$ L. T. Kerth, ${ }^{6}$ Yu. G. Kolomensky, ${ }^{6}$ G. Kukartsev, ${ }^{6}$ G. Lynch,,${ }^{6}$ L. M. Mir, ${ }^{6}$ P. J. Oddone, ${ }^{6}$ T. J. Orimoto, ${ }^{6}$ M. Pripstein, ${ }^{6}$ N. A. Roe, ${ }^{6}$ M. T. Ronan, ${ }^{6}$ W. A. Wenzel, ${ }^{6}$ M. Barrett, ${ }^{7}$ K.E. Ford, ${ }^{7}$ T. J. Harrison, ${ }^{7}$ A. J. Hart, ${ }^{7}$ C. M. Hawkes, ${ }^{7}$ S. E. Morgan, ${ }^{7}$ A. T. Watson, ${ }^{7}$ M. Fritsch, ${ }^{8}$ K. Goetzen, ${ }^{8}$ T. Held, ${ }^{8}$ H. Koch, ${ }^{8}$ B. Lewandowski, ${ }^{8}$ M. Pelizaeus, ${ }^{8}$ K. Peters, ${ }^{8}$ T. Schroeder, ${ }^{8}$ M. Steinke, ${ }^{8}$ J. T. Boyd, ${ }^{9}$ J. P. Burke, ${ }^{9}$ N. Chevalier, ${ }^{9}$ W. N. Cottingham, ${ }^{9}$ M. P. Kelly, ${ }^{9}$
T. Cuhadar-Donszelmann, ${ }^{10}$ C. Hearty, ${ }^{10}$ N. S. Knecht, ${ }^{10}$ T. S. Mattison, ${ }^{10}$ J. A. McKenna, ${ }^{10}$ A. Khan, ${ }^{11}$ P. Kyberd, ${ }^{11}$ L. Teodorescu, ${ }^{11}$ A. E. Blinov, ${ }^{12}$ V.E. Blinov, ${ }^{12}$ A. D. Bukin, ${ }^{12}$ V.P. Druzhinin, ${ }^{12}$ V. B. Golubev, ${ }^{12}$ E. A. Kravchenko, ${ }^{12}$ A. P. Onuchin, ${ }^{12}$ S. I. Serednyakov, ${ }^{12}$ Yu. I. Skovpen, ${ }^{12}$ E. P. Solodov, ${ }^{12}$ A. N. Yushkov, ${ }^{12}$ D. Best, ${ }^{13}$ M. Bondioli, ${ }^{13}$ M. Bruinsma, ${ }^{13}$ M. Chao, ${ }^{13}$ I. Eschrich, ${ }^{13}$ D. Kirkby, ${ }^{13}$ A. J. Lankford, ${ }^{13}$ M. Mandelkern,,${ }^{13}$ R. K. Mommsen, ${ }^{13}$ W. Roethel,,13 D.P. Stoker, ${ }^{13}$ C. Buchanan,,${ }^{14}$ B. L. Hartfiel, ${ }^{14}$ A. J. R. Weinstein, ${ }^{14}$ S. D. Foulkes, ${ }^{15}$ J. W. Gary, ${ }^{15}$ O. Long, ${ }^{15}$ B.C. Shen, ${ }^{15}$ K. Wang, ${ }^{15}$ L. Zhang, ${ }^{15}$ D. del Re, ${ }^{16}$ H. K. Hadavand, ${ }^{16}$ E. J. Hill, ${ }^{16}$ D. B. MacFarlane, ${ }^{16}$ H. P. Paar, ${ }^{16}$ S. Rahatlou, ${ }^{16}$ V. Sharma, ${ }^{16}$ J. W. Berryhill, ${ }^{17}$ C. Campagnari, ${ }^{17}$ A. Cunha, ${ }^{17}$ B. Dahmes, ${ }^{17}$ T. M. Hong, ${ }^{17}$ A. Lu, ${ }^{17}$ M. A. Mazur, ${ }^{17}$ J.D. Richman,,${ }^{17}$ W. Verkerke, ${ }^{17}$ T. W. Beck,,${ }^{18}$ A. M. Eisner, ${ }^{18}$ C. J. Flacco, ${ }^{18}$ C. A. Heusch, ${ }^{18}$ J. Kroseberg, ${ }^{18}$ W. S. Lockman, ${ }^{18}$ G. Nesom, ${ }^{18}$ T. Schalk, ${ }^{18}$ B. A. Schumm, ${ }^{18}$ A. Seiden, ${ }^{18}$ P. Spradlin, ${ }^{18}$ D. C. Williams, ${ }^{18}$ M. G. Wilson, ${ }^{18}$ J. Albert, ${ }^{19}$ E. Chen,,${ }^{19}$ G. P. Dubois-Felsmann, ${ }^{19}$ A. Dvoretskii, ${ }^{19}$ D. G. Hitlin, ${ }^{19}$ I. Narsky, ${ }^{19}$ T. Piatenko, ${ }^{19}$ F. C. Porter, ${ }^{19}$ A. Ryd, ${ }^{19}$ A. Samuel, ${ }^{19}$ R. Andreassen, ${ }^{20}$ S. Jayatilleke, ${ }^{20}$ G. Mancinelli, ${ }^{20}$ B. T. Meadows,,${ }^{20}$ M. D. Sokoloff, ${ }^{20}$ F. Blanc, ${ }^{21}$ P. Bloom, ${ }^{21}$ S. Chen, ${ }^{21}$ W. T. Ford, ${ }^{21}$ U. Nauenberg, ${ }^{21}$ A. Olivas, ${ }^{21}$ P. Rankin, ${ }^{21}$ W. O. Ruddick, ${ }^{21}$ J. G. Smith, ${ }^{21}$ K. A. Ulmer, ${ }^{21}$ S. R. Wagner, ${ }^{21}$ J. Zhang, ${ }^{21}$ A. Chen, ${ }^{22}$ E. A. Eckhart, ${ }^{22}$ A. Soffer, ${ }^{22}$ W. H. Toki, ${ }^{22}$ R. J. Wilson, ${ }^{22}$ Q. Zeng, ${ }^{22}$ E. Feltresi, ${ }^{23}$ A. Hauke, ${ }^{23}$ B. Spaan,,${ }^{23}$ D. Altenburg, ${ }^{24}$ T. Brandt, ${ }^{24}$ J. Brose, ${ }^{24}$ M. Dickopp, ${ }^{24}$ V. Klose, ${ }^{24}$ H. M. Lacker, ${ }^{24}$ R. Nogowski, ${ }^{24}$ S. Otto, ${ }^{24}$ A. Petzold, ${ }^{24}$ G. Schott, ${ }^{24}$ J. Schubert,,${ }^{24}$ K.R. Schubert, ${ }^{24}$ R. Schwierz, ${ }^{24}$ J. E. Sundermann, ${ }^{24}$ D. Bernard, ${ }^{25}$ G. R. Bonneaud, ${ }^{25}$ P. Grenier, ${ }^{25}$ S. Schrenk, ${ }^{25}$ Ch. Thiebaux, ${ }^{25}$ G. Vasileiadis, ${ }^{25}$ M. Verderi,,${ }^{25}$ D. J. Bard, ${ }^{26}$ P. J. Clark, ${ }^{26}$ W. Gradl, ${ }^{26}$ F. Muheim, ${ }^{26}$ S. Playfer,,${ }^{26}$ Y. Xie, ${ }^{26}$ M. Andreotti, ${ }^{27}$ V. Azzolini, ${ }^{27}$ D. Bettoni, ${ }^{27}$ C. Bozzi, ${ }^{27}$ R. Calabrese,,${ }^{27}$ G. Cibinetto, ${ }^{27}$ E. Luppi, ${ }^{27}$ M. Negrini, ${ }^{27}$ L. Piemontese, ${ }^{27}$ F. Anulli, ${ }^{28}$ R. Baldini-Ferroli, ${ }^{28}$ A. Calcaterra, ${ }^{28}$ R. de Sangro,${ }^{28}$ G. Finocchiaro, ${ }^{28}$ P. Patteri,,${ }^{28}$ I. M. Peruzzi, ${ }^{28, *}$ M. Piccolo, ${ }^{28}$ A. Zallo, ${ }^{28}$ A. Buzzo, ${ }^{29}$ R. Capra, ${ }^{29}$ R. Contri, ${ }^{29}$ M. Lo Vetere,,${ }^{29}$ M. Macri, ${ }^{29}$ M. R. Monge, ${ }^{29}$ S. Passaggio, ${ }^{29}$ C. Patrignani, ${ }^{29}$ E. Robutti, ${ }^{29}$ A. Santroni, ${ }^{29}$ S. Tosi, ${ }^{29}$ S. Bailey, ${ }^{30}$ G. Brandenburg, ${ }^{30}$ K. S. Chaisanguanthum, ${ }^{30}$ M. Morii, ${ }^{30}$ E. Won,,${ }^{30}$ R. S. Dubitzky, ${ }^{31}$ U. Langenegger, ${ }^{31}$ J. Marks, ${ }^{31}$ S. Schenk, ${ }^{31}$ U. Uwer, ${ }^{31}$ W. Bhimji, ${ }^{32}$ D. A. Bowerman, ${ }^{32}$ P.D. Dauncey, ${ }^{32}$ U. Egede, ${ }^{32}$ R. L. Flack, ${ }^{32}$ J. R. Gaillard, ${ }^{32}$ G. W. Morton, ${ }^{32}$ J. A. Nash, ${ }^{32}$ M. B. Nikolich, ${ }^{32}$ G.P. Taylor, ${ }^{32}$ M. J. Charles, ${ }^{33}$ W.F. Mader, ${ }^{33}$ U. Mallik, ${ }^{33}$ A. K. Mohapatra, ${ }^{33}$ J. Cochran, ${ }^{34}$ H. B. Crawley, ${ }^{34}$ V. Eyges, ${ }^{34}$ W. T. Meyer, ${ }^{34}$ S. Prell, ${ }^{34}$ E. I. Rosenberg, ${ }^{34}$ A. E. Rubin, ${ }^{34}$ J. Yi, ${ }^{34}$ N. Arnaud, ${ }^{35}$ M. Davier, ${ }^{35}$ X. Giroux,,${ }^{35}$ G. Grosdidier, ${ }^{35}$ A. Höcker, ${ }^{35}$ F. Le Diberder, ${ }^{35}$ V. Lepeltier, ${ }^{35}$ A. M. Lutz, ${ }^{35}$ A. Oyanguren, ${ }^{35}$ T. C. Petersen, ${ }^{35}$ M. Pierini, ${ }^{35}$ S. Plaszczynski, ${ }^{35}$ S. Rodier, ${ }^{35}$ P. Roudeau, ${ }^{35}$ M. H. Schune, ${ }^{35}$ A. Stocchi, ${ }^{35}$ G. Wormser, ${ }^{35}$ C. H. Cheng, ${ }^{36}$ D. J. Lange, ${ }^{36}$ M. C. Simani, ${ }^{36}$ D. M. Wright, ${ }^{36}$ A. J. Bevan, ${ }^{37}$ C. A. Chavez, ${ }^{37}$ J. P. Coleman, ${ }^{37}$ I. J. Forster, ${ }^{37}$ J. R. Fry, ${ }^{37}$ E. Gabathuler, ${ }^{37}$ R. Gamet, ${ }^{37}$ K. A. George, ${ }^{37}$ D. E. Hutchcroft, ${ }^{37}$ R. J. Parry, ${ }^{37}$ D. J. Payne,,${ }^{37}$ K. C. Schofield, ${ }^{37}$ C. Touramanis, ${ }^{37}$ C. M. Cormack, ${ }^{38}$ F. Di Lodovico, ${ }^{38}$ R. Sacco, ${ }^{38}$ C. L. Brown, ${ }^{39}$ G. Cowan, ${ }^{39}$ H. U. Flaecher, ${ }^{39}$ M. G. Green, ${ }^{39}$ D. A. Hopkins, ${ }^{39}$ P. S. Jackson, ${ }^{39}$ T. R. McMahon, ${ }^{39}$ S. Ricciardi, ${ }^{39}$ F. Salvatore, ${ }^{39}$ D. Brown, ${ }^{40}$ C. L. Davis, ${ }^{40}$ J. Allison, ${ }^{41}$ N. R. Barlow, ${ }^{41}$ R. J. Barlow,,${ }^{41}$ M. C. Hodgkinson, ${ }^{41}$ G. D. Lafferty, ${ }^{41}$ M. T. Naisbit, ${ }^{41}$ J.C. Williams, ${ }^{41}$ C. Chen,,42 A. Farbin, ${ }^{42}$ W.D. Hulsbergen, ${ }^{42}$ A. Jawahery, ${ }^{42}$ D. Kovalskyi, ${ }^{42}$ C. K. Lae, ${ }^{42}$ V. Lillard, ${ }^{42}$ D. A. Roberts, ${ }^{42}$ G. Simi, ${ }^{42}$ G. Blaylock, ${ }^{43}$ C. Dallapiccola, ${ }^{43}$ S. S. Hertzbach, ${ }^{43}$ R. Kofler, ${ }^{43}$ V. B. Koptchev, ${ }^{43}$ X. Li, ${ }^{43}$ T. B. Moore, ${ }^{43}$ S. Saremi, ${ }^{43}$ H. Staengle, ${ }^{43}$ S. Willocq, ${ }^{43}$ R. Cowan, ${ }^{44}$ K. Koeneke, ${ }^{44}$ G. Sciolla, ${ }^{44}$ S. J. Sekula, ${ }^{44}$ F. Taylor, ${ }^{44}$ R. K. Yamamoto, ${ }^{44}$ H. Kim, ${ }^{45}$ P. M. Patel, ${ }^{45}$ S. H. Robertson, ${ }^{45}$ A. Lazzaro, ${ }^{46}$ V. Lombardo, ${ }^{46}$ F. Palombo, ${ }^{46}$ J. M. Bauer, ${ }^{47}$ L. Cremaldi, ${ }^{47}$ V. Eschenburg, ${ }^{47}$ R. Godang, ${ }^{47}$ R. Kroeger, ${ }^{47}$ J. Reidy, ${ }^{47}$ D. A. Sanders, ${ }^{47}$ D. J. Summers, ${ }^{47}$ H. W. Zhao, ${ }^{47}$ S. Brunet ${ }^{48}$ D. Côté, ${ }^{48}$ P. Taras, ${ }^{48}$ B. Viaud, ${ }^{48}$ H. Nicholson, ${ }^{49}$ N. Cavallo, ${ }^{50, \dagger}$ G. De Nardo, ${ }^{50}$ F. Fabozzi, ${ }^{50, \dagger}$ C. Gatto, ${ }^{50}$ L. Lista, ${ }^{50}$ D. Monorchio,,${ }^{50}$ P. Paolucci, ${ }^{50}$ D. Piccolo, ${ }^{50}$ C. Sciacca, ${ }^{50}$ M. Baak, ${ }^{51}$ H. Bulten,,${ }^{51}$ G. Raven, ${ }^{51}$ H. L. Snoek, ${ }^{51}$ L. Wilden, ${ }^{51}$ C.P. Jessop, ${ }^{52}$ J. M. LoSecco, ${ }^{52}$ T. Allmendinger, ${ }^{53}$ G. Benelli, ${ }^{53}$ K. K. Gan, ${ }^{53}$ K. Honscheid,,${ }^{53}$ D. Hufnagel, ${ }^{53}$ P.D. Jackson, ${ }^{53}$ H. Kagan, ${ }^{53}$ R. Kass, ${ }^{53}$ T. Pulliam, ${ }^{53}$ A. M. Rahimi, ${ }^{53}$ R. Ter-Antonyan, ${ }^{53}$ Q. K. Wong, ${ }^{53}$ J. Brau, ${ }^{54}$
R. Frey, ${ }^{54}$ O. Igonkina, ${ }^{54}$ M. Lu, ${ }^{54}$ C. T. Potter, ${ }^{54}$ N. B. Sinev, ${ }^{54}$ D. Strom, ${ }^{54}$ E. Torrence, ${ }^{54}$ F. Colecchia, ${ }^{55}$ A. Dorigo, ${ }^{55}$ F. Galeazzi, ${ }^{55}$ M. Margoni,${ }^{55}$ M. Morandin, ${ }^{55}$ M. Posocco,,${ }^{55}$ M. Rotondo, ${ }^{55}$ F. Simonetto, ${ }^{55}$ R. Stroili, ${ }^{55}$ C. Voci, ${ }^{55}$ M. Benayoun, ${ }^{56}$ H. Briand, ${ }^{56}$ J. Chauveau, ${ }^{56}$ P. David, ${ }^{56}$ L. Del Buono, ${ }^{56} \mathrm{Ch}$. de la Vaissière, ${ }^{56}$ O. Hamon, ${ }^{56}$ M. J. J. John, ${ }^{56}$ Ph. Leruste, ${ }^{56}$ J. Malclès, ${ }^{56}$ J. Ocariz, ${ }^{56}$ L. Roos, ${ }^{56}$ G. Therin, ${ }^{56}$ P. K. Behera, ${ }^{57}$ L. Gladney, ${ }^{57}$ Q. H. Guo, ${ }^{57}$ J. Panetta,,${ }^{57}$ M. Biasini, ${ }^{58}$ R. Covarelli, ${ }^{58}$ S. Pacetti, ${ }^{58}$ M. Pioppi, ${ }^{58}$ C. Angelini, ${ }^{59}$ G. Batignani, ${ }^{59}$ S. Bettarini, ${ }^{59}$ F. Bucci, ${ }^{59}$ G. Calderini, ${ }^{59}$ M. Carpinelli, ${ }^{59}$ R. Cenci, ${ }^{59}$ F. Forti, ${ }^{59}$ M. A. Giorgi, ${ }^{59}$ A. Lusiani, ${ }^{59}$ G. Marchiori, ${ }^{59}$ M. Morganti, ${ }^{59}$ N. Neri, ${ }^{59}$ E. Paoloni, ${ }^{59}$ M. Rama, ${ }^{59}$ G. Rizzo, ${ }^{59}$ J. Walsh, ${ }^{59}$ M. Haire, ${ }^{60}$ D. Judd, ${ }^{60}$ K. Paick, ${ }^{60}$ D. E. Wagoner,,${ }^{60}$ J. Biesiada, ${ }^{61}$ N. Danielson, ${ }^{61}$ P. Elmer, ${ }^{61}$ Y.P. Lau, ${ }^{61}$ C. Lu, ${ }^{61}$ J. Olsen, ${ }^{61}$ A. J.S. Smith,,${ }^{61}$ A. V. Telnov, ${ }^{61}$ F. Bellini, ${ }^{62}$ G. Cavoto,,62 A. D'Orazio, ${ }^{62}$ E. Di Marco,,${ }^{62}$ R. Faccini, ${ }^{62}$ F. Ferrarotto, ${ }^{62}$ F. Ferroni, ${ }^{62}$ M. Gaspero, ${ }^{62}$ L. Li Gioi, ${ }^{62}$ M. A. Mazzoni, ${ }^{62}$ S. Morganti, ${ }^{62}$ G. Piredda, ${ }^{62}$ F. Polci, ${ }^{62}$ F. Safai Tehrani, ${ }^{62}$ C. Voena, ${ }^{62}$ H. Schröder, ${ }^{63}$ G. Wagner, ${ }^{63}$ R. Waldi, ${ }^{63}$ T. Adye, ${ }^{64}$ N. De Groot, ${ }^{64}$ B. Franek, ${ }^{64}$ G. P. Gopal, ${ }^{64}$ E. O. Olaiya, ${ }^{64}$ F.F. Wilson, ${ }^{64}$ R. Aleksan,,${ }^{65}$ S. Emery, ${ }^{65}$ A. Gaidot, ${ }^{65}$ S. F. Ganzhur,,${ }^{65}$ P.-F. Giraud, ${ }^{65}$ G. Graziani, ${ }^{65}$ G. Hamel de Monchenault, ${ }^{65}$ W. Kozanecki, ${ }^{65}$ M. Legendre, ${ }^{65}$ G. W. London, ${ }^{65}$ B. Mayer, ${ }^{65}$ G. Vasseur, ${ }^{65}$ Ch. Yèche, ${ }^{65}$ M. Zito, ${ }^{65}$ M. V. Purohit, ${ }^{66}$ A. W. Weidemann, ${ }^{66}$ J. R. Wilson, ${ }^{66}$ F. X. Yumiceva, ${ }^{66}$ T. Abe, ${ }^{67}$ M. T. Allen, ${ }^{67}$ D. Aston, ${ }^{67}$ R. Bartoldus, ${ }^{67}$ N. Berger,,${ }^{67}$ A. M. Boyarski, ${ }^{67}$ O. L. Buchmueller, ${ }^{67}$ R. Claus, ${ }^{67}$ M. R. Convery, ${ }^{67}$ M. Cristinziani, ${ }^{67}$ J. C. Dingfelder, ${ }^{67}$ D. Dong, ${ }^{67}$ J. Dorfan, ${ }^{67}$ D. Dujmic, ${ }^{67}$ W. Dunwoodie, ${ }^{67}$ S. Fan, ${ }^{67}$ R.C. Field, ${ }^{67}$ T. Glanzman, ${ }^{67}$ S. J. Gowdy, ${ }^{67}$ T. Hadig, ${ }^{67}$ V. Halyo, ${ }^{67}$ C. Hast, ${ }^{67}$ T. Hryn'ova, ${ }^{67}$ W. R. Innes, ${ }^{67}$ M. H. Kelsey, ${ }^{67}$ P. Kim, ${ }^{67}$ M. L. Kocian, ${ }^{67}$ D. W. G.S. Leith, ${ }^{67}$ J. Libby, ${ }^{67}$ S. Luitz, ${ }^{67}$ V. Luth,,${ }^{67}$ H. L. Lynch,,${ }^{67}$ H. Marsiske, ${ }^{67}$ R. Messner, ${ }^{67}$ D. R. Muller, ${ }^{67}$ C.P. O'Grady, ${ }^{67}$ V.E. Ozcan, ${ }^{67}$ A. Perazzo, ${ }^{67}$ M. Perl, ${ }^{67}$ B. N. Ratcliff, ${ }^{67}$ A. Roodman, ${ }^{67}$ A. A. Salnikov, ${ }^{67}$ R. H. Schindler, ${ }^{67}$ J. Schwiening, ${ }^{67}$ A. Snyder, ${ }^{67}$ J. Stelzer, ${ }^{67}$ J. Strube, ${ }^{54,67}$ D. Su, ${ }^{67}$ M. K. Sullivan, ${ }^{67}$ K. Suzuki, ${ }^{67}$ S. Swain, ${ }^{67}$ J. M. Thompson, ${ }^{67}$ J. Va'vra, ${ }^{67}$ M. Weaver, ${ }^{67}$ W. J. Wisniewski, ${ }^{67}$ M. Wittgen, ${ }^{67}$ D. H. Wright, ${ }^{67}$ A. K. Yarritu, ${ }^{67}$ K. Yi, ${ }^{67}$ C. C. Young, ${ }^{67}$ P. R. Burchat, ${ }^{68}$ A. J. Edwards, ${ }^{68}$ S. A. Majewski, ${ }^{68}$ B. A. Petersen, ${ }^{68}$ C. Roat, ${ }^{68}$ M. Ahmed, ${ }^{69}$ S. Ahmed, ${ }^{69}$ M. S. Alam,,${ }^{69}$ J. A. Ernst, ${ }^{69}$ M. A. Saeed, ${ }^{69}$ M. Saleem, ${ }^{69}$ F. R. Wappler, ${ }^{69}$ S. B. Zain, ${ }^{69}$ W. Bugg, ${ }^{70}$ M. Krishnamurthy, ${ }^{70}$ S. M. Spanier, ${ }^{70}$ R. Eckmann, ${ }^{71}$ J. L. Ritchie, ${ }^{71}$ A. Satpathy, ${ }^{71}$ R. F. Schwitters, ${ }^{71}$ J. M. Izen, ${ }^{72}$ I. Kitayama, ${ }^{72}$ X. C. Lou, ${ }^{72}$ S. Ye, ${ }^{72}$ F. Bianchi, ${ }^{73}$ M. Bona, ${ }^{73}$ F. Gallo, ${ }^{73}$ D. Gamba, ${ }^{73}$ M. Bomben, ${ }^{74}$ L. Bosisio, ${ }^{74}$ C. Cartaro, ${ }^{74}$ F. Cossutti, ${ }^{74}$ G. Della Ricca, ${ }^{74}$ S. Dittongo, ${ }^{74}$ S. Grancagnolo, ${ }^{74}$ L. Lanceri, ${ }^{74}$ P. Poropat, ${ }^{74, \ddagger}$ L. Vitale, ${ }^{74}$ F. Martinez-Vidal, ${ }^{75}$ R. S. Panvini, ${ }^{76, \ddagger}$ Sw. Banerjee, ${ }^{77}$ B. Bhuyan, ${ }^{77}$ C. M. Brown, ${ }^{77}$ D. Fortin, ${ }^{77}$ K. Hamano, ${ }^{77}$ R. Kowalewski, ${ }^{77}$ J. M. Roney, ${ }^{77}$ R. J. Sobie, ${ }^{77}$ J. J. Back, ${ }^{78}$ P.F. Harrison, ${ }^{78}$ T. E. Latham, ${ }^{78}$ G. B. Mohanty, ${ }^{78}$ H. R. Band, ${ }^{79}$ X. Chen, ${ }^{79}$ B. Cheng, ${ }^{79}$ S. Dasu, ${ }^{79}$ M. Datta, ${ }^{79}$ A. M. Eichenbaum, ${ }^{79}$ K. T. Flood, ${ }^{79}$ M. Graham, ${ }^{79}$ J. J. Hollar, ${ }^{79}$ J. R. Johnson, ${ }^{79}$ P.E. Kutter, ${ }^{79}$ H. Li, ${ }^{79}$ R. Liu, ${ }^{79}$ B. Mellado, ${ }^{79}$ A. Mihalyi, ${ }^{79}$ Y. Pan, ${ }^{79}$ R. Prepost, ${ }^{79}$ P. Tan, ${ }^{79}$ J. H. von Wimmersperg-Toeller, ${ }^{79}$ J. Wu, ${ }^{79}$ S. L. Wu, ${ }^{79}$ Z. Yu, ${ }^{79}$ M. G. Greene, ${ }^{80}$ and H. Neal ${ }^{80}$
(BABAR Collaboration)

[^0]${ }^{21}$ University of Colorado, Boulder, Colorado 80309, USA
${ }^{22}$ Colorado State University, Fort Collins, Colorado 80523, USA
${ }^{23}$ Universität Dortmund, Institut fur Physik, D-44221 Dortmund, Germany
${ }^{24}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
${ }^{25}$ Ecole Polytechnique, LLR, F-91128 Palaiseau, France
${ }^{26}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
${ }^{27}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
${ }^{28}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
${ }^{29}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
${ }^{30}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{31}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
${ }^{32}$ Imperial College London, London, SW7 2AZ, United Kingdom
${ }^{33}$ University of Iowa, Iowa City, Iowa 52242, USA
${ }^{34}$ Iowa State University, Ames, Iowa 50011-3160, USA
${ }^{35}$ Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France
${ }^{36}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
${ }^{37}$ University of Liverpool, Liverpool L69 72E, United Kingdom
${ }^{38}$ Queen Mary, University of London, E1 4NS, United Kingdom
${ }^{39}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 OEX, United Kingdom
${ }^{40}$ University of Louisville, Louisville, Kentucky 40292, USA
${ }^{41}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{42}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{43}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
${ }^{44}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
${ }^{45}$ McGill University, Montréal, Quebec, Canada H3A $2 T 8$
${ }^{46}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
${ }^{47}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{48}$ Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, Quebec, Canada H3C 3J7
${ }^{49}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
${ }^{50}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
${ }^{51}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
${ }^{52}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{53}$ Ohio State University, Columbus, Ohio 43210, USA
${ }^{54}$ University of Oregon, Eugene, Oregon 97403, USA
${ }^{55}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
${ }^{56}$ Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
${ }^{57}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{58}$ Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
${ }^{59}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
${ }^{60}$ Prairie View A\&M University, Prairie View, Texas 77446, USA
${ }^{61}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{62}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
${ }^{63}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{64}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
${ }^{65}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
${ }^{66}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{67}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
${ }^{68}$ Stanford University, Stanford, California 94305-4060, USA
${ }^{69}$ State University of New York, Albany, New York 12222, USA
${ }^{70}$ University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{71}$ University of Texas at Austin, Austin, Texas 78712, USA
${ }^{72}$ University of Texas at Dallas, Richardson, Texas 75083, USA
${ }^{73}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
${ }^{74}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
${ }^{75}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
${ }^{76}$ Vanderbilt University, Nashville, Tennessee 37235, USA
${ }^{77}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
${ }^{78}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
${ }^{79}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{80}$ Yale University, New Haven, Connecticut 06511, USA
(Received 26 May 2005; published 18 October 2005)

We report the observation of the decay $B^{-} \rightarrow D_{\pi^{+} \pi^{-} \pi^{0}} K^{-}$, where $D_{\pi^{+} \pi^{-} \pi^{0}}$ indicates a neutral D meson detected in the final state $\pi^{+} \pi^{-} \pi^{0}$, excluding $K_{S}^{0} \pi^{0}$. This doubly Cabibbo-suppressed decay chain can be used to measure the CKM phase γ. Using about $229 \times 10^{6} e^{+} e^{-} \rightarrow B \bar{B}$ events recorded by the $B A B A R$ experiment at the PEP-II $e^{+} e^{-}$storage ring, we measure the branching fraction $\mathcal{B}\left(B^{-} \rightarrow D_{\pi^{+} \pi^{-} \pi^{0}} K^{-}\right)=$ $(5.5 \pm 1.0($ stat. $) \pm 0.7($ syst. $)) \times 10^{-6}$ and the decay rate asymmetry $A\left(B^{-} \rightarrow D_{\pi^{+} \pi^{-} \pi^{0}} K^{-}\right)=-0.02 \pm$ 0.16 (stat.) ± 0.03 (syst.) for the full decay chain.

DOI: 10.1103/PhysRevD.72.071102
PACS numbers: 13.25.Hw, 12.15.Hh, 11.30.Er

The Cabibbo-Kobayashi-Maskawa (CKM) matrix, whose element $V_{i j}$ [1] describes the weak charged-current coupling between quark flavors i and j, provides an explanation for $C P$ violation in the standard model. A crucial part of the program to study $C P$ violation is the measurement of the angle $\gamma=\arg \left(-V_{u d} V_{u b}^{*} / V_{c d} V_{c b}^{*}\right)$ of the unitarity triangle related to the CKM matrix. The decays $B \rightarrow D^{(*) 0} K^{(*)}$ can be used to measure γ with essentially no hadronic uncertainties, making use of interference between $b \rightarrow u \bar{c} s$ and $b \rightarrow c \bar{u} s$ decay amplitudes. A number of variations on the original method [2] have been developed, and some have been explored experimentally. Employing multiple methods helps to resolve discrete ambiguities and decrease the experimental error.

An important class of γ measurement methods involves $B \rightarrow D^{(*) 0} K^{(*)}$ with multibody D decays. ${ }^{1}$ In this technique, γ is extracted from an analysis of the D-decay Dalitz plot, and ambiguities are resolved through interference between several D decay amplitudes [3]. Both Belle [4] and BABAR [5] have used this method to obtain limits on γ with the Cabibbo-favored decay $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$. The same approach can be carried out with multibody final states that are produced by singly Cabibbo-suppressed decay of both D^{0} and \bar{D}^{0} [6]. While these modes yield much smaller event samples, their interfering D^{0} and \bar{D}^{0} decay amplitudes have similar magnitudes. Therefore, their overall sensitivity to γ is a priori expected to be similar to that of Cabibbo-favored D decays, where the interfering amplitudes typically have very dissimilar magnitudes.

Among the singly Cabibbo-suppressed modes, the decay $D \rightarrow \pi^{+} \pi^{-} \pi^{0}$ has a relatively large branching fraction [7] and a simple Dalitz plot dominated by broad ρ resonances [8], making it attractive for the measurement of γ with this technique. Its major difficulty is the relatively small signal-to-background ratio, which results mainly from the high combinatorial background associated with π^{0} reconstruction. In this article, we describe an analysis procedure with which to extract the $B^{-} \rightarrow D_{\pi^{+} \pi^{-} \pi^{0}} K^{-}$signal for later use

[^1]in a Dalitz plot analysis measurement of γ, and report the measured branching fraction and decay rate asymmetry of this decay chain. Our result excludes the decay mode $D \rightarrow$ $K_{S}^{0} \pi^{0}$, which is a previously-studied $C P$-eigenstate not related to the method of Ref. [3].

The decay rate asymmetry $A\left(B^{-} \rightarrow D_{\pi^{+} \pi^{-} \pi^{0}} K^{-}\right)=$ $\left(N^{-}-N^{+}\right) /\left(N^{-}+N^{+}\right)$, where $N^{-}\left(N^{+}\right)$is the number of signal $B^{-}\left(B^{+}\right)$decays, depends on the weak and strong phases of the B decay, as well as the D^{0} and \bar{D}^{0} decay rate and phase variation over the Dalitz plot. Its magnitude is at most of order $2 r_{B}$, where r_{B}, estimated to be about 0.1 [3], is the ratio between the magnitudes of the interfering $b \rightarrow$ $u \bar{c} s$ and $b \rightarrow c \bar{u} s$ amplitudes. Because of interference, the branching fraction $\mathcal{B}\left(B^{-} \rightarrow D_{\pi^{+} \pi^{-} \pi^{0}} K^{-}\right)$may differ from the product $\mathcal{B}_{\text {prod }} \equiv \mathcal{B}\left(B^{-} \rightarrow D^{0} K^{-}\right) \times \mathcal{B}\left(D^{0} \rightarrow\right.$ $\left.\pi^{+} \pi^{-} \pi^{0}\right)=(4.1 \pm 1.6) \times 10^{-6} \quad$ [7] by up to about $2 r_{B} \mathcal{B}_{\text {prod }}$.

The data used in this analysis were collected with the $B A B A R$ detector at the PEP-II energy-asymmetric $e^{+} e^{-}$ storage ring. The data consist of $207 \mathrm{fb}^{-1}$ collected on the $Y(4 S)$ resonance (on-resonance sample), and $21 \mathrm{fb}^{-1}$ collected at an $e^{+} e^{-}$center-of-mass (CM) energy approximately 40 MeV below the resonance peak (off-resonance sample). Samples of simulated events were analyzed with the same reconstruction and analysis procedure. These include an $e^{+} e^{-} \rightarrow B \bar{B}$ sample about 3 times larger than the data; a continuum $e^{+} e^{-} \rightarrow q \bar{q}$ sample, where q represents a u, d, s, or c quark, with equivalent luminosity similar to that of the data; and a signal sample about 200 times larger than what is expected in the data. Both phase space D decays and decays according to Ref. [8] were used in the signal sample. The $B A B A R$ detector and the methods used for particle reconstruction and identification are described in detail in Ref. [9].

We select events using criteria designed to maximize the signal branching fraction sensitivity and the reliability of the maximum likelihood fit procedure described below. To suppress the continuum background, we require the ratio H_{2} / H_{0} of the 2nd to the 0th Fox-Wolfram moments [10], computed from the momenta of all charged particles and photon candidates not matched to tracks, to be less than 0.50 . Charged kaon candidates are required to have a high quality particle identification measurement and be identified using kaon selection criteria that reduce the pion background to less than 3%. The measured energy of photon candidates is required to be at least 30 MeV . Photon candidate pairs whose invariant mass is within
$25 \mathrm{MeV} / c^{2}$ of the nominal π^{0} mass [7] are combined to make π^{0} candidates, to which we perform a constrainedmass fit in order to improve the π^{0} energy and momentum resolutions. Throughout this article, we use the symbol γ_{h} to refer to the harder (higher-energy) of the two photons constituting a π^{0} candidate, and γ_{s} to denote the softer (lower-energy) photon.

We select $D \rightarrow \pi^{+} \pi^{-} \pi^{0}$ candidate decays by requiring the $\pi^{+} \pi^{-} \pi^{0}$ invariant mass m_{D} to be between $1.830 \mathrm{GeV} / c^{2}$ and $1.895 \mathrm{GeV} / c^{2}$. The m_{D} resolution is about $14 \mathrm{MeV} / c^{2}$. The D candidate energy and momentum resolutions are then improved by performing a constrained-mass fit. The charged pion candidates are required to fail kaon selection criteria. The decay $D \rightarrow K_{S}^{0} \pi^{0}$ is rejected by excluding $\pi^{+} \pi^{-}$candidate pairs whose invariant mass is between $0.489 \mathrm{GeV} / c^{2}$ and $0.508 \mathrm{GeV} / c^{2}$. We note that this last requirement will not be needed when measuring γ with an analysis of the $\pi^{+} \pi^{-} \pi^{0}$ Dalitz plot, where the $K_{S}^{0} \pi^{0}$ final state can be included as an incoherent term, as done in Ref. [8].

Candidate $B^{-} \rightarrow D_{\pi^{+} \pi^{-} \pi^{0}} K^{-}$decays are constructed by combining a $D \rightarrow \pi^{+} \pi^{-} \pi^{0}$ candidate with a charged kaon candidate. Additional continuum suppression is obtained by requiring $\left|\cos \theta_{T}\right|<0.8$, where θ_{T} is the angle between the thrust axis calculated in the CM frame with the daughters of the B candidate and the thrust axis of the rest of the event (ROE). For each B candidate we calculate the beamenergy substituted mass $m_{E S} \equiv \sqrt{E_{\mathrm{CM}}^{2} / 4-\left|\mathbf{p}_{\mathbf{B}}\right|^{2}}$, where the total CM energy E_{CM} is continuously determined from the measured PEP-II beam energies, and $\mathbf{p}_{\boldsymbol{B}}$ is the momentum of the B candidate in the CM frame. Signal events have a Gaussian $m_{E S}$ distribution that peaks at the nominal B^{-} mass with a width of about $2.7 \mathrm{MeV} / c^{2}$, while background is distributed more broadly than signal. We require $5.272<m_{E S}<5.300 \mathrm{GeV} / c^{2}$. The energy difference $\Delta E=E_{B}-E_{\mathrm{CM}} / 2$, where E_{B} is the CM energy of the B candidate, is required to be between -70 MeV and 60 MeV . The ΔE distribution of signal events peaks around 0 MeV with a width of 21 MeV .

About 25% of the events selected have more than one B candidate. In these events, we select one B candidate at random. Random selection allows consistent studies of background suppression variables, and degrades the signal sensitivity by only a few percent relative to the best possible selection method.

Studying the simulated event sample selected by the above criteria, we identify ten event types, one signal and nine background. We list these types with the labels used to refer to them throughout the article:
(i) $D K_{D}: B^{-} \rightarrow D_{\pi^{+} \pi^{-} \pi^{0}} K^{-}$events that were correctly reconstructed. These are the only events considered to be signal.
(ii) $D K_{D}: B^{-} \rightarrow D_{\pi^{+} \pi^{-} \pi^{0}} K^{-}$events in which the D candidate is misreconstructed, namely, some of the particles used to form the final state
$\pi^{+} \pi^{-} \pi^{0}$ do not originate in the decay of the D meson.
(iii) $D \pi_{\emptyset D}: B^{-} \rightarrow D^{0} \pi^{-}, D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays, where the decay $D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ is correctly reconstructed and the remaining π^{-}is mistaken to be the kaon.
(iv) $D \pi_{\emptyset}: B^{-} \rightarrow D^{0} \pi^{-}, D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays, where the D candidate is misreconstructed. The kaon candidate may be either the remaining π^{-}or a particle from the other B meson in the event.
(v) $D K X: B \rightarrow D^{(*)} K^{(*)-}$, excluding $D \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays, with a misreconstructed D candidate.
(vi) $D \pi X: B \rightarrow D^{(*)} \pi^{-}$and $B \rightarrow D^{(*)} \rho^{-}$, excluding $D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays, with a misreconstructed D candidate.
(vii) $B B C_{\not D}$: All other $B \bar{B}$ events with a misreconstructed D candidate.
(viii) $B B C_{D}$: Other $B \bar{B}$ events with a correctly reconstructed $D \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decay.
(ix) $q q_{\emptyset D}$: Continuum $e^{+} e^{-} \rightarrow q \bar{q}$ events with a misreconstructed D candidate.
(x) $q q_{D}:$ Continuum $e^{+} e^{-} \rightarrow q \bar{q}$ events with a correctly reconstructed $D \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decay.
The Cabibbo-favored decay chain $B^{-} \rightarrow D^{0} \pi^{-}, D^{0} \rightarrow$ $K^{-} \pi^{+} \pi^{0}$, which has the same final state particles as our signal decay, does not contribute significantly to the background, since it is suppressed by the particle identification and m_{D} cuts

The majority of background events are of the $q q_{\not D D}$ type. The combination of $D \pi X, D K X$, and $B B C_{\not D}$ events constitutes the second largest background. In order to suppress these backgrounds, we have developed two neural networks, each of which combines several input variables that provide separation between signal and background. The first neural network variable q is computed from input variables that provide separation between continuum and $B \bar{B}$ events. The second variable d combines input variables that separate correctly reconstructed π^{0} and D candidates from misreconstructed ones. It provides separation between signal and all misreconstructed- D background.

The input variables for q are (1) the cosine of the CM angle between $\mathbf{p}_{\mathbf{B}}$ and the beams; (2) $\left|\cos \theta_{T}\right|$; (3-4) the zeroth and second Legendre moments of the momentum flow of the ROE about the CM thrust axis of the B candidate daughters; (5) \log of the distance along the beam direction between the reconstructed B vertex and the vertex of the ROE, computed as in Ref. [11]; (6) log of the distance of closest approach between the kaon track and the D decay vertex, which is calculated from the π^{+}and π^{-}track parameters; (7) an integer variable calculated from the probability that the ROE contains a B^{0}, determined using the lepton flavor tagging algorithm of Ref. [11].

The input variables for d are (1) the invariant mass of the π^{0} candidate; (2) the π^{0} momentum in the lab frame; (3) cosine of the π^{0} decay angle $\theta_{\pi^{0}}$, defined as the angle
between the γ_{h} momentum and the momentum of the CM frame, calculated in the π^{0} rest frame; (4) the invariant mass m_{h} of π_{h}^{0}, where π_{h}^{0} is the π^{0} candidate reconstructed from the γ_{h} and any additional photon in the event except γ_{s}, chosen such that m_{h} is closest to the nominal π^{0} mass; (5) m_{s}, calculated analogously to m_{h}, but with γ_{s} instead of γ_{h}; (6-7) cosines of the decay angles of the π_{h}^{0} and the π_{s}^{0}, calculated analogously to $\theta_{\pi^{0}}$; (8) cosine of the angle between $\mathbf{p}_{\mathbf{B}}$ and the thrust axis of the $\pi^{+} \pi^{-} \pi^{0}$ final state, calculated in the $\pi^{+} \pi^{-} \pi^{0}$ rest frame; (9) cosine of the angle between the D candidate momentum and the line connecting the B and D decay vertices.

The q and d distributions of simulated signal and background events are shown in Fig. 1. All events are required to satisfy the conditions $q>0.1, d>0.1$, in order to reduce the background and suppress correlations between the variables used in the fit described below. The final signal reconstruction efficiency is 10.5%.

We perform a maximum likelihood fit to measure the number and the decay rate asymmetry of signal events in the on-resonance data sample, using the variables $\Delta E, q$, and d. The variable $m_{E S}$, which is commonly used as a fit variable in B decay analyses, is not included in the fit. Studies with simulated events indicate that correlations of $m_{E S}$ with other fit variables in the distributions of $D \pi X$, $D K X$, and $B B C_{\not D}$ background events lead to a bias in the measured signal yield, unless the correlations are modeled correctly. Such modeling complicates the analysis procedure, increases the dependence on the simulation, and incurs additional systematic errors. By excluding $m_{E S}$ from the fit, we give up some statistical precision in order to make the analysis more robust. Correlations between the $\Delta E, q$, and d distributions for the different event types are at the few percent level in the worst cases, and ignoring them in fits to simulated events does not result in significant biases.

FIG. 1 (color online). (a) Distribution of the neural network variable q for continuum (hatched) and signal simulated events. The $B \bar{B}$ background distribution is similar to that of signal. (b) Distribution of the neural network variable d for $B \bar{B}$ background (hatched) and signal simulated events. The continuum background distribution is similar to that of the $B \bar{B}$ background. All histograms are normalized to unit area.

The probability density function (PDF) for the fit is

$$
\begin{equation*}
\mathcal{P}=\frac{1}{\eta} \sum_{t} \frac{N_{t}}{2}\left(1-C A_{t}\right) \mathcal{P}_{t}(\Delta E, q, d) \tag{1}
\end{equation*}
$$

where the subscript t corresponds to one of the ten event types listed above, N_{t} is the number of events of type t, A_{t} is their decay rate asymmetry, C is the charge of the B candidate, and $\eta \equiv \sum_{t} N_{t}$. The PDF \mathcal{P}_{t} for events of type t is a product of the form

$$
\begin{equation*}
\mathcal{P}_{t}(\Delta E, q, d)=\mathcal{E}_{t}(\Delta E) \mathcal{Q}_{t}(q) \mathcal{D}_{t}(d) \tag{2}
\end{equation*}
$$

The functions $\mathcal{E}_{B B C_{\emptyset D}}(\Delta E), \mathcal{E}_{q q_{D}}(\Delta E)$, and $\mathcal{E}_{q q_{D}}(\Delta E)$ are parametrized as second order polynomials, and all other $\mathcal{E}_{t}(\Delta E)$ functions are the sum of a Gaussian and a second order polynomial. The parameters of these functions are obtained from fits to simulated events. The PDFs $\mathcal{Q}_{t}(q)$ and $\mathcal{D}_{t}(d)$ are 15 -bin histograms obtained from simulated events.

To extract the signal yield and asymmetry, we minimize the log of the extended likelihood

$$
\begin{equation*}
\mathcal{L}=\frac{\eta^{N} e^{-\eta}}{N!} \prod_{i=1}^{N} \mathcal{P}(i) \tag{3}
\end{equation*}
$$

Six parameters are floating in the fit. These are the event yields $N_{D K_{D}}, N_{D \pi_{D}}, N_{q q_{\emptyset}}$, and $N_{B B_{\emptyset D}} \equiv N_{D K X}+N_{D \pi X}+$ $N_{B B C_{\emptyset}}$, the ratio $R_{D \pi X} \equiv N_{D \pi X} / N_{B B_{\emptyset}}$, and the decay rate asymmetry $A_{D K_{D}}$. All other decay rate asymmetries are fixed to 0 in the fit. Five ratios of event yields are obtained from the simulation and are not varied in the fit. From these ratios we obtain the five parameters $N_{D K X}=0.21 N_{D \pi X}$, $N_{D \pi_{\emptyset D}}=0.171 N_{D \pi_{D}}, \quad N_{B B C_{D}}=0.0089 N_{B B_{\emptyset \emptyset}}, \quad N_{q q_{D}}=$ $0.0136 N_{q q_{\emptyset}}$, and $N_{D K_{\not D}}=0.1614 N_{D K_{D}}$. All fixed parameters are later varied to evaluate systematic errors, as described below.

The results of the fit are summarized in Table I. We measure $N_{D K_{D}}=133 \pm 23$ signal events and the decay rate asymmetry $A_{D K_{D}}=-0.02 \pm 0.16$, where the errors are statistical only. The corresponding branching fraction is $\mathcal{B}\left(B^{-} \rightarrow D_{\pi^{+} \pi^{-} \pi^{0}} K^{-}\right)=(5.5 \pm 1.0) \times 10^{-6}$, assuming equal production of $B^{+} B^{-}$and $B^{0} \bar{B}^{0}$.

The fit parameter most correlated with the signal yield is $N_{B B_{\not D D}}$, with correlation matrix element $\rho\left(N_{D K_{D}}, N_{B B_{\not D D}}\right)=$ -0.33 . The largest correlation matrix element for the

TABLE I. Results of the data fit. Errors are statistical only.

Parameter	Value
$N_{D K_{D}}$	133 ± 23
$A_{D K_{D}}$	-0.02 ± 0.16
$N_{D \pi_{D}}$	43 ± 16
$N_{q q_{\not D}}$	1454 ± 53
$N_{B B_{\not D}}$	806 ± 54
$R_{D \pi X}$	0.82 ± 0.11

FIG. 2 (color online). Projections of the data (data points) and fit function onto the (a) ΔE, (b) q, and (c) d axes. The curves or histograms in each plot show, from bottom to top, the cumulative contributions of the continuum, $B \bar{B}$ background, and signal components of the fit function. For each of the variables plotted, a tight event selection is applied on the other two variables with a signal efficiency of about 50%, in order to increase the signal-tobackground ratio in these plots. Figures (d), (e), and (f) show the same projections for the entire data sample.
asymmetry is $\rho\left(A_{D K_{D}}, N_{D K_{D}}\right)=0.036$. Projections of the data and the fit function onto the fit variables are shown in Fig. 2 for events with a high likelihood of being signal and for the entire data sample.

The systematic uncertainties in the signal branching fraction and asymmetry measurements are summarized in Table II. We describe briefly the procedures used for their evaluation: (1) The statistical errors in the simulated samples used to obtain the shapes of $\mathcal{E}_{t}(\Delta E), \mathcal{Q}_{t}(q)$, and $\mathcal{D}_{t}(d)$ are propagated to the final fit. (2) The value of $N_{D K X}$ is varied by $\pm 25 \%$, determined from the uncertainties on the decay modes contributing to the $D K X$ background [7]. The parameters $N_{D \pi_{\emptyset D}}, N_{B B C_{D}}, N_{q q_{D}}$, and $N_{D K_{\not D}}$ are varied by $\pm 50 \%$, which is estimated to be very conservative, given the level of data-simulation agreement. (3) We evaluate the effect of possible differences between the event distributions in the data and the simulation by studying events in the $m_{E S}$ sideband $5.23<m_{E S}<5.26 \mathrm{GeV} / c^{2}$, as well as events produced in the copious decay mode $B^{-} \rightarrow$ $D^{0} \pi^{-}, D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$. (4) The ΔE and d distributions of

TABLE II. Fractional systematic error in the signal branching fraction \mathcal{B} and absolute error in the asymmetry $A_{D K_{D}}$.

No. source	Error $(\%)$ $\sigma_{\mathcal{B}} / \mathcal{B}$	$\sigma_{A_{D K_{D}}}$
(1) Simulated sample statistics	7.9	1.8
(2) Variation of fixed yields	6.2	0.25
(3) Data-simulation shape comparison	5.8	1.6
(4) $\Delta E-d$ correlations in $\mathcal{P}_{D K_{D}}$	1.9	0.39
(5) Charmless branching fraction	0.85	0.09
(6) Dalitz plot distribution	0.33	\ldots
(7) Detector asymmetry	\ldots	1.0
(8) $D K X$ and $D K_{\not D}$ asymmetry	\ldots	0.9
(9) Track reconstruction efficiency	4.2	\cdots
(10) π^{0} efficiency	3.5	\cdots
(11) Number of $B \bar{B}$ events produced	1.1	\cdots
(12) Particle ID efficiency	1.0	\cdots
Total	13	2.8

$D K_{D}$ events are slightly correlated, and this correlation is ignored in the PDF. To evaluate the uncertainty due to this, we repeat the fit with $\mathcal{D}_{D K_{D}}(d)$ taken from simulated $D K_{D}$ events in different ΔE bins. (5) We consider the effect of a possible contribution of charmless $B^{-} \rightarrow K^{-} \pi^{+} \pi^{-} \pi^{0}$ events, assuming a branching fraction of 6×10^{-5}. (6) The uncertainty in the contribution of a nonresonant component to the $D \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decay [8] is propagated to the signal efficiency. (7) We account for the possibility of charge-dependence in the track reconstruction efficiency for both kaons and pions. (8) We conservatively vary $A_{D K X}$ by ± 0.022 and take $A_{D K_{\not D}}=A_{D K_{D}}$ to evaluate the effect of possible asymmetries in the $D K X$ and $D K_{\not D}$ backgrounds. (9-10) We assign a reconstruction efficiency uncertainty of 1.4% per charged track and 3.5% for the π^{0}. (11) We account for the uncertainty in the number of $B \bar{B}$ events produced by PEP-II and (12) the uncertainty in the efficiency of the particle identification requirements applied to the data sample.

Additional cross checks are performed to verify the validity of our results. We compare the fit variable distributions of the data with those of simulated events in the ΔE sideband $90<\Delta E<140 \mathrm{MeV}$. The fit variable distributions of simulated continuum events are validated against the off-resonance data. The simulated distributions of $B^{-} \rightarrow D^{0} \pi^{-}, D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ events are compared with their distributions in the data. We verify the signal efficiency by measuring the branching fraction $\mathcal{B}\left(B^{-} \rightarrow\right.$ $D^{0} \pi^{-}$) using D^{0} decays to $D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$ and $D^{0} \rightarrow$ $\pi^{+} \pi^{-} \pi^{0}$. The simulated distributions of the q and d input variables are compared with the distributions in the data. In all cases, good agreement between simulation and data is observed. No significant excess of signal events is found in a fit to data events in the m_{D} sidebands $1.775<m_{D}<$ $1.800 \mathrm{GeV} / c^{2}$ and $1.920<m_{D}<1.955 \mathrm{GeV} / c^{2}$. We conduct fits to event samples containing simulated signal
and background events and find no significant biases in any of the fit parameters. Fits to parametrized experiments generated with the parameter values obtained in the data fit are unbiased, and their distributions of fit parameter errors and maximum likelihood are consistent with those of the data fit.

In summary, using a sample of $229 \pm 2.5 \times 10^{6}$ $e^{+} e^{-} \rightarrow B \bar{B}$ events we observe 133 ± 23 events in the decay chain $B^{-} \rightarrow D_{\pi^{+} \pi^{-} \pi^{0}} K^{-}$, where the $\pi^{+} \pi^{-} \pi^{0}$ final state excludes the $C P$-eigenstate $K_{S}^{0} \pi^{0}$. We extract the branching fraction and decay rate asymmetry

$$
\begin{align*}
& \mathcal{B}\left(B^{-} \rightarrow D_{\pi^{+} \pi^{-} \pi^{0} K^{-}}\right)=(5.5 \pm 1.0 \pm 0.7) \times 10^{-6} \\
& A\left(B^{-} \rightarrow D_{\pi^{+} \pi^{-} \pi^{0} K^{-}}\right)=-0.02 \pm 0.16 \pm 0.03 \tag{4}
\end{align*}
$$

where the first errors are statistical and the second are systematic. The level of background suppression we achieve is critical for using this mode to measure γ. The remaining background doubles the statistical error on γ with respect to the no-background case.

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminos-
ity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support $B A B A R$. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), Institute of High Energy Physics (China), the Commissariat à l'Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Science and Technology of the Russian Federation, and the Particle Physics and Astronomy Research Council (United Kingdom). Individuals have received support from CONACyT (Mexico), the A.P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.
[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[2] M. Gronau and D. Wyler, Phys. Lett. B 265, 172 (1991).
[3] A. Giri, Y. Grossman, A. Soffer, and J. Zupan, Phys. Rev. D 68, 054018 (2003).
[4] K. Abe et al. (Belle Collaboration), hep-ex/0308043; A. Poluektov et al. (Belle Collaboration), Phys. Rev. D 70, 072003 (2004).
[5] B. Aubert et al. (BABAR Collaboration), hep-ex/0408088.
[6] Y. Grossman, Z. Ligeti, and A. Soffer, Phys. Rev. D 67, 071301 (2003).
[7] S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004).
[8] V. V. Frolov et al. (CLEO Collaboration), hep-ex/0306048.
[9] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[10] G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[11] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 89, 201802 (2002).

[^0]: ${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
 ${ }^{2}$ IFAE, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
 ${ }^{3}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
 ${ }^{4}$ Institute of High Energy Physics, Beijing 100039, China
 ${ }^{5}$ University of Bergen, Inst. of Physics, $N-5007$ Bergen, Norway
 ${ }^{6}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
 ${ }^{7}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
 ${ }^{8}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
 ${ }^{9}$ University of Bristol, Bristol BS8 1TL, United Kingdom
 ${ }^{10}$ University of British Columbia, Vancouver, British Columbia, Canada V6T IZ1
 ${ }^{11}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
 ${ }^{12}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
 ${ }^{13}$ University of California at Irvine, Irvine, California 92697, USA
 ${ }^{14}$ University of California at Los Angeles, Los Angeles, California 90024, USA
 ${ }^{15}$ University of California at Riverside, Riverside, California 92521, USA
 ${ }^{16}$ University of California at San Diego, La Jolla, California 92093, USA
 ${ }^{17}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
 ${ }^{18}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
 ${ }^{19}$ California Institute of Technology, Pasadena, California 91125, USA
 ${ }^{20}$ University of Cincinnati, Cincinnati, Ohio 45221, USA

[^1]: *Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
 ${ }^{\dagger}$ Also with Università della Basilicata, Potenza, Italy
 ${ }^{\ddagger}$ Deceased
 ${ }^{1}$ We use the symbol D to indicate any linear combination of a D^{0} and a \bar{D}^{0} meson state.

