Measurement of the Branching Fraction of $\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}$

The BABAR Collaboration

Abstract

We report a measurement of the branching fraction f_{00} for $\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}$. The data sample consists of $81.7 \mathrm{fb}^{-1}$ collected at the $\Upsilon(4 S)$ resonance with the BABAR detector at the PEP-II asymmetric-energy $e^{+} e^{-}$storage ring. Using partial reconstruction of the decay $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$ in which only the charged lepton and the soft pion from the decay $D^{*+} \rightarrow D^{0} \pi^{+}$are reconstructed, we obtain $f_{00}=0.487 \pm 0.010$ (stat) ± 0.008 (sys). Our result does not depend on the branching fractions of $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$ and $D^{*+} \rightarrow D^{0} \pi^{+}$decays, on the ratio of the charged and neutral B meson lifetimes, nor on the assumption of isospin symmetry. A preliminary version of this result was presented at ICHEP04.

Submitted to the XXII International Symposium on Lepton-Photon Interactions at High Energy June 30 - July 5 2005, Uppsala, Sweden and to Physical Review Letters.

Measurement of the Branching Fraction of $\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}$

B. Aubert, ${ }^{1}$ R. Barate, ${ }^{1}$ D. Boutigny, ${ }^{1}$ F. Couderc, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ E. Grauges-Pous, ${ }^{2}$ A. Palano, ${ }^{3}$ M. Pappagallo, ${ }^{3}$ A. Pompili, ${ }^{3}$ J. C. Chen, ${ }^{4}$ N. D. Qi, ${ }^{4}$ G. Rong, ${ }^{4}$ P. Wang, ${ }^{4}$ Y. S. Zhu, ${ }^{4}$ G. Eigen, ${ }^{5}$ I. Ofte, ${ }^{5}$ B. Stugu, ${ }^{5}$ G. S. Abrams, ${ }^{6}$ A. W. Borgland, ${ }^{6}$ A. B. Breon, ${ }^{6}$ D. N. Brown, ${ }^{6}$ J. Button-Shafer, ${ }^{6}$ R. N. Cahn, ${ }^{6}$ E. Charles, ${ }^{6}$ C. T. Day, ${ }^{6}$ M. S. Gill, ${ }^{6}$ A. V. Gritsan, ${ }^{6}$ Y. Groysman, ${ }^{6}$ R. G. Jacobsen, ${ }^{6}$ R. W. Kadel, ${ }^{6}$ J. Kadyk, ${ }^{6}$ L. T. Kerth,,${ }^{6}$ Yu. G. Kolomensky, ${ }^{6}$ G. Kukartsev, ${ }^{6}$ G. Lynch, ${ }^{6}$ L. M. Mir, ${ }^{6}$ P. J. Oddone, ${ }^{6}$ T. J. Orimoto, ${ }^{6}$ M. Pripstein, ${ }^{6}$ N. A. Roe, ${ }^{6}$ M. T. Ronan, ${ }^{6}$ W. A. Wenzel, ${ }^{6}$ M. Barrett, ${ }^{7}$ K. E. Ford, ${ }^{7}$ T. J. Harrison, ${ }^{7}$ A. J. Hart, ${ }^{7}$ C. M. Hawkes, ${ }^{7}$ S. E. Morgan, ${ }^{7}$ A. T. Watson, ${ }^{7}$ M. Fritsch, ${ }^{8}$ K. Goetzen, ${ }^{8}$ T. Held, ${ }^{8}$ H. Koch, ${ }^{8}$ B. Lewandowski, ${ }^{8}$ M. Pelizaeus, ${ }^{8}$ K. Peters, ${ }^{8}$ T. Schroeder, ${ }^{8}$ M. Steinke, ${ }^{8}$ J. T. Boyd, ${ }^{9}$ J. P. Burke, ${ }^{9}$ N. Chevalier, ${ }^{9}$ W. N. Cottingham, ${ }^{9}$ M. P. Kelly, ${ }^{9}$ T. Cuhadar-Donszelmann, ${ }^{10}$ C. Hearty, ${ }^{10}$ N. S. Knecht, ${ }^{10}$ T. S. Mattison, ${ }^{10}$ J. A. McKenna, ${ }^{10}$ D. Thiessen, ${ }^{10}$ A. Khan, ${ }^{11}$ P. Kyberd, ${ }^{11}$ L. Teodorescu, ${ }^{11}$ A. E. Blinov, ${ }^{12}$ V. E. Blinov, ${ }^{12}$ A. D. Bukin,,12 V. P. Druzhinin, ${ }^{12}$ V. B. Golubev, ${ }^{12}$ V. N. Ivanchenko, ${ }^{12}$ E. A. Kravchenko, ${ }^{12}$ A. P. Onuchin, ${ }^{12}$ S. I. Serednyakov, ${ }^{12}$ Yu. I. Skovpen, ${ }^{12}$ E. P. Solodov, ${ }^{12}$ A. N. Yushkov, ${ }^{12}$ D. Best, ${ }^{13}$ M. Bondioli, ${ }^{13}$ M. Bruinsma, ${ }^{13}$ M. Chao, ${ }^{13}$ I. Eschrich, ${ }^{13}$ D. Kirkby, ${ }^{13}$ A. J. Lankford, ${ }^{13}$ M. Mandelkern, ${ }^{13}$
R. K. Mommsen,,13 W. Roethel, ${ }^{13}$ D. P. Stoker, ${ }^{13}$ C. Buchanan, ${ }^{14}$ B. L. Hartfiel, ${ }^{14}$ A. J. R. Weinstein, ${ }^{14}$ S. D. Foulkes, ${ }^{15}$ J. W. Gary, ${ }^{15}$ O. Long, ${ }^{15}$ B. C. Shen, ${ }^{15}$ K. Wang, ${ }^{15}$ L. Zhang, ${ }^{15}$ D. del Re, ${ }^{16}$ H. K. Hadavand, ${ }^{16}$ E. J. Hill, ${ }^{16}$ D. B. MacFarlane, ${ }^{16}$ H. P. Paar, ${ }^{16}$ Sh. Rahatlou, ${ }^{16}$ V. Sharma, ${ }^{16}$ J. W. Berryhill, ${ }^{17}$ C. Campagnari, ${ }^{17}$ A. Cunha, ${ }^{17}$ B. Dahmes, ${ }^{17}$ T. M. Hong, ${ }^{17}$ A. Lu, ${ }^{17}$ M. A. Mazur, ${ }^{17}$ J. D. Richman, ${ }^{17}$ W. Verkerke, ${ }^{17}$ T. W. Beck, ${ }^{18}$ A. M. Eisner, ${ }^{18}$ C. J. Flacco, ${ }^{18}$ C. A. Heusch, ${ }^{18}$ J. Kroseberg, ${ }^{18}$ W. S. Lockman, ${ }^{18}$ G. Nesom, ${ }^{18}$ T. Schalk, ${ }^{18}$ B. A. Schumm, ${ }^{18}$ A. Seiden, ${ }^{18}$ P. Spradlin, ${ }^{18}$ D. C. Williams, ${ }^{18}$ M. G. Wilson,,${ }^{18}$ J. Albert, ${ }^{19}$ E. Chen, ${ }^{19}$ G. P. Dubois-Felsmann, ${ }^{19}$ A. Dvoretskii, ${ }^{19}$ D. G. Hitlin, ${ }^{19}$ I. Narsky, ${ }^{19}$ T. Piatenko, ${ }^{19}$ F. C. Porter, ${ }^{19}$ A. Ryd, ${ }^{19}$ A. Samuel, ${ }^{19}$ S. Yang, ${ }^{19}$ S. Jayatilleke, ${ }^{20}$ G. Mancinelli, ${ }^{20}$ B. T. Meadows, ${ }^{20}$ M. D. Sokoloff, ${ }^{20}$ F. Blanc, ${ }^{21}$ P. Bloom, ${ }^{21}$ S. Chen, ${ }^{21}$ W. T. Ford, ${ }^{21}$ U. Nauenberg, ${ }^{21}$ A. Olivas, ${ }^{21}$ P. Rankin, ${ }^{21}$ W. O. Ruddick, ${ }^{21}$ J. G. Smith, ${ }^{21}$ K. A. Ulmer, ${ }^{21}$ J. Zhang, ${ }^{21}$ A. Chen, ${ }^{22}$ E. A. Eckhart, ${ }^{22}$ J. L. Harton, ${ }^{22}$ A. Soffer, ${ }^{22}$ W. H. Toki, ${ }^{22}$ R. J. Wilson, ${ }^{22}$ Q. Zeng,,22 B. Spaan, ${ }^{23}$ D. Altenburg, ${ }^{24}$ T. Brandt, ${ }^{24}$ J. Brose, ${ }^{24}$ M. Dickopp, ${ }^{24}$ E. Feltresi, ${ }^{24}$ A. Hauke, ${ }^{24}$ H. M. Lacker, ${ }^{24}$ E. Maly, ${ }^{24}$ R. Nogowski, ${ }^{24}$ S. Otto, ${ }^{24}$ A. Petzold, ${ }^{24}$ G. Schott, ${ }^{24}$ J. Schubert, ${ }^{24}$ K. R. Schubert, ${ }^{24}$ R. Schwierz, ${ }^{24}$ J. E. Sundermann,,24 D. Bernard, ${ }^{25}$ G. R. Bonneaud, ${ }^{25}$ P. Grenier, ${ }^{25}$ S. Schrenk, ${ }^{25}$ Ch. Thiebaux, ${ }^{25}$ G. Vasileiadis, ${ }^{25}$ M. Verderi, ${ }^{25}$ D. J. Bard, ${ }^{26}$ P. J. Clark, ${ }^{26}$ W. Gradl, ${ }^{26}$ F. Muheim, ${ }^{26}$ S. Playfer, ${ }^{26}$ Y. Xie, ${ }^{26}$ M. Andreotti,,${ }^{27}$ V. Azzolini, ${ }^{27}$ D. Bettoni, ${ }^{27}$ C. Bozzi, ${ }^{27}$ R. Calabrese, ${ }^{27}$ G. Cibinetto, ${ }^{27}$ E. Luppi, ${ }^{27}$ M. Negrini, ${ }^{27}$ L. Piemontese, ${ }^{27}$ A. Sarti, ${ }^{27}$ F. Anulli, ${ }^{28}$ R. Baldini-Ferroli, ${ }^{28}$ A. Calcaterra, ${ }^{28}$ R. de Sangro, ${ }^{28}$ G. Finocchiaro, ${ }^{28}$ P. Patteri, ${ }^{28}$ I. M. Peruzzi, ${ }^{28}$ M. Piccolo, ${ }^{28}$ A. Zallo, ${ }^{28}$ A. Buzzo, ${ }^{29}$ R. Capra, ${ }^{29}$ R. Contri, ${ }^{29}$ M. Lo Vetere, ${ }^{29}$ M. Macri, ${ }^{29}$ M. R. Monge, ${ }^{29}$ S. Passaggio, ${ }^{29}$ C. Patrignani, ${ }^{29}$ E. Robutti, ${ }^{29}$ A. Santroni, ${ }^{29}$ S. Tosi, ${ }^{29}$ S. Bailey, ${ }^{30}$ G. Brandenburg, ${ }^{30}$ K. S. Chaisanguanthum, ${ }^{30}$ M. Morii, ${ }^{30}$ E. Won, ${ }^{30}$ R. S. Dubitzky, ${ }^{31}$ U. Langenegger, ${ }^{31}$ J. Marks, ${ }^{31}$ U. Uwer, ${ }^{31}$ W. Bhimji, ${ }^{32}$ D. A. Bowerman, ${ }^{32}$ P. D. Dauncey, ${ }^{32}$ U. Egede, ${ }^{32}$ J. R. Gaillard, ${ }^{32}$ G. W. Morton, ${ }^{32}$ J. A. Nash, ${ }^{32}$ M. B. Nikolich,,32 G. P. Taylor, ${ }^{32}$ M. J. Charles, ${ }^{33}$ G. J. Grenier, ${ }^{33}$ U. Mallik, ${ }^{33}$ J. Cochran, ${ }^{34}$ H. B. Crawley, ${ }^{34}$ W. T. Meyer, ${ }^{34}$ S. Prell, ${ }^{34}$ E. I. Rosenberg, ${ }^{34}$ A. E. Rubin, ${ }^{34}$ J. Yi, ${ }^{34}$ N. Arnaud,,35 M. Davier, ${ }^{35}$ X. Giroux, ${ }^{35}$ G. Grosdidier, ${ }^{35}$ A. Höcker, ${ }^{35}$ F. Le Diberder, ${ }^{35}$ V. Lepeltier, ${ }^{35}$ A. M. Lutz, ${ }^{35}$ T. C. Petersen, ${ }^{35}$ M. Pierini, ${ }^{35}$ S. Plaszczynski, ${ }^{35}$ S. Rodier, ${ }^{35}$ P. Roudeau, ${ }^{35}$ M. H. Schune, ${ }^{35}$ A. Stocchi, ${ }^{35}$ G. Wormser, ${ }^{35}$ C. H. Cheng, ${ }^{36}$ D. J. Lange, ${ }^{36}$ M. C. Simani, ${ }^{36}$ D. M. Wright, ${ }^{36}$ A. J. Bevan, ${ }^{37}$ C. A. Chavez, ${ }^{37}$ J. P. Coleman, ${ }^{37}$ I. J. Forster, ${ }^{37}$ J. R. Fry, ${ }^{37}$ E. Gabathuler, ${ }^{37}$ R. Gamet, ${ }^{37}$ K. A. George, ${ }^{37}$ D. E. Hutchcroft, ${ }^{37}$ R. J. Parry, ${ }^{37}$ D. J. Payne, ${ }^{37}$ C. Touramanis, ${ }^{37}$ C. M. Cormack, ${ }^{38}$ F. Di Lodovico, ${ }^{38}$ C. L. Brown, ${ }^{39}$ G. Cowan, ${ }^{39}$ R. L. Flack, ${ }^{39}$ H. U. Flaecher, ${ }^{39}$ M. G. Green, ${ }^{39}$ P. S. Jackson, ${ }^{39}$ T. R. McMahon, ${ }^{39}$ S. Ricciardi, ${ }^{39}$ F. Salvatore, ${ }^{39}$ M. A. Winter, ${ }^{39}$ D. Brown, ${ }^{40}$ C. L. Davis, ${ }^{40}$ J. Allison, ${ }^{41}$ N. R. Barlow, ${ }^{41}$ R. J. Barlow,,41 M. C. Hodgkinson, ${ }^{41}$ G. D. Lafferty, ${ }^{41}$ M. T. Naisbit, ${ }^{41}$ J. C. Williams, ${ }^{41}$ C. Chen, ${ }^{42}$ A. Farbin, ${ }^{42}$ W. D. Hulsbergen, ${ }^{42}$ A. Jawahery,,42 D. Kovalskyi, ${ }^{42}$ C. K. Lae, ${ }^{42}$ V. Lillard, ${ }^{42}$ D. A. Roberts, ${ }^{42}$ G. Blaylock, ${ }^{43}$ C. Dallapiccola, ${ }^{43}$ S. S. Hertzbach,,43 R. Kofler, ${ }^{43}$ V. B. Koptchev, ${ }^{43}$ T. B. Moore, ${ }^{43}$ S. Saremi, ${ }^{43}$ H. Staengle, ${ }^{43}$ S. Willocq, ${ }^{43}$ R. Cowan, ${ }^{44}$ K. Koeneke, ${ }^{44}$ G. Sciolla, ${ }^{44}$ S. J. Sekula, ${ }^{44}$ F. Taylor, ${ }^{44}$ R. K. Yamamoto, ${ }^{44}$ P. M. Patel, ${ }^{45}$ S. H. Robertson,,45 A. Lazzaro, ${ }^{46}$ V. Lombardo, ${ }^{46}$ F. Palombo, ${ }^{46}$ J. M. Bauer, ${ }^{47}$ L. Cremaldi, ${ }^{47}$ V. Eschenburg, ${ }^{47}$
R. Godang, ${ }^{47}$ R. Kroeger, ${ }^{47}$ J. Reidy, ${ }^{47}$ D. A. Sanders, ${ }^{47}$ D. J. Summers, ${ }^{47}$ H. W. Zhao, ${ }^{47}$ S. Brunet,,${ }^{48}$ D. Côté, ${ }^{48}$ P. Taras, ${ }^{48}$ H. Nicholson, ${ }^{49}$ N. Cavallo, ${ }^{50, *}$ G. De Nardo, ${ }^{50}$ F. Fabozzi, ${ }^{50, *}$ C. Gatto, ${ }^{50}$ L. Lista,,${ }^{50}$ D. Monorchio, ${ }^{50}$ P. Paolucci,,50 D. Piccolo, ${ }^{50}$ C. Sciacca,,${ }^{50}$ M. Baak, ${ }^{51}$ H. Bulten, ${ }^{51}$ G. Raven, ${ }^{51}$ H. L. Snoek,,${ }^{51}$ L. Wilden, ${ }^{51}$ C. P. Jessop, ${ }^{52}$ J. M. LoSecco, ${ }^{52}$ T. Allmendinger, ${ }^{53}$ G. Benelli, ${ }^{53}$ K. K. Gan, ${ }^{53}$ K. Honscheid, ${ }^{53}$ D. Hufnagel, ${ }^{53}$ H. Kagan, ${ }^{53}$ R. Kass, ${ }^{53}$ T. Pulliam, ${ }^{53}$ A. M. Rahimi, ${ }^{53}$ R. Ter-Antonyan, ${ }^{53}$ Q. K. Wong, ${ }^{53}$ J. Brau, ${ }^{54}$ R. Frey, ${ }^{54}$ O. Igonkina, ${ }^{54}$ M. Lu, ${ }^{54}$ C. T. Potter, ${ }^{54}$ N. B. Sinev, ${ }^{54}$ D. Strom, ${ }^{54}$ E. Torrence, ${ }^{54}$ F. Colecchia, ${ }^{55}$ A. Dorigo, ${ }^{55}$ F. Galeazzi, ${ }^{55}$ M. Margoni, ${ }^{55}$ M. Morandin,,${ }^{55}$ M. Posocco, ${ }^{55}$ M. Rotondo, ${ }^{55}$ F. Simonetto, ${ }^{55}$ R. Stroili, ${ }^{55}$ C. Voci, ${ }^{55}$ M. Benayoun,,${ }^{56}$ H. Briand, ${ }^{56}$ J. Chauveau, ${ }^{56}$ P. David, ${ }^{56}$ L. Del Buono, ${ }^{56}$ Ch. de la Vaissière, ${ }^{56}$ O. Hamon, ${ }^{56}$ M. J. J. John,,${ }^{56}$ Ph. Leruste, ${ }^{56}$ J. Malclès, ${ }^{56}$ J. Ocariz, ${ }^{56}$ L. Roos,,${ }^{56}$ G. Therin, ${ }^{56}$ P. K. Behera, ${ }^{57}$ L. Gladney, ${ }^{57}$ Q. H. Guo, ${ }^{57}$ J. Panetta, ${ }^{57}$ M. Biasini, ${ }^{58}$ R. Covarelli, ${ }^{58}$ M. Pioppi, ${ }^{58}$ C. Angelini, ${ }^{59}$ G. Batignani, ${ }^{59}$ S. Bettarini, ${ }^{59}$ F. Bucci, ${ }^{59}$ G. Calderini, ${ }^{59}$ M. Carpinelli, ${ }^{59}$ F. Forti,,${ }^{59}$ M. A. Giorgi, ${ }^{59}$ A. Lusiani, ${ }^{59}$ G. Marchiori, ${ }^{59}$ M. Morganti, ${ }^{59}$ N. Neri, ${ }^{59}$ E. Paoloni,,${ }^{59}$ M. Rama, ${ }^{59}$ G. Rizzo,,${ }^{59}$ G. Simi, ${ }^{59}$ J. Walsh,,${ }^{59}$ M. Haire, ${ }^{60}$ D. Judd, ${ }^{60}$ K. Paick, ${ }^{60}$ D. E. Wagoner, ${ }^{60}$ N. Danielson, ${ }^{61}$ P. Elmer, ${ }^{61}$ Y. P. Lau, ${ }^{61}$ C. Lu, ${ }^{61}$ J. Olsen, ${ }^{61}$ A. J. S. Smith, ${ }^{61}$ A. V. Telnov,,61 F. Bellini, ${ }^{62}$ G. Cavoto, ${ }^{61,62}$ A. D'Orazio, ${ }^{62}$ E. Di Marco, ${ }^{62}$ R. Faccini, ${ }^{62}$ F. Ferrarotto, ${ }^{62}$ F. Ferroni, ${ }^{62}$ M. Gaspero, ${ }^{62}$ L. Li Gioi, ${ }^{62}$ M. A. Mazzoni, ${ }^{62}$ S. Morganti, ${ }^{62}$ G. Piredda, ${ }^{62}$ F. Polci, ${ }^{62}$ F. Safai Tehrani, ${ }^{62}$ C. Voena, ${ }^{62}$ S. Christ, ${ }^{63}$ H. Schröder, ${ }^{63}$ G. Wagner,,${ }^{63}$ R. Waldi, ${ }^{63}$ T. Adye, ${ }^{64}$ N. De Groot, ${ }^{64}$ B. Franek, ${ }^{64}$ G. P. Gopal, ${ }^{64}$ E. O. Olaiya, ${ }^{64}$ F. F. Wilson,,${ }^{64}$ R. Aleksan,,${ }^{65}$ S. Emery, ${ }^{65}$ A. Gaidot, ${ }^{65}$ S. F. Ganzhur, ${ }^{65}$
P.-F. Giraud, ${ }^{65}$ G. Graziani, ${ }^{65}$ G. Hamel de Monchenault, ${ }^{65}$ W. Kozanecki, ${ }^{65}$ M. Legendre, ${ }^{65}$ G. W. London, ${ }^{65}$ B. Mayer, ${ }^{65}$ G. Vasseur,,${ }^{65}$ Ch. Yèche, ${ }^{65}$ M. Zito,,${ }^{65}$ M. V. Purohit, ${ }^{66}$ A. W. Weidemann, ${ }^{66}$ J. R. Wilson, ${ }^{66}$ F. X. Yumiceva, ${ }^{66}$ T. Abe, ${ }^{67}$ M. Allen,,${ }^{67}$ D. Aston, ${ }^{67}$ R. Bartoldus, ${ }^{67}$ N. Berger, ${ }^{67}$ A. M. Boyarski, ${ }^{67}$ O. L. Buchmueller, ${ }^{67}$ R. Claus, ${ }^{67}$ M. R. Convery, ${ }^{67}$ M. Cristinziani, ${ }^{67}$ J. C. Dingfelder, ${ }^{67}$ D. Dong, ${ }^{67}$ J. Dorfan, ${ }^{67}$ D. Dujmic,,${ }^{67}$ W. Dunwoodie, ${ }^{67}$ S. Fan, ${ }^{67}$ R. C. Field, ${ }^{67}$ T. Glanzman, ${ }^{67}$ S. J. Gowdy, ${ }^{67}$ T. Hadig, ${ }^{67}$ V. Halyo, ${ }^{67}$ C. Hast, ${ }^{67}$ T. Hryn'ova, ${ }^{67}$ W. R. Innes, ${ }^{67}$ M. H. Kelsey, ${ }^{67}$ P. Kim, ${ }^{67}$ M. L. Kocian, ${ }^{67}$ D. W. G. S. Leith, ${ }^{67}$ J. Libby, ${ }^{67}$ S. Luitz, ${ }^{67}$ V. Luth, ${ }^{67}$ H. L. Lynch, ${ }^{67}$ H. Marsiske,,${ }^{67}$ R. Messner, ${ }^{67}$ A. K. Mohapatra, ${ }^{67}$ D. R. Muller, ${ }^{67}$ C. P. O'Grady, ${ }^{67}$ V. E. Ozcan, ${ }^{67}$ A. Perazzo, ${ }^{67}$ M. Perl, ${ }^{67}$ B. N. Ratcliff,,${ }^{67}$ A. Roodman, ${ }^{67}$ A. A. Salnikov, ${ }^{67}$ R. H. Schindler, ${ }^{67}$ J. Schwiening, ${ }^{67}$ A. Snyder, ${ }^{67}$ A. Soha, ${ }^{67}$ J. Stelzer,,${ }^{67}$ J. Strube, ${ }^{54,67}$ D. Su, ${ }^{67}$ M. K. Sullivan, ${ }^{67}$ J. Thompson, ${ }^{67}$ J. Va'vra, ${ }^{67}$ S. R. Wagner, ${ }^{67}$ M. Weaver, ${ }^{67}$ W. J. Wisniewski, ${ }^{67}$ M. Wittgen, ${ }^{67}$ D. H. Wright,,67 A. K. Yarritu, ${ }^{67}$ C. C. Young, ${ }^{67}$ P. R. Burchat, ${ }^{68}$ A. J. Edwards, ${ }^{68}$ S. A. Majewski, ${ }^{68}$ B. A. Petersen, ${ }^{68}$ C. Roat,,${ }^{68}$ M. Ahmed, ${ }^{69}$ S. Ahmed,,${ }^{69}$ M. S. Alam, ${ }^{69}$ J. A. Ernst, ${ }^{69}$ M. A. Saeed, ${ }^{69}$ M. Saleem, ${ }^{69}$ F. R. Wappler, ${ }^{69}$ W. Bugg, ${ }^{70}$ M. Krishnamurthy, ${ }^{70}$ S. M. Spanier, ${ }^{70}$ R. Eckmann, ${ }^{71}$ H. Kim, ${ }^{71}$ J. L. Ritchie, ${ }^{71}$ A. Satpathy, ${ }^{71}$ R. F. Schwitters, ${ }^{71}$ J. M. Izen, ${ }^{72}$ I. Kitayama, ${ }^{72}$ X. C. Lou, ${ }^{72}$ S. Ye, ${ }^{72}$ F. Bianchi, ${ }^{73}$ M. Bona, ${ }^{73}$ F. Gallo, ${ }^{73}$ D. Gamba, ${ }^{73}$ M. Bomben, ${ }^{74}$ L. Bosisio, ${ }^{74}$ C. Cartaro, ${ }^{74}$ F. Cossutti, ${ }^{74}$ G. Della Ricca, ${ }^{74}$ S. Dittongo, ${ }^{74}$ S. Grancagnolo, ${ }^{74}$ L. Lanceri, ${ }^{74}$ P. Poropat, ${ }^{74, ~}{ }^{\dagger}$ L. Vitale, ${ }^{74}$ G. Vuagnin, ${ }^{74}$ F. Martinez-Vidal, ${ }^{75}$ R. S. Panvini, ${ }^{76,} \uparrow$ Sw. Banerjee, ${ }^{77}$ B. Bhuyan, ${ }^{77}$ C. M. Brown, ${ }^{77}$ D. Fortin, ${ }^{77}$ K. Hamano, ${ }^{77}$ P. D. Jackson, ${ }^{77}$ R. Kowalewski, ${ }^{77}$ J. M. Roney, ${ }^{77}$ R. J. Sobie, ${ }^{77}$ J. J. Back, ${ }^{78}$ P. F. Harrison, ${ }^{78}$ T. E. Latham, ${ }^{78}$ G. B. Mohanty, ${ }^{78}$ H. R. Band, ${ }^{79}$ X. Chen, ${ }^{79}$ B. Cheng, ${ }^{79}$ S. Dasu, ${ }^{79}$ M. Datta, ${ }^{79}$ A. M. Eichenbaum, ${ }^{79}$ K. T. Flood, ${ }^{79}$ M. Graham, ${ }^{79}$ J. J. Hollar, ${ }^{79}$ J. R. Johnson, ${ }^{79}$ P. E. Kutter, ${ }^{79}$ H. Li, ${ }^{79}$ R. Liu, ${ }^{79}$ B. Mellado, ${ }^{79}$ A. Mihalyi, ${ }^{79}$ Y. Pan, ${ }^{79}$ R. Prepost, ${ }^{79}$ P. Tan, ${ }^{79}$ J. H. von Wimmersperg-Toeller, ${ }^{79}$ J. Wu, ${ }^{79}$ S. L. Wu, ${ }^{79}$ Z. Yu, ${ }^{79}$ M. G. Greene, ${ }^{80}$ and H. Neal ${ }^{80}$
(The BABAR Collaboration)

[^0][^1]${ }^{80}$ Yale University, New Haven, Connecticut 06511, USA
(Dated: May 23, 2005)

Abstract

We report the first measurement of the branching fraction f_{00} for $\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}$. The data sample consists of $81.7 \mathrm{fb}^{-1}$ collected at the $\Upsilon(4 S)$ resonance with the BABAR detector at the PEPII asymmetric-energy $e^{+} e^{-}$storage ring. Using partial reconstruction of the decay $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$ in which only the charged lepton and the soft pion from the decay $D^{*+} \rightarrow D^{0} \pi^{+}$are reconstructed, we obtain $f_{00}=0.487 \pm 0.010$ (stat) ± 0.008 (sys). Our result does not depend on the branching fractions of $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$ and $D^{*+} \rightarrow D^{0} \pi^{+}$decays, on the ratio of the charged and neutral B meson lifetimes, nor on the assumption of isospin symmetry.

PACS numbers: $14.40 . \mathrm{Nd}$, 13.20.He

Isospin violation in the decay $\Upsilon(4 S) \rightarrow B \bar{B}$ will lead to a difference between the branching fractions $f_{00} \equiv$ $\mathcal{B}\left(\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}\right)$ and $f_{+-} \equiv \mathcal{B}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)$. Predictions for the ratio $R^{+/ 0} \equiv f_{+-} / f_{00}$ range from 1.03 to 1.25 [1]. Measurements of $R^{+/ 0}[2-6]$ have been made assuming isospin symmetry in specific decay rates and resulting in an average value of 1.006 ± 0.039 [7], consistent with isospin conservation in $\Upsilon(4 S)$ decays to $B \bar{B}$. To date no measurement has been made of either f_{00} or f_{+-}. In this paper we report the first direct measurement of f_{00}. It is completely independent of the previous measurements of $R^{+/ 0}$. Independent measurements of f_{00} and $R^{+/ 0}$ can be used to constrain the $\Upsilon(4 S) \rightarrow$ non- $B \bar{B}$ fraction. The f_{00} value is important for measuring absolute $\Upsilon(4 S)$ branching fractions and for measuring $V_{c b}$, the Cabibbo-Kobayashi-Maskawa matrix element.

The data sample used in this analysis consists of $81.7 \mathrm{fb}^{-1}$ collected at the $\Upsilon(4 S)$ resonance (on-resonance) and $9.6 \mathrm{fb}^{-1}$ collected 40 MeV below the resonance (offresonance). The on-resonance data sample has a mean energy of 10.580 GeV and an energy rms spread of 4.6 MeV . Due to the small spread, any plausible energy dependence of f_{00} has a negligible effect on the central value. A simulated sample of $B \bar{B}$ with integrated luminosity equivalent to approximately three times the data is used for background studies.

A detailed description of the $B A B A R$ detector and the algorithms used for track reconstruction and particle identification is provided elsewhere [8]. A brief summary is given here. High-momentum particles are reconstructed by matching hits in the silicon vertex tracker (SVT) with track elements in the drift chamber (DCH). Lower momentum tracks, which do not leave signals on many wires in the DCH due to the bending induced by a magnetic field, are reconstructed in the SVT alone. Electrons are identified by the ratio of the track momentum to the associated energy deposited in the calorimeter (EMC), the transverse profile of the shower, the energy loss in the drift chamber, and information from a Cherenkov detector (DIRC). Muons are identified in the instrumented flux return (IFR), composed of resistive plate chambers and layers of iron. Muon candidates are required to have a path length and hit distribution in the IFR and energy deposition in the EMC consis-
tent with that expected for a minimum-ionizing particle. The BABAR detector Monte Carlo simulation is based on GEANT4 [9].

We select the decays $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}, D^{*+} \rightarrow D^{0} \pi^{+}$ $(\ell=e, \mu)$. The inclusion of charge-conjugate reactions is implied throughout this paper. The sample of events in which at least one $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$ candidate decay is found is labeled the "single-tag sample". The number of signal decays in this sample is

$$
\begin{equation*}
N_{s}=2 N_{B \bar{B}} f_{00} \varepsilon_{s} \mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}\right) \tag{1}
\end{equation*}
$$

where $N_{B \bar{B}}$ is the total number of $B \bar{B}$ events in the data sample and ε_{s} is the reconstruction efficiency for $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$. We determine $N_{B \bar{B}}=88.7$ million events by counting the number of hadronic decays in the onresonance data and subtracting the $e^{+} e^{-} \rightarrow q \bar{q}(q=u$, d, s, or c quark) component using off-resonance data, as described in detail in Ref. [10]. The error in $N_{B \bar{B}}$ is 1.1% and is dominated by systematic uncertainties. We attribute all $B \bar{B}$ pairs to $\Upsilon(4 S)$ decays.

The number of signal events in the subset in which two $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$ candidates are found is labeled the "double-tag sample". The number of such events is

$$
\begin{equation*}
N_{d}=N_{B \bar{B}} f_{00} \varepsilon_{d}\left[\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}\right)\right]^{2} \tag{2}
\end{equation*}
$$

where ε_{d} is the efficiency to reconstruct two $\bar{B}^{0} \rightarrow$ $D^{*+} \ell^{-} \bar{\nu}_{\ell}$ decays in the same event. From Eq. (1) and Eq. (2), f_{00} is given by

$$
\begin{equation*}
f_{00}=\frac{C N_{s}^{2}}{4 N_{d} N_{B \bar{B}}} \tag{3}
\end{equation*}
$$

where we have defined $C \equiv \varepsilon_{d} / \varepsilon_{s}^{2}$. The value of C is 1 if the efficiencies for detecting each B meson are uncorrelated in double-tag events, which, given the pseudoscalar nature of B mesons and the proximity of the $\Upsilon(4 S)$ to the $B \bar{B}$ threshold, is expected. Using the Monte Carlo simulation we determine $C=0.995 \pm 0.008$, where the error is due to the finite size of the simulated sample.

We select the decays $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$ with a partial reconstruction technique $[4,11-13]$. In this technique, only the lepton from the decay $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$ and the soft pion from the decay $D^{*+} \rightarrow D^{0} \pi^{+}$are reconstructed.

No attempt is made to reconstruct the D^{0}, resulting in a high reconstruction efficiency.

The \bar{B}^{0} decay point is determined from a vertex fit of the soft-pion and lepton tracks, with the vertex constrained to the beam spot position in the $x-y$ plane. We only use events with vertex-fit probability, \mathcal{P}_{V}, greater than 0.1% to optimize a signal-to-background ratio.

We select hadronic events by requiring at least four charged particle tracks reconstructed in the SVT and the DCH . To reduce non- $B \bar{B}$ background, the ratio of the second to the zeroth Fox-Wolfram moments [14], $R_{2}=$ H_{2} / H_{0}, is required to be less than 0.5.

To suppress leptons from charm decays, all lepton candidates are required to have momenta between $1.5 \mathrm{GeV} / c$ and $2.5 \mathrm{GeV} / c$ in the $e^{+} e^{-}$center-of-mass frame. Soft pion candidates are required to have center-of-mass momenta between $60 \mathrm{MeV} / c$ and $200 \mathrm{MeV} / c$. As a consequence of the limited phase space available in the D^{*+} decay, the soft pion is emitted nearly at rest in the D^{*+} rest frame. The D^{*+} four-momentum can therefore be computed by approximating its direction as that of the soft pion, and parameterizing its momentum as a linear function of the soft-pion momentum, with parameters obtained from a Monte Carlo simulation. The presence of an undetected neutrino is inferred from conservation of momentum and energy. The neutrino invariant mass squared is calculated as

$$
\begin{equation*}
\mathcal{M}^{2} \equiv\left(E_{\mathrm{beam}}-E_{D^{*}}-E_{\ell}\right)^{2}-\left(\mathbf{p}_{D^{*}}+\mathbf{p}_{\ell}\right)^{2} \tag{4}
\end{equation*}
$$

where $E_{\text {beam }}$ is half the center-of-mass energy and $E_{\ell}\left(E_{D^{*}}\right)$ and $\mathbf{p}_{\ell}\left(\mathbf{p}_{D^{*}}\right)$ are the center-of-mass energy and momentum of the lepton (the D^{*} meson). We set $\mathbf{p}_{B}=0$, which introduces a negligible spread in \mathcal{M}^{2} compared with the approximation of the D^{*} momentum based on the soft pion. For signal decays that are properly reconstructed, the \mathcal{M}^{2} distribution peaks near zero. Background events, however, are spread over a wide range of \mathcal{M}^{2} values. We define a signal region $\left(\mathcal{M}^{2}>-2 \mathrm{GeV}^{2} / c^{4}\right)$ and a sideband region $\left(-8<\mathcal{M}^{2}<\right.$ $-4 \mathrm{GeV}^{2} / c^{4}$).

We use the symbol \mathcal{M}_{s}^{2} to denote \mathcal{M}^{2} for any candidate in the single-tag sample. In the double-tag sample, we randomly choose one of the two reconstructed $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$ candidates as "first" and the other as "second". Their \mathcal{M}^{2} values are labeled \mathcal{M}_{1}^{2} and \mathcal{M}_{2}^{2}, respectively. We require that \mathcal{M}_{1}^{2} fall in the signal region.

The single-tag and double-tag samples have several types of background: continuum, combinatorial $B \bar{B}$, and peaking $B \bar{B}$. The combinatorial $B \bar{B}$ background originates from random combinations of reconstructed leptons and soft pions. The peaking $B \bar{B}$ background is composed of $\bar{B} \rightarrow D^{*} \pi \ell \bar{\nu}_{\ell}$ decays with or without an excited charmed resonance $D^{* *}$ [15], where the reconstructed soft pion comes from the decay $D^{*+} \rightarrow D^{0} \pi^{+}$, leading to an accumulation of these events at high values of \mathcal{M}^{2}. The peaking $B \bar{B}$ background is suppressed by the requirement
$p_{\ell}>1.5 \mathrm{GeV} / c$ on the lepton center-of-mass momentum. Such events have an \mathcal{M}^{2} distribution that is different from the signal, allowing us to extract their contribution in the signal region.

The double-tag sample contains two additional types of background: events in which the first candidate is combinatorial background and the second is signal (called \mathcal{M}_{1}^{2}-combinatorial background) and events in which the first candidate is peaking background and the second is signal (called \mathcal{M}_{1}^{2}-peaking background).

To determine N_{s} and N_{d}, we perform binned χ^{2} fits to one-dimensional histograms of the \mathcal{M}_{s}^{2} and \mathcal{M}_{2}^{2} distributions of on-resonance data events, ranging from -8 to $2 \mathrm{GeV}^{2} / c^{4}$. Before fitting, we subtract the continuum background contribution from the histograms. This is determined using the \mathcal{M}_{s}^{2} and \mathcal{M}_{2}^{2} distributions of offresonance data, scaled to account for the ratio of onresonance to off-resonance luminosities and the center-of-mass energy dependence of the continuum production cross-section. In addition, the contributions of the $\mathcal{M}_{1^{-}}^{2}$ combinatorial (3\%) and \mathcal{M}_{1}^{2}-peaking (1\%) backgrounds are subtracted from the \mathcal{M}_{2}^{2} histogram before doing the fit. The contribution of the \mathcal{M}_{1}^{2}-combinatorial background is determined from sideband data. The $\mathcal{M}_{1^{-}}^{2-}$ peaking background is determined with simulated events.

After the subtraction, the \mathcal{M}_{s}^{2} and \mathcal{M}_{2}^{2} histograms are fit separately, to a function whose value for bin j of the histogram is

$$
\begin{equation*}
f_{j}=\sum_{t} N^{t} P_{j}^{t} \tag{5}
\end{equation*}
$$

where N^{t} is the number of events of type $t(t=$ signal, combinatorial, peaking) populating the histogram, and P_{j}^{t} is the bin j value of a discrete probability density function (PDF) obtained from simulated events of type t, normalized such that $\sum_{j} P_{j}^{t}=1$. The fit determines the parameters N^{t} by minimizing

$$
\begin{equation*}
\chi^{2}=\sum_{j} \frac{\left(H_{j}-f_{j}\right)^{2}}{\sigma_{H_{j}}^{2}+\sigma_{f_{j}}^{2}} \tag{6}
\end{equation*}
$$

where H_{j} is the number of entries in bin j of the data histogram being fit; $\sigma_{H_{j}}$ is the statistical error on H_{j}, including uncertainties due to the background subtractions described above; and $\sigma_{f_{j}}$ is the error on f_{j}, determined from the errors on P_{j}^{t}, which are due to the finite size of the simulated sample.

The results of the fits are presented in Table I. The \mathcal{M}_{s}^{2} and \mathcal{M}_{2}^{2} distributions are shown in Fig. 1. The fits yield $N_{s}=786200 \pm 1900$ (Confidence Level (C.L.) $=11 \%$) and $N_{d}=3560 \pm 70$ (C.L. $=82 \%$). Equation (3) then gives $f_{00}=0.487 \pm 0.010$, where the error is due to data statistics.

To determine how well the simulation reproduces the \mathcal{M}_{s}^{2} and \mathcal{M}_{2}^{2} distributions for the combinatorial background in the data, we study the distributions for a

TABLE I: Numbers of entries of different types in the \mathcal{M}_{s}^{2} and \mathcal{M}_{2}^{2} histograms in the signal region.

Source	\mathcal{M}_{s}^{2}	\mathcal{M}_{2}^{2}
Signal	786200 ± 1900	3560 ± 70
Combinatorial $B \bar{B}$	558080 ± 470	1510 ± 20
Peaking $B \bar{B}$	68170 ± 260	300 ± 20
Continuum	240600 ± 1400	160 ± 40
\mathcal{M}_{1}^{2}-combinatorial	-	180 ± 20
\mathcal{M}_{1}^{2}-peaking	-	60 ± 10

sample of same-charge candidates, in which the lepton and soft pion have the same electric charge. We fit the continuum-subtracted \mathcal{M}_{s}^{2} and \mathcal{M}_{2}^{2} histograms of the same-charge sample using the function $f_{j}^{\prime}=N P_{j}^{\prime}$, where P_{j}^{\prime} is the bin j value of the PDF of same-charge simulated $B \bar{B}$ events, normalized such that $\sum_{j} P_{j}^{\prime}=1$, and the parameter N is determined by the fit. The histograms, overlaid with the fit function, are shown in Fig. 2. The accumulated differences $D \equiv \sum_{j}\left(H_{j}^{\prime}-f_{j}^{\prime}\right)$ between the same-charge data histograms H_{j}^{\prime} and the fit functions are summarized in Table II. Their consistency with zero indicates that the distributions of simulated combinatorial $B \bar{B}$ background events do not lead to significant fake signal yields. Nevertheless, we evaluate a systematic uncertainty on the modeling of the combinatorial background based on the observed difference in the like-sign sample.

TABLE II: The difference $D \equiv \sum_{j}\left(H_{j}^{\prime}-f_{j}^{\prime}\right)$ between the same-charge data histogram and the fit function, summed over the signal region or over the whole region of the \mathcal{M}_{s}^{2} and \mathcal{M}_{2}^{2} distributions.

Fit	Signal region		Whole region	
parameter	\mathcal{M}_{s}^{2}	\mathcal{M}_{2}^{2}	\mathcal{M}_{s}^{2}	\mathcal{M}_{2}^{2}
D	-1300 ± 2100	-80 ± 80	700 ± 3000	70 ± 80
C.L.(\%)	57	78	94	98

We evaluate the absolute systematic uncertainties in f_{00} due to the \mathcal{M}_{1}^{2}-combinatorial subtraction (0.0005), the \mathcal{M}_{1}^{2}-peaking background (0.0005), the value of C due to the track multiplicity dependence of the efficiency (0.0015), the finite size of the simulated sample (0.002), the same-charge sample (0.0025), the impact of a possible contribution of non- $B \bar{B}$ decays of the $\Upsilon(4 S)$ [16] (0.0025), the peaking background composition (0.004), and the total number of $B \bar{B}, N_{B \bar{B}}(0.0055)$.

The dominant contribution to the systematic error comes from a 1.1% systematic uncertainty in $N_{B \bar{B}}$, due mainly to the uncertainty in the tracking efficiency. The peaking $B \bar{B}$ background is estimated from the simulated sample containing all $D^{* *}$ resonances and non-resonant events. We vary the ratio of the branching fraction of the

FIG. 1: The \mathcal{M}_{s}^{2} (top) and \mathcal{M}_{2}^{2} (bottom) distributions for the on-resonance sample. The continuum background has been subtracted from the distributions. In addition, the $\mathcal{M}_{1^{-}}^{2}$ combinatorial and the \mathcal{M}_{1}^{2}-peaking backgrounds have been subtracted from the \mathcal{M}_{2}^{2} distribution. The levels of the simulated signal, peaking $B \bar{B}$, and combinatorial $B \bar{B}$ background contributions are obtained from the fit.
resonant and the non-resonant production such that the variation of this ratio is wide enough to include poorly known decays. We repeat the analysis procedure to determine N_{s} and N_{d}. The uncertainties due to the lepton and soft-pion momentum spectra are negligible. We combine the uncertainties given above in quadrature to determine an absolute systematic error of 0.008 for f_{00}.

In summary, we use a partial reconstruction of the decay $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$ to obtain the result

$$
\begin{equation*}
f_{00}=0.487 \pm 0.010(\text { stat }) \pm 0.008(\text { sys }) \tag{7}
\end{equation*}
$$

FIG. 2: The \mathcal{M}_{s}^{2} (top) and \mathcal{M}_{2}^{2} (bottom) distributions for the same-charge on-resonance sample. The continuum background has been subtracted from the distributions. The $\mathcal{M}_{1^{-}}^{2}$ combinatorial and the \mathcal{M}_{1}^{2}-peaking backgrounds have been subtracted from the \mathcal{M}_{2}^{2} distribution. The level of the simulated combinatorial $B \bar{B}$ background is obtained from the fit.
where the first error is statistical and the second is systematic. This result is the first, precise, and direct measurement of f_{00}. Since this measurement is made by comparing the numbers of events with one and two reconstructed $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$ decays, it does not depend on branching fractions of $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$ and $D^{*+} \rightarrow D^{0} \pi^{+}$ decays, on the ratio of the charged and neutral B meson lifetimes, nor on the assumption of isospin symmetry. By combining our f_{00} result with the world average of $R^{+/ 0}$ noted in the introduction, we add the errors quadratically to obtain $f_{+-}=0.490 \pm 0.023$. Thus we find the fraction of $\Upsilon(4 S) \rightarrow$ non- $B \bar{B}$ to be $1-f_{00}-f_{+-}=0.023 \pm 0.032$. If $f_{00}+f_{+-}=1$, our f_{00} result can be averaged with $R^{+/ 0}[7]$ to yield $f_{00}=0.494 \pm 0.008, f_{+-}=0.506 \pm 0.008$, and $f_{+-} / f_{00}=1.023 \pm 0.032$. This value of f_{+-} / f_{00} is in good agreement with isospin conservation in $\Upsilon(4 S) \rightarrow$ $B \bar{B}$ within errors.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing
organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

* Also with Università della Basilicata, Potenza, Italy
\dagger Deceased
[1] E. Eichten et al., Phys. Rev. D 21, $203(1980) ;$
D. Atwood et al., Phys. Rev. D 41, $1736(1990) ;$
N. Byers et al., Phys. Rev. D 42, $3885(1990) ;$
G. P. Lepage, Phys. Rev. D 42, 3251 (1990);
M. B. Voloshin, Mod. Phys. Lett. A 18, 1783 (2003);
R. Kaiser et al., Phys. Rev. Lett. 90, 142001 (2003);
Soo-hyeon Nam, Mod. Phys. Lett. A 20, $95(2005)$.
[2] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 69, 071101 (2004).
[3] Belle Collaboration, N. C. Hastings et al., Phys. Rev. D 67, 052004 (2003).
[4] CLEO Collaboration, S. B. Athar et al., Phys. Rev. D 66, 052003 (2002).
[5] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 65, 032001 (2002).
[6] CLEO Collaboration, J. P. Alexander et al., Phys. Rev. Lett. 86, 2737 (2001).
[7] Heavy Flavor Averaging Group (HFAG), J. P. Alexander et al., hep-ex/0412073 (2004); O. Schneider (private communication).
[8] BABAR Collaboration, B. Aubert et al., Nucl. Instr. Methods Phys. Res., Sect. A 479, 1 (2002).
[9] GEANT4 Collaboration, S. Agostinelli et al., Nucl. Instr. Methods Phys. Res., Sect. A 506, 250 (2003).
[10] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 67, 032002 (2003).
[11] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 89, 011802 (2002).
[12] DELPHI Collaboration, P. Abreu et al., Z. Phys. C 74, 19 (1997).
[13] ARGUS Collaboration, H. Albrecht et al., Phys. Lett. B 324, 249 (1994).
[14] G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[15] E691 Collaboration, J. C. Anjos et al., Phys. Rev. Lett. 62, 1717 (1989).
[16] CLEO Collaboration, B. Barish et al., Phys. Rev. Lett. 76, 1570 (1996).

[^0]: ${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
 ${ }^{2}$ IFAE, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
 ${ }^{3}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy ${ }^{4}$ Institute of High Energy Physics, Beijing 100039, China
 ${ }^{5}$ University of Bergen, Inst. of Physics, N-5007 Bergen, Norway
 ${ }^{6}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
 ${ }^{7}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
 ${ }^{8}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
 ${ }^{9}$ University of Bristol, Bristol BS8 1TL, United Kingdom
 ${ }^{10}$ University of British Columbia, Vancouver, British Columbia, Canada V6T $1 Z 1$
 ${ }^{11}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
 ${ }^{12}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
 ${ }^{13}$ University of California at Irvine, Irvine, California 92697, USA
 ${ }^{14}$ University of California at Los Angeles, Los Angeles, California 90024, USA
 ${ }^{15}$ University of California at Riverside, Riverside, California 92521, USA

[^1]: ${ }^{16}$ University of California at San Diego, La Jolla, California 92093, USA
 ${ }^{17}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
 ${ }^{18}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
 ${ }^{19}$ California Institute of Technology, Pasadena, California 91125, USA
 ${ }^{20}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
 ${ }^{21}$ University of Colorado, Boulder, Colorado 80309, USA
 ${ }^{22}$ Colorado State University, Fort Collins, Colorado 80523, USA
 ${ }^{23}$ Universität Dortmund, Institut fur Physik, D-44221 Dortmund, Germany
 ${ }^{24}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
 ${ }^{25}$ Ecole Polytechnique, LLR, F-91128 Palaiseau, France
 ${ }^{26}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
 ${ }^{27}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
 ${ }^{28}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
 ${ }^{29}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
 ${ }^{30}$ Harvard University, Cambridge, Massachusetts 02138, USA
 ${ }^{31}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
 ${ }^{32}$ Imperial College London, London, SW7 2AZ, United Kingdom
 ${ }^{33}$ University of Iowa, Iowa City, Iowa 52242, USA
 ${ }^{34}$ Iowa State University, Ames, Iowa 50011-3160, USA
 ${ }^{35}$ Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France
 ${ }^{36}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
 ${ }^{37}$ University of Liverpool, Liverpool L69 72E, United Kingdom
 ${ }^{38}$ Queen Mary, University of London, E1 4NS, United Kingdom
 ${ }^{39}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
 ${ }^{40}$ University of Louisville, Louisville, Kentucky 40292, USA
 ${ }^{41}$ University of Manchester, Manchester M13 9PL, United Kingdom
 ${ }^{42}$ University of Maryland, College Park, Maryland 20742, USA
 ${ }^{43}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
 ${ }^{44}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA ${ }^{45} \mathrm{Mc}$ Gill University, Montréal, Quebec, Canada H3A $2 T 8$
 ${ }^{46}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
 ${ }^{47}$ University of Mississippi, University, Mississippi 38677, USA
 ${ }^{48}$ Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, Quebec, Canada H3C 3J7
 ${ }^{49}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
 ${ }^{50}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
 ${ }^{51}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
 ${ }^{52}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
 ${ }^{53}$ Ohio State University, Columbus, Ohio 43210, USA
 ${ }^{54}$ University of Oregon, Eugene, Oregon 97403, USA
 ${ }^{55}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
 ${ }^{56}$ Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
 ${ }^{57}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
 ${ }^{58}$ Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
 ${ }^{59}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
 ${ }^{60}$ Prairie View A 8 M University, Prairie View, Texas 77446, USA
 ${ }^{61}$ Princeton University, Princeton, New Jersey 08544, USA
 ${ }^{62}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
 ${ }^{63}$ Universität Rostock, D-18051 Rostock, Germany
 ${ }^{64}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
 ${ }^{65}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
 ${ }^{66}$ University of South Carolina, Columbia, South Carolina 29208, USA
 ${ }^{67}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
 ${ }^{68}$ Stanford University, Stanford, California 94305-4060, USA
 ${ }^{69}$ State University of New York, Albany, New York 12222, USA
 ${ }^{70}$ University of Tennessee, Knoxville, Tennessee 37996, USA
 ${ }^{71}$ University of Texas at Austin, Austin, Texas 78712, USA
 ${ }^{72}$ University of Texas at Dallas, Richardson, Texas 75083, USA
 ${ }^{73}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
 ${ }^{74}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
 ${ }^{75}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
 ${ }^{76}$ Vanderbilt University, Nashville, Tennessee 37235, USA
 ${ }^{77}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
 ${ }^{78}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
 ${ }^{79}$ University of Wisconsin, Madison, Wisconsin 53706, USA

