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Measurement of the Coherence of a Bose-Einstein Condensate
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We present experimental and theoretical studies of the coherence properties of a Bose-Einstein
condensate (BEC) using an interference technique. Two optical standing wave pulses of duration
100 ns and separationDt are applied to a condensate. Each standing wave phase grating makes small
copies of the condensate displaced in momentum space. The quantum mechanical amplitudes of eac
copy interfere, depending onDt and on spatial phase variations across the condensate. We find that
the behavior of a trapped BEC is consistent with a uniform spatial phase. A released BEC, however,
exhibits large phase variation across the condensate.
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Since the first demonstrations of Bose-Einstein conde
sation in dilute atomic gases [1], there have been ma
efforts to explore the nature of such condensates [2,
The phase properties of Bose-Einstein condensates ar
particular interest because they affect how BECs inte
fere. The characterization of atoms extracted from a BE
as constituting an “atom laser” beam is related to the
phase properties. In this Letter we present direct me
surements and theoretical calculations of phase variati
across a BEC, a property related to spatial coherence.
a trapped, pure BEC one expects the phase to be spat
uniform because the condensate is in a stationary s
of the system with no angular momentum. On the oth
hand, in an incompletely formed BEC, one might expe
differences in the phase between different regions of t
condensate [4]. A released BEC, composed of atoms w
a positive scattering length, develops phase variations
it explosively expands due to the atom-atom (mean-fie
interaction [2]. Understanding these phase variations
essential for characterizing condensates as sources of
herent matter waves.

Matter-wave interference between two condensates w
reported in 1997 [5] where two condensates initially loca
ized in different regions of a double-well potential wer
released and allowed to spread and overlap. That
periment, equivalent to a Young’s double slit experimen
showed that two independent condensates interfere, as
two separate lasers [6]. Here we describe a novel meth
of self-interfering a BEC to extract information abou
its phase.

We measure the spatial coherence of the BEC by c
ating and interfering two spatially displaced, coherent
diffracted “copies” of the original BEC in the same mo
mentum state. An optical standing wave pulse diffrac
[7–9] a small fraction of the condensate into momentu
states62nh̄ �k, wheren is an integer and�k � �2p�l�ẑ
is the optical wave vector. For our conditions, a ne
ligible fraction is diffracted into momentum states with
2
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n . 1. (Because the process is symmetric, the discu
sion that follows refers to only the12h̄k copy.) A second
diffraction pulse, appliedDt after the first pulse, creates a
second overlapping2h̄k copy displaced from the first by
D�z � �2h̄kDt�m�ẑ � 2yrDtẑ, with m the atomic mass
and yr the recoil velocity. The amplitudes of the wave
functions representing these two copies interfere whe
they spatially overlap, and this interference affects the to
fraction of the BEC diffracted into2h̄k by the pulse pair.
If the interference were completely constructive (destru
tive), the number of diffracted atoms would be 4 (0) time
that diffracted by a single pulse (for well overlapped copie
as the output-coupling efficiency per pulse,b ! 0).

The experiment was performed with a condensate of
to 3 3 106 sodium atoms in the32S1�2, F � 1, m � 21
state, without a discernible uncondensed fraction, in
time orbiting potential (TOP) [10] magnetic trap. Ou
trap [11] has harmonic frequencies along thex̂ (vertical),
ŷ, and ẑ directions of 14, 20, and 28 Hz, respectively
we measured the asymptotic rms momentum width of t
released condensate to be0.08�1�h̄k [12]. With the mag-
netic trap either held on (trapped BEC) or shut off (re
leased BEC), we apply a pair of identical optical standin
wave pulses (100 ns FWHM) alongẑ. The optical stand-
ing wave is formed from a collimated, retroreflected ligh
beam (peak intensity� 300 mW�cm2), detuned below
theF � 1 ! F0 � 2 optical transition�l � 589 nm� by
600 MHz to reduce spontaneous emission.

In order to describe the interference we write the co
densate wave function, normalized to unity, ash��r , t� �
R��r , t�eiw��r ,t�, whereR��r, t� and w��r , t� are real. When
the first pulse is applied att0, we create a2h̄k copy
of the condensatec��r, t0� � eh��r, t0�ei2kz, with jej2 �
b ø 1. At a time Dt later the copy has moved a dis-
tanceDz and thus becomeseh��r 2 D�z, t0� exp�i2kz 2

iv��r 2 D�r�Dt�, where we have ignored any change i
the spatial distribution of the wave packet after applica
tion of the first pulse. The phase of atoms diffracte
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to 2h̄k evolves faster than that of atoms in the con-
densate because of the additional kinetic energy and a
small mean-field effect due to the change of momen-
tum state [2], h̄v��r� � 4Er 1 gN jh��r�j2. Here Er �
h̄2k2�2m, g is the mean-field coupling constant as in [2],
and N is the number of atoms in the condensate. When
a second copy is created at t0 1 Dt, the first copy’s
phase differs from that of the second copy by 2�v	Dt.
To first order in e the total amplitude in the 2h̄k mo-
mentum state after the second pulse is C��r , Dt; t0� �
eei2kz�h��r , t0 1 Dt� 1 h��r 2 D�z, t0�e2iv��r2D�z�Dt�. The
two displaced, diffracted copies include the spatial phase
variation w��r , t0� of the original condensate, which affects
the interference. Defining the signal as the number of
atoms diffracted by the two pulses divided by the maxi-
mum number of atoms diffracted (i.e., when Dt � 0) we
obtain
S�Dt; t0� �

R
jC��r , Dt; t0�j2 d3rR
jC��r , 0; t0�j2 d3r

�
1
2

1
Re�h��r, t0�je2iv��r2D�z�Dtjh��r 2 D�z, t0�	

2

�
1
2


1 1 a�Dt; t0� cos�4ErDt�h̄ 1 u�Dt; t0��� . (1)
Here we have introduced a new amplitude a and phase u

[whose functional form depends on w��r , t0�]. In addition,
we made the assumption h��r , t0 1 Dt� � h��r, t0�. This
is true for a trapped condensate (neglecting the change in
the mean field of the parent condensate) and approximately
true for a released one because the condensate expands
little for our Dt. The signal for a trapped condensate
exhibits oscillations at a frequency 4Er

h̄ 1
du

dDt provided
da

dDt ø 2p�100 kHz�. du

dDt adds 0.3 kHz to the 4Er�h �
100.1 kHz oscillation frequency [13]. If w��r , t0� is
spatially uniform, the decay of the 100 kHz interfer-
ence oscillations to S !

1
2 is mainly determined by the

geometrical overlap of the two amplitudes. However,
if w��r , t0� is not uniform, the 100 kHz oscillations will
apparently decay faster due to dephasing. The decay of
the oscillations is a measure of the momentum spread of
the condensate. When w��r , t0� is constant the decay is
determined mainly by the spatial overlap and the momen-
tum spread is uncertainty-principle limited. Variations in
the initial phase imply an additional contribution to the
momentum spread because the momentum is proportional
to the derivative of the wave function.

Figure 1 shows the real and imaginary amplitudes of
trapped (a) and released (b) condensates calculated using
a 1D Gross-Pitaevskii (GP) model (3D-GP calculations
[14] were used when comparing to data). After the BEC
is released, the mean-field potential energy is converted to
kinetic energy on a time scale of 1�vz (6 ms in our case).
The resulting spread in momentum is characterized by a
phase that varies quadratically [15] across the condensate.

To experimentally determine S�Dt; t0� we measure the
number of diffracted atoms after the diffracted compo-
nents have become well separated from the original BEC.
In principle, only one pair of diffraction pulses would be
needed if the output-coupling efficiency were constant.
The intensity of the diffraction pulses, however, can vary
due to spatial beam inhomogeneity and beam pointing in-
stabilities. In addition, N may vary by �10% but cannot
be measured since the condensate is optically opaque for
the on-resonance imaging that allows good measurements
of the small number of diffracted atoms. To obtain sig-
nals insensitive to these fluctuations we use a four-pulse
normalization sequence.

Our four-pulse sequence consists of two pairs separated
by DT (typically several ms to allow the diffracted atoms
enough time to leave the region of the condensate).
All pulses are nominally identical and the diffraction
efficiency b per momentum state per pulse is chosen
to be small �b � 0.02�. Figure 2 shows the typical
experimental pulse sequence (a) and the resulting wave
packets (b). The pulse separation in the first pair is Dt
and in the second pair it is Dt 1 5 ms. Since 5 ms is
half of an interferogram period, the sum of the atoms
diffracted by both pulse pairs is independent of Dt while
remaining proportional to b and N . The normalized
signal is the number of atoms diffracted by the first set
of pulses divided by the number diffracted by both sets of
pulses [16], which is equivalent to the signal of Eq. (1).
The signal is insensitive to a slowly varying diffraction

FIG. 1. Theoretical 1D GP calculations showing the evolution
of the phase across the condensate for 5 3 105 atoms. The real
and imaginary parts of the wave function along the ẑ axis are
shown for the condensate in the trap (a) and 8 ms after the trap
is extinguished (b).
3113
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FIG. 2. (a) Timing sequence. The first two diffraction pulses
probe the phase evolution of the condensate and the last
two pulses are used for normalization. (b) Evolution of the
condensate. The overlapping circles represent the interfering
amplitudes for scattering atoms into the 62h̄k momentum
states.

efficiency [17] and to number fluctuations in the original
BEC. After all wave packets spatially separate, we
perform absorption imaging [1] by first optically pumping
the atoms to the F � 2 ground state and imaging with
probe light on the closed F � 2 ! F0 � 3 transition.
We process the images to obtain optical depth images
from which we determine the number of diffracted atoms.

We first study the coherence of a condensate held in
the TOP trap [18]. The classical turning point for atoms
with momentum 2h̄kẑ at trap center is 260 mm, there-
fore these atoms can leave the 44 mm spatial extent of
the condensate while the trap is held on. Figure 3a shows
optical-depth images with no averaging, along with a si-
nusoidal fit to the signal. The fit yields a frequency of
100.3(3) kHz (when fit to 5 periods), in good agreement
with the expected value of 100.4 kHz. The signal is cen-
tered about S � 0.50�1� with a peak-to-peak amplitude of
only 0.82(1), possibly due to imperfect background sub-
traction. (Without normalization the signal-to-noise ratio
was 7 times worse.) The phase of the 100 kHz inter-
ferogram beyond about 100 ms varies from shot-to-shot
such that the contrast of the averaged signal is washed
out. This may be due, in part, to fluctuations of a few
percent in the 100 kHz signal frequency caused by small
initial velocities of the condensate [19] (presumably re-
sulting from small time-varying stray magnetic fields). In
order to obtain information on the true envelope, we took
30 points at each Dt and used the maximum (minimum)
signal as a measure of the upper (lower) envelope. Signal
fluctuations due to additive noise simply shift the baseline
(typically 5% in our case) of the upper (lower) envelope
up (down).

Figure 3b shows the behavior of the signal’ s upper
envelope after subtracting a constant background (we
verified that the signal envelope was symmetric within
our uncertainty). For this data set there were 1.5�3� 3

106 atoms in the original condensate. The measured
fringe decay time from a Gaussian fit [20] is t1�2 �
225�40� ms, in good agreement with the value t1�2 �
3114
FIG. 3. Two periods of optical depth data are presented as a
function of Dt when the trap is held on. The right-hand column
of (a) is the resultant normalized signal. The solid line is the
result of a fit to 5 periods of these data, yielding a frequency of
100.3(3) kHz. (b) shows the long-time upper envelope of this
signal’ s contrast as well as the theoretical GP envelope (solid
line, scaled to the experimental contrast).

275�6� ms from calculations, to be described elsewhere
[14]. The calculations are of two types. One is a full 3D
time-dependent propagation of the GP equation using a
slowly varying-envelope approximation for each momen-
tum component of the wave function. The other is a time-
dependent Thomas-Fermi model based on Ref. [15] that
gives excellent agreement with the full GP calculations.
The theoretical signal decay is mainly due to geometri-
cal overlap, plus a small effect due to the action of the
mean field [2] on the ejected part between pulses. The
uncertainty in the theoretical value is mainly due to
the experimental uncertainty in the number of atoms in
the condensate. If we model the initial phase variation as
quadratic (a linear phase variation corresponds to a uni-
form velocity and would not affect the signal envelope),
we obtain 0.0038�30� rad�mm2, which is consistent with
zero (0.6p 6 0.5p radians at the cloud edge) and with
the condensate having a uniform global phase.

In a second series of experiments we released the
condensate from the trap before applying the diffraction
pulses. As the mean-field energy is converted to kinetic
energy, the released condensate develops substantial spa-
tial phase variations w��r , t� (see Fig. 1) which lead to a
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FIG. 4. The upper envelope of the contrast (a) and short-time
signal (b) data are presented for a released BEC along with the
results of 3D-GP calculations.

decay of signal contrast much faster than that due to the
spatial overlap. Figure 4 shows the interference signal
and envelope when the first pulse pair is applied 1.2 ms
after switching off the trap with 5�1� 3 105 atoms and
DT � 3 ms. In Fig. 4a the upper envelope of the signal
after background subtraction is plotted with theory. The
measured decay time t1�2 � 65�10� ms for the released
condensate is in agreement with the theoretical value (solid
curve) of 82�3� ms. Figure 4b compares the experimental
interferogram data with the theoretical predictions. Data
were also taken for long delays DT , and the results are in
good agreement with theoretical simulations.

The novel interference technique presented here could
also be used to study the development of a uniform con-
densate phase as the BEC forms in the trap. In addition,
any uncondensed (thermal) fraction should result in a par-
tial decay of signal contrast at short times, which might
be useful for precise measurements of the temperature of
a highly degenerate Bose gas. The techniques developed
here allow us to study phase properties of atom lasers
[21–23]. For example, our results confirm the expecta-
tion that the output-coupled pulses forming the continu-
ous beam of our atom laser [22] were in phase. We
note that a recent complementary frequency-domain ex-
periment [24] also confirms that a trapped condensate has
a uniform phase.
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