Fermi National Accelerator Laboratory

MEASUREMENT OF THE CONTINUUM OF DIMUONS PRODUCED IN HIGH-ENERGY PROTON-NUCLEUS COLLISIONS

A. S. Ito, R. J. Fisk, F. Jostlein, and D. M. Kaplan State University of New York Stony Brook, New York 11794
and

S. W. Herb, D. C. Hom, L. M. Lederman, H. D. Snyder and J. K. Yoh
Columbia University New York, New York 10027
and
B. C. Brown, C. N. Brown, W. R. Innes, R. D. Kephart, K. Ueno and T. Yamanouchi
Fermi National Accelerator Laboratory Batavia, Illinois 60510

February 1980

MEASUREMENT OF THE CONTINUUM OF DIMUONS PRODUCED IN HIGH-ENERGY PROTON-NUCLEUS COLLISIONS

A. S. Ito, ${ }^{a}$ R. J. Eisk, ${ }^{a}$. Jostlein ${ }^{a}$ and D. M. Kaplan ${ }^{b}$ State University of New York Stony Brook, New York 11794
and

S. W. Herb, D. C. Hom, ${ }^{C}$ L. M. Lederman, H. D. Snyder, ${ }^{d}$ and J. R. Yoh
Columbia University
New York, New York 10027

and
B. C. Brown, C. N. Brown, W. R. Innes, R. D. Rephart,
R. Veno and T. Yamanouchi
Fermi National Accelerator Laboratory
Batavia, Illinois 60510

We report final results of a series of measurements of continuma dimuon production in proton-nucleus collisions at Fermilab. New results with six times more statistics are included. A full description of the apparatus and methods used in the analysis of this series of measurements is given. The sea quark distribution of the nucleon is determined within the context of Drell-Yan and QCD descriptions of dilepton production in hadron collisions.

MEASUREMENT OF THE COITINUUM OF DIMUONS ERODUCED IN

BIGH-ENERGY PROTON-IUCLEUS COLLISIONS

```
A. S. Ito, \({ }^{\text {a }}\) R. J. Fisk, \({ }^{a}\) H. Jostlein \({ }^{a}\) and D. M. Kaplan \({ }^{b}\)
                State University of New York
                Stony Brook, New York 11794
                            and
S. W. Herb, D. C. Hom, \({ }^{\text {C }}\) L. M. Lederman, H. D. Snyder, \({ }^{\text {d }}\)
                    and J. K, Yoh
                    Columbia University
        New York, New York 10027
                            and
B. C. Brown, C. N. Brown, W. R. Innes, R. D. Rephart,
            K. Deno and T. Yamanouchi
    Fermi National Acceleratar Laboratory
                Batavia, Illinois 60520
```

 We report final results of a series of measurements
 of continuum dimuon production in proton-nucleus
collisions at Fermilab. New results with six times more
statistics are included. A full description of the
apparatus and methods used in the analysis of this series
of measurements is given. The sea quark distribution of
the nucleon is determined within the context of Drell-Yan
and $Q C D$ descriptions of dilepton production in hadron
collisions.

INTRODUCTION

In the past 10 years advances in the constituent theory of hadrons have been paced by developments in three experimental areas: inelastic lepton-nucleon scattering (using e^{2}, μ^{2}, and $\left.v^{\prime} s\right)$. $e^{+} e^{-}$annihilation, and dilepton production in hadron-hadron collisions:

$$
\begin{equation*}
h_{1}+h_{2}+\ell^{+}+i^{-}+\text {anything. } \tag{1}
\end{equation*}
$$

Reaction (1) has been further exploited to find new massive resonances ($J / \Psi, T$) in addition to probing the details of hadronic substructure in a manner which is complementary to the scattering approach. This paper is based upon proton-induced-dimuon research carried out at Fermilab in 1977-78. We sumarize the previousiy published results ${ }^{\text {bs }}$ and present a final analysis representing a sixfold increase in data. Extended descriptions of the apparatus, systematic effects, and corrections are also given." We concentrate here on the continum of massive $\mu^{+} \mu^{-}$pairs produced as in Eq. 1; our final results on the f faily of resonances observed via their decay to the $\mu^{\dagger} \mu^{-}$final state have been published elsewhere.?

The data discussed in this paper are divided into three sets: 1. 400 GeV incident proton energy, Summer 1977; II. 200/300 Gev. Fall 1977; III. 400 GeV , Winter 1978 (High Intensity). In addition, we vill present some previously unpublished dielection data taken in 1976-1977.

Analysis of the data from Reaction (1) has been carried out using the Drell-Yan parton-antiparton annihilation model; which vas proposed to describe the first such data obtained at the Brookhaven AGS.' In this model a quark (antiquark) constituent in a beam nucleon and an antiquark (quark) constituent in a target nucleon arnihilate via virtual photon into lepton pair. The remaining quarks go off into the "anything" of Eq. 1. This is shown schematically in Fig. 1. Thus the cross section for producing a dilepton of mass is proportional to a sum of terns of the form

$$
\begin{equation*}
f\left(x_{1}\right) \bar{f}\left(x_{2}\right) \tag{2}
\end{equation*}
$$

vhere $f(x) / x \quad(\bar{f}(x) / x)$ is the probability to find a quark (antiquark) bearing the fraction x of the hadron's momentum. Annihilation kinematics give

$$
\begin{equation*}
T \equiv m^{2} / s=x_{1} x_{2} \tag{3}
\end{equation*}
$$

vhere 3 is the nucleon-nucleon center of mass energy squared. The structure functions f and f also appear in lepton scattering. The dilepton data therefore test the consistency of the model. Moreover. in dilepton production the antiquark distribution fa measure of the quark-antiquark seal appears as a multiplicative factor in the product rather than as an additive term fas in lepton-nucieon scattering) and so ls more sensitively measured. The detailed expression for the cross-section is:

$$
\begin{align*}
m^{4} \frac{d \sigma}{d n^{2}}= & \frac{4 a^{2}}{9} \quad e_{i}^{2} f_{0}^{1}\left[d x _ { b } d x _ { t } \left\{f_{i}^{0}\left(x_{b}\right) \bar{f}_{i}^{t}\left(x_{t}\right)\right.\right. \\
& \left.\left.+f_{i}^{b}\left(x_{b}\right) f_{i}^{t}\left(x_{t}\right)\right\} \delta\left(t-x_{b} x_{t}\right)\right] \tag{4}
\end{align*}
$$

where $t \equiv$ target nucleon, $b \equiv b e a m$ nucleon, and $e_{i} \equiv$ charge of $i^{t h}$ quark. The sum is over the quark flavors u, d, s, etc. except that it is customary to neglect the c ans heavier guarks because of their mass. Equation (4) contains the concept of scaling, i.e. - $\frac{d o}{d m^{2}}$ depends only on t. There is an important factor of 3 decrease in the cross section due to the color degree of freedom. This is one of the very few places where one can "see" this hidden quantum number, and its cesting in this reaction could provide an important conflimation of the color concept. The test clearly involves an appeal to the lepton scattering data for normalized structure functions $f_{u} \equiv u(x), f_{d} \equiv d(x), f_{s} \equiv s(x)$, $f_{u} \equiv \bar{u}(x)$ etc. In the same kinematic regions and a prescription for how to go from spacelike Q^{2} to timelike m^{2}.

Dilepton production has more recently come in for great theoretical attention because of two observed features which are not included in the Drell-Yan model: i) the dileptons have transverse momenta which are much larger than the typical hadronic P_{r} of $300 \mathrm{Mev} / \mathrm{c}^{*}$ and ii) the nucleon structure functions, measured in muon-nucleon scattering, ${ }^{10}$ violate scaling. These developments are understood within the context of Quantum Chromodynamics (QCD). a quantum field theory of quark-quark interactions. In this theory quarks and antiguarks coupled by neutral vector particles (gluons) are the fundamental constituents of the hadrons. The modification of the Drell-Yan model by the additional diagrams of QCD has occupled a substantial fraction of the literature. $1 \mathrm{~m} \mathrm{~m}^{0}$ The reason 18 two-fold: i) dilepton data provide a testing ground for perturbative calculations in the new theory, and ifi) the data may
permit an overdetermination of parameters which are not as yet fixed by the theory. We shall return to these issues after a lengthy excursion into experimental matters.

II. EXPERIHENTAL DETAILS

A. General

The experiment measures the vector momenta of two opposite sign leptons emerging from the hadronic collision: \mathbf{F}_{+}and $\mathbf{F}_{\mathbf{*}}$. Fron this, the relevant kinematical quantities may be deduced.
Assuming $\left|\vec{P}_{+}\right|,\left|\vec{P}_{-}\right| \gg m_{\mu}\left(m_{\mu} \equiv\right.$ mass of the muon)

$$
\begin{align*}
& n^{2}=2\left|P_{+}^{+}\right| P_{-} \mid\left(1-\cos \left(\theta_{+-}\right)\right) \tag{5}\\
& y=1 / 2 \ln \frac{E^{*}+P_{11}^{*}}{E^{*}-P_{\| 1}^{*}} \tag{7}
\end{align*}
$$

vhere $\theta_{+-}, P_{\|}$", and E are the angle between the two muons in the laboratory, the dimuon longitudinal momentum and the dimuon energy in the nucleon-nucleon center of mass (cm) system respectively. The cm rapidity y is related to the Bjorken x variables defined in Pig. 1 in the following manner:

$$
\begin{align*}
& x_{1}=f \tau e^{+y} \\
& x_{2}=\gamma \tau e^{-y} \tag{8}
\end{align*}
$$

We note that these relations are strictly valid only in so far as m >> $P_{T} \equiv$ dimuon transverse momentum and $\sqrt{s} \gg m_{n} \equiv$ nucleon mass. B. Design Criteria

We wished to measure the lepton pair continumm out to the highest possible masses, and also to be sensitive to massive resonances. To improve on previous continum measurements we needed to be sensitive to cross-sections less than 10^{-12} of the total proton-nucleon cross-section, and therefore to take a large incident beam flux and to withstand high counting rates in the apparatus. Good mass resolution was particularly important for the resonance search; good resolution in other variables minimized corrections to the observed data. Since massive objects tend to be produced at rest or moving slowly in the collision rest frame, we chose to view the collision at 90°, thus avoiding the huge hadronic flux at 0° and 180°.

We had the choice of detecting muons or electrons. Muons can be distinguished from the copiously produced hadrons by their highly penetrating character; electrons, by their electromagnetic showering properties. The main background in muon experiment is muons from the decay of pions and kaons produced in the target. To suppress this it is necessary to place material immediately downstream of the target to absorb these particles before they can decay. The advantage over electrons is that the particle flux is in principle lowered by a factor of up to 10^{4} by the hadron absorber, allowing a corresponding increase in beam intensity. The disadvantage is that scattering of the muons in the hadron absorber
degrades knowledge of their production angles, thus worsening resolution. Election pairs were detected in the earliest arrangement.' A preliminary muon experiment was performed in 1976^{2} using an apparatus very similar to that of the electron experiment. Insertion of beryllium hadron absorber for the muon test run lovered counting rates in the apparatus by actor of about 4 . rather than 10^{4}. Hadronic cascades in both the bergilium and the forward beam dump generated large numbers of low energy muons which contributed random singles rates in all detector planes, preventing a large increase in the proton beam intensity.

The experience gained allowed us to optimize the design of the present experiment, improving both sensitivity and resolution. The crucial regions around the target and beam dump were redesigned to -inimize the decay muon flux; this decreased the rate per incident proton by about a factor of ten. We had also noted from the previous experiment that the muon flux dic not Jecrease rapidy with distance from the magnets. Therefore the acceptance was enlarged without increasing counting rates by moving all detectors closer to the target and analyzing magnets. Acceptance was also gained by permitting bends of either sign in each spectrometer arm. These improvements permitted an overall increase in data taking rate of more than actor of sixty over the previous muon experiment.

C. Apparatus Overview

The apparatus (shown in Fig. 2) was a two-arm magnetlc spectrometer viewing the proton-nucleus collision from opposite sides at -90° in the proton-nucleon center-of-momentum system (CMS; Each arm covered a solid angle of 0.2 sr . in the CMS and consisted of hadron absorber, two magnets, scintillation counters, and multiwife proportional chambers (MWPC's). The magnets deflected charged particles vertically and in opposite directions, so that if the first (air gap) magnet deflected positive muons up, say, the second (solid steel) magnet deflected them down. Each arm was symmetric about a horizontal piane and accepted both positive and negative muons equally.

To maximize the amount of beam ve could accept, we placed no detectors upstream of the air gap magnet where counting rates were at least an order of magnitude higher than downstream. The momentum was computed from the measured trajectory downstrean of the air magnet by assuming that the undeflected track pointed back to the target. The inaccuracy of this assumption due to multiple scattering in the hadron absorber resulted in a r.m.s. momentum resolution of 28.

The spectrometer apertures were wide horizontally and short vertically. The fields in the two air gap magnets were oriented along the long dimension of the gaps. The muon production angles vere thus measured primarily in a plane perpendicular to the plane of magnetic deflection. This decoupling of the production angle measurement from the momentum measurement had important advantages
over the more usual magnet design in which the field is oriented along the short dimension. First, the copious low momentum muons were swept out of the spectrometer, rather than being swept across the aperture into the other arm. Secona, events originating in upstream vacuum windows or in the beani dump could be rejected by projecting the track back to the target in the horizontal plane.

In order to suppress backgrounds, the apparatus was designed with a considerable amount of redundancy. The momentum of the muon was redetermined to ± 158 by measurement of the deflection in the steel magnet. This helped to reject low energy muons which simulated high momentum muons by traversing the air magnet along strange trajectories involving scattering from pole pieces, return yokes, etc. Another handle on backgrounds was provided by the midmagnet (MM) MWPC which verified the muon position in the middle of the air magnet. A gas Cerenkov counter filled with nitrogen provided a GeV muon energy threshold, as did the energy loss in the 1.8 m of steel magnet and 1 m of steel further downstream. At full current the magnets provided a 15 GeV threshold for particles traversing all the detectors, but the Cerenkov counter and additional steel were still useful in eliminating certain classes of - junk" triggers such as accidental coincidences of low energy muons upstream and downstream of the steel magnet.

The detector system included both scintillation counters and multiwire proportional chambers (MWPC) at most positions after the analyzing magnets. Counters were used to create the event trigger: matrix logic requirements for counter hodoscopes in both the bend and non-bend planes provided crucial reductions in the trigger rate.

The external beam at fermilab arriges in bursts (RF buckets) of abput 1 nsec duration and separated by 18.9 nsec. Resolution of single buckets is easily achieved with scintillation counters but proportional chambers integrate over two or three buckets. The scintillation counter hodoscopes were therefore also used to elininate out-of-time chamber hits during the off-line reconstruction.

D. Detailed Description

The apparatus is here described in detail proceeding from upstream to downstream.

1. Beam line

The experiment (E288) was performed in the Proton Center pit of the Fermi National Accelerator Laboratory. A small fraction of the extracted primary proton beam was brought to the Proton Center pretarget area by Switchyard and Proton Area magnets mostly not under our control. The protons were steered and Eocused onto our target by two dipole and five quadrupole magnets which ve could control using the MAC beam line computer system. We were able to focus the beam to a spot 0.03 cm by 0.08 cm high (FWHM as measured during the CFS hadron pair experimentil. The horizontal and vertical beam profiles. 7 m upstream of our target were measured by 0.5 spacing separated-wire ionization chambers (SWIC) provided by Fermilab Research Services. A secondary emission monitor (SEM) vas used to measure the beam intensity.

2. Target box

The target box (Fig. 3) was a large helium-filled enclosura containing ten drawers, on which were mounted the target holder, beam dump, and part of tite hadron absorber. The drawers were \mathbf{I}^{\prime} squate in cross-section and were arrayed five across and two deep; they slid in and out on rails. Surrounding the target box was a 16*-thick layer of steel to shield against radioactivity.

3. Targets

Four different targets were used. The targets were inin vertical strips of metal vith a horizontal width of about 1 mm . This defined the horizontal interaction position preciself and also minized the scattering of outgoing ruons. The vertical size of the interaction region was determined by the natural beam height of about 2 mu . Most of the data were taken with either $1.87 \mathrm{~cm}-1 \mathrm{ong}$ platinum target or 10 cm - 10 ng Cu target. These targets were chosen in order to maximize the ratio of signal to single count rates, since the massive lepton pair signal had been measured to have an approximately ilnear nucleon number (A) dependence while the singles rate presumably goes as $A^{2 / 3}$ (see section III B. 3b belov). During the data taking to measure the A-dependence, ve aternated frequently between the platinum target and a $10 \mathrm{~cm}-10 n g$ beryllium target. The fourth target was the 7 cm-long copper target, which was used during a small fraction of the run. The targets vere mounted in a holder uhich could be translated horizontally (transverse to the beam direction) by means of a stepping motor under computer control. Target parameters are given in Table I.
4. Beam dump

Typically 30s-50: of the beam interacted in the target; the rest was absorbed in a water-cooled beam dump. The dump began 210 cm downstream of the center of the target. It consisted of 180 cm Of Mallory 1000 Hevimet (90t tungsten, 68 nickel, 48 copper) followed by 6° of steel. A cone of hevimet extended 90 cm upstream to reduce the decay path for hadrons produced at small angles, but it had a 2.5 cm -square hole in its center to allow the unscatered beam to pass through. Hevimet was used for its short hadronic absorption length (11 cm), which minimizes decay of pions and kaons and also minimizes transverse spread of the hadronic shower and hence leakage of particles out of the dump into the aperture.

5. Targeting monitors

The fraction of the beam intercepted by the target was monitored by two different methods. A 2.5 cm-diameter hole in the steel shielding directly above the tatget provided a decay space for hadrons emitted upwards, and the resulting muon flux was viewed (after penetration of the concrete pre-target area roof and some ditt) by a four-element scintillation counter telescope called the 90° monitor. This was our main targeting fraction monitor. The 90° monitor was somewhat sensitive to interactions in the dump: typically the ratio of its "target in" to "target out" counting rates was about 4. A second targeting monitor was aingle-wire proportional tube counter called the tube monitor; it viewed the target from the large angle side of the aperture in one arm and had a target in/target out ratio similar to that of the 90° monitor.

6. Hadron absorber

In the laboratory rest frame each spectrometer arm covered $\pm \mathbf{1 0}$ mrad vertically and 45 mrad horizontially. The two arms were centered horizontally on the angles $\ddagger(a r c t a n ~ 0.0725)$. which correspond to 290° in the CMS at 400 GeV beam energy. Within the target box the spectrometer apertures were filled with hadron absorber, the first 30 cm of which sat on a remotely controlled elevator platform which could be raised or lowered to have copper, beryllium, or no absorber (i.e. helium) in the aperture. Almost all of our data were taken with the copper absorber, as we found that rates in some of the detectors increased by as much as a factor of three uith beryllium; the small improvement in resolution with beryllium (see Section E below) was judged not to be worth the accompanying beam intensity limitation. The rest of the absorber consisted of 525 cm of beryllium in the target box and 150 cm of CH_{2} downstream of the target box.

The beryllium was oversized, its coverage being nowhere less than 70 mrad horizontally nor ± 20 mrad vertically. This provided a buffer zone of low 2 material around the nominal aperture so that muons scattering in the Hevimet or steel of the target drawers could not be confused with the muons produced within the aperture. The beryllium was in the form of large precisely cut blocks in order to minimize gaps. Similar precautions extended to the surrounding steel and to the beam dump. The design benefited from our previous experience in the detection of massive muon pairs and from a detailed Monte Carlo study. The effort in careful redesign of the target box was rewarded by a factor of 10 improvement in random singles rates in the downstream detectors.

The CH_{2} was included because of the wory that slow neutrons might be able to penetrate the beryllium in significant numbers and contribute to counting rates. Subsequent rurning failed to support this view however, and after a few months of running all but 15 cm of the CH_{2} was removed and 138 cm of berylifum installed in its place.

7. Shielding wall

Three feet downstream of the end of the target box was a 210 cm-thick steel shielding wall. The apertures in this wall were slightly oversized. They were tapered horizontally but not vertically. The tube monitor was placed in the downstream end of the down arm shielding wall aperture in the lower largeangle corner.

8. Air gap magnets

Next came the air gap analyzing magnets. They were $300 \mathrm{cm-}$ long dipole magnets centered 11 downstream fror the center of the target. The field was horizontal (deflecting charged particles vertically, and, due to tapering of the gaps, the field decreased in magnitude with increasing distance from the target. The pole pieces were located at 49 and 97 mrad. At maximum current $(1500$ amperes) the mean value of the field was 13 kg , giving atransuerse momentum kick of $1.2 \mathrm{GeV} / \mathrm{C}$. The two magnets were wired in series. Their fields pointed in the same direction, so that if positive particles were deflected up in one arm, negative particles were deflected down in the other; this configuration favors pairs produced at small transverse momentum and thus has larger acceptance than the configuration in which the fields are directed opporitely.

The field integral of each magnet, as a function of the horizontal (x) and vertical (y) coordinates in each arm, was mapped at several currents using a 450 cm -long flip coil connected to a current integrator, and the magnitude of the field at the upstream end near the 49 mrad pole piece was measured continuously to 0.28 by a Hall Effect probe. The magnet current was monitored using a precision shunt which was sensitive to 0.1 current variations. A second current shunt was read back from the power supply via the controls computer system. A further check on the shape and magnitude of the field vas the observed mass of the J / \downarrow resonance as a function of current and position in the magnet. Ne also used the J/申 resonance to calibrate the field near the pole pieces where flip coll measurements vere difficult.

9. Detectors

Table il lists the detectors, in the order traversed by a mon. The first detector in each arm was an MWPC (2 mm spacing horizontal wires) located in the center of the air magnet. These mid-magnet (MM) chambers vere designed to operate efficientiy at the high counting rates (typically 50 MHz) encountered in that location. Their narrow gaps (1/8") reduced the time spread of pulses from a single track to about 50 nsec , and special deadimeless amplifierhdiscriminator cards were used. All MWPC used a gas mixture containing 83 Argon, 17: CO_{2}, and. 18 Freon 13Bl. Most of the chambers were operated at high rates ($10-20 \mathrm{MHz} / \mathrm{plane}$) for several years without changes in plateau voltages or need for repairs. The MENP electronics was of the standard "NEVIS" design, ${ }^{2}$ except for the Sippach designed fast amplifier-discriminators mentioned above.

Four stations of detectors were placed between the air magnet and the steel magnet. The first station consisted of a rlane of horizontal scintillation counters designated Ill, a MFPC containing three planes of wires (2 mm spacing) designated as J chambers, and a vertical scintillation counter hodoscope known as Vl. Hi was used in the trigger. The three J chambers ($J Y, J U$, and $J V$) measured In the I direction and along two axes at 60° and 120° from the y axis. V1 consisted of $191.4^{\prime \prime}$ and $2^{\prime \prime}$ wide scintillation counters. It supplemented the MWPC's in measuring x, and its good time resolution (one accelerator $R F$ bucket) permitted elimination of out-of-time MWPC hits. A second plane of horizontal scintiliation counters called ho was added upstram of $R 1$ after a few months of running. It consisted of five 5 cm-vide strips fit snugly against the downstream face of the magnet iron, restricting the trigger to muons emerging from the magnet aperture and eliminating the roughly 302 of pair triggers due to muons emerging through the coils.

The next station consisted of a single 2 sua spacing MWPC measuring y and called 1Y. Between it and the third station was a 210 cm-long nitrogen-filled Cerenkov counter. It was the mead" section of nitrogen Cerenkov counter, $C 2$. used in the previous hadron pair experiment. ${ }^{2:}$ It was used in the muon experiment primarliy for its good time resolution (1 nsec r.n.s.) and alsofor its insensitivity to slow particles.

The third station was a 3 mocing MAPC measuring y and called 2\%. The fourth station consisted of a vertical hodoscope of 26 1.4* and 2^{*} vide scintillation counters, called V2, and three 3 minPC's (3Y, 3X, and 3P) messuring y, x, and a coordinate (p) rotated by arctan (1/8) with respect to Y. The preponderence of
chambers measuring y (and p, which is highly correlated with y) was intended to provide accurate measurement of the magnetic deflection angie even if one or two chambers should be missing due to inefficiency.

10. Steel magnets

Figure 4 shows a steel magnet in detail. Each steel magnet was
 followed by a 24 inch section, separated by - 6 inch space. The coil consisted of 36 turns of hollow 0.825° by 0.625° water-cooled copper. The magnet was run at a current of 1000A, which was sufficient to saturate the steel at approximately 20 kg . and provide a fairly uniform dipole field. The field integral was measured using the muons themselves, studying the distribution in deflection angle as a function of momentur measured by the air magnet. The transverse momentum kick p_{T} was thus measured to be 1. 14 GeV. The two magnets were wired in series and the current monitored to 0.18 by a precision shunt. Their fields were equal and oriented in the same direction, opposite to the direction of the fields in the air magnets. Muons were thus partially refocused by the steel magnets, allowing downstream detectors to be reduced in size.

The momentum resolution of such a magnet is limited by multiple scattering of the muons as they traverse the steel. The r.m.s. scattering angle is given. by ${ }^{23}$

$$
\begin{equation*}
\theta_{I m s}^{2}=\left(\frac{.014 \mathrm{GeV}}{p}\right)^{2}\left[\frac{L}{R}\right]\left[1+\frac{1}{9} \log _{10} \frac{L}{R}\right]^{2} \tag{9}
\end{equation*}
$$

vhere p is the muon momentum, L is the length of the magnet, and $R=1.77 \mathrm{~cm}$ is the radiation length of steel. ${ }^{24}$ The magnetic deflection angle θ^{θ} bend also depends inversely on the momentum and 1s given in the small angle approximation by

$$
\begin{equation*}
\theta_{\text {bend }}=p_{T} / p=1.14 \mathrm{GeV} / \mathrm{p} \tag{10}
\end{equation*}
$$

Thus the r.m.s. momentur resolution is given by

$$
\begin{equation*}
\frac{0_{p}}{p}=\frac{\theta_{\text {rms }}}{\theta_{\text {bend }}} \tag{11}
\end{equation*}
$$

$=0.15$.

This was entirely adequate for the task of rejecting background events (see Section III.D).

11. More detectors

In the space between the two sections of each steel magnet was a plane of horizontal scintillation counters (f2). It consisted of four counters each 8° wide, with the upper and lower of the four angled so that che vertical aperture was larger at large horizontal angles than at small ones. Since low momentum muons were deflected through large angles in the air magnet, they tended to be at the upper and lower edges of $H 2$, so the tapering of $H 2$ provided some rejection of low transuerse momentum muons land hence of low mass pairs).

Following the steel magnet were two 3 mm MWPC's with horizontal wires designated $4 Y$ and $5 Y$, and a vertical scintillation hodoscope (V3) made of $912 \mathrm{cm-wide}$ strips. Following 41" of steel
(to further "harden" the trigger against low momentum muons) were a vertical hodoscope (V4) made of $1315 \cdots \mathrm{cm-wide}$ strips overlapped to give 5 cm resolution, and the final trigger plane, f3, consisting of four 20 cm -wide horizontal scintillation counters.

E. RESOLUTION

1. Calculated Resolution

Each spectrometer arm measured angles to a precision limited by chamber vire spacings and by multiple scattering in the hadron absorber. The contribution of wire spacing to angle measurement error is straightforward. The multiple scattering contribution can be computed from

$$
\begin{equation*}
\theta_{\text {rins }}^{2}=\left[\frac{0.016 \mathrm{Gev}}{\mathrm{P}}\right]^{2} \frac{\mathrm{~L}}{\mathrm{R}} \tag{12}
\end{equation*}
$$

where

$$
\begin{aligned}
& 2=\text { projected mean square scattering angle } \\
& P=\text { muon momentum } \\
& L \quad=\text { length of absorber } \\
& R \quad \text { madiation length of absorber materlal. }
\end{aligned}
$$

For the sake of simplicity, this formula differs from the formula (9) bove in that this is the appropriate form for very thin absorber, for which the logarithmic correction term is negligible. Since, hovever, it is to be integrated over thick absorbers, the constant has been increased appropriately. Calculation of the resolution in variables of physical interest is complicated because integrations must be done over the actual event distribution in the other variables and also because the resolution varies from event
to event depending on which chambers participate in the reconstructed track. Fig. 5 shows the results of a detailed analytical calculation of the mass resolution. In this calculation, the effects of multiple scattering and MWPC measurement errors are evaluated for their influence on both momenta and opening angles.
2. Mass Resolution from Data

The expected mass resolution can be computed more exactly using the events themselves, since then the distribution of events in the apparatus and chamber inefficiencies are taken correcty into account. The analysis program propagates errors through the track reconstruction and mass calculation, yielding the expected mass error for each event. The points shown in fig. 5 represent the 1500ג mass resolution thus computed, averaged over 1 Gev mass intervals. It is seen to agree with the analytic calculation given above within 58.

We have verified that these resolution calculations are correct by studying the $J N$. For this purpose, we took special runs at air magnet currents of 750,1000 , and 1250 A , since the J / p has too low mass to be accepted significantly by the spectrometer at a current of 1500A. For these runs we used berylifum as the first foot of absorber. The mass distributions are shown in Fig. 6. Table III compares the calculated mass resolution with the observed width of the J / ψ. The agreement is good at all three currents.

This agreement tests the multiple scattering component but, because of the low momenta, does not adequately test the measuring error. Here ve appeal to data on target size as obtained from reconstructed tracks. This is shown in Fig. 7 in various mass bins where the data are contrasted with the expected distribution obtained from a Monte Carlo program. The agreement is convincing evidence that our resolution is well understood.

F. TRIGGER

In data sets I and $I I$, the trigger for each arm consisted of the coincidence of $\mathrm{HO}, \mathrm{BL}, \mathrm{B2}, \mathrm{H} 3, \mathrm{~V} 2$ and the matrix V1 E V. This matrix formed rough roads selecting muons coming directiy from the target in the horizontal plane. In data set III, matrices $10 \times \mathrm{A} 日$ and $82 x$ A 3 (forming roads in the vertical plane) vere added to the coincldence requirement. For the high intensity runs of set III we also required that less than 4 hits occur in the V2 hodoscope. This served to veto accidental coincidences generated bylarge fluctuations in beam intensity. In addition to these primary triggers, prescaled study triggers were simultaneously taken in order to monitor the efficiency of the system. Typically a study trigger did not require some element and a comparison of the study trigger and the event trigger yielded the efficiency of the clement in question. The data taking rate of the study triggers was carefully chosen to allow the entire surface of all detector elements to be tested with good statistical accuracy. The overall trigger efficiency averaged 90\%.

Intensities of the incident proton beam were adjusted so that In general singles counting rates in the most burdened detector (typically less than 20 MHz) did not result in dangerous Inefficiencies. Triggers were refined until the rates were 100 200 per machiné pulse. The vast majority of triggersvere arm-toarm accidentals and so the guality of the data was highly dependent upon the performance of the accelerator. The quality of the micro and macro. structure of the fermilab accelerator spill was continually evaluated by the on-1ine computer and fed back to the accelerator control room as a television display. The details of the data acquisition system are presented in Appendix A.

III. DATA REDUCTION

A. General Efficiencies

The first stage of the analysis was data compression. Its aim was to reduce some 1000 data tapes to a manageable number in a reasonable amount of computer time. There were four levels of compression, called, A, C, D, and E. In the A level, a simple track finding algorithm was used to compute the invariant mass of the muon pair. Events failing this algorithm were eliminated. All subsequent analysis used the more complicated standard" track reconstruction algorithm.

Subsequent levels of compression eliminated events failing the standard reconstruction algorithm or failing a progressively more stringent series of requirements which were intended to eliminate background events while retaining good efficiency for genuine massive muon pairs. Events were required to pass track quality, fiducial volume, and muon cuts.

Track quality cuts included requirements on the confidence level of the least squares fit to the track and on the number of chambers participating in the fit.

The muon cuts used information from the detectors behind the steel magnet to confirm the muon momentum as measured by the air magnet. Since hadrons and electrons had been suppressed by a factor of over 10^{8} by the 18.5 hadronic absorption lengths of material in the target box, the major remaining background was low momentum muons appearing to have high momentum dueto traversal of the alr magnet along unorthodox paths. The reconstructed track was extrapolated through the steel magnet using the momentum measured in the air magnet. At each of $4 Y$, $5 Y$, $82, H 3, V 3$, and $V 4$, the distance of the extrapolated track from the nearest active hodoscope element or MWPC wite was computed and compared with the expected r.m.s. deviation due to multiple scattering in the steel (and mipC measuring error in the case of 45 and 5Y). If the distance was less than three standard deviations the cut was passed. Events were required to pass five out of the six muon cuts. The complete set of cuts as applied to the final sample of events is listed in Taties $I V$ and V. The cuts used and the resulting compression factor at each level of compression are given in rable VI.

The 'final stage of compression was the writing of a data summary tape" (DST) of events from the e level compressef tape. The final event sample included events missing up to two chambers and falling any one muon cut, so the efficiency of each chamber and each suon cut could be determined. Events satisfying the study triggers but failing the event trigger allowed determination of the trigger efficiency.

The compression efficiency was found to be
(96:1): The reconstruction efficiency was determined by combining the measured individual plane inefficiencies with the reconstruction requirements and found to be (94:2) 8 . The overall efficiency was (77:6) \%. See Table VII for a summary of inefficiencies in the A-dependence data.

B. Normalization and Corrections

1. General

To convert these spectra to difterential cross-sections, we need to know the apparatus acceptance and efficiency and the total flux of incident protons. The acceptance is defined as the fraction of muon pairs emerging from the target which traverse the spectrometer. The efficiency is the fraction of pairs traversing the spectrometer which are recorded by the electronics and pass the various analysis cuts. The differential cross-section in a bin Δm. Δy, of mass and rapidity is then given by

$$
\begin{equation*}
\frac{d^{2} \sigma}{d m d y}=\frac{\Delta \dot{0}}{\Delta m \Delta \eta}=\frac{N_{e v}}{N_{i n c}} \quad \frac{A}{N_{0} \rho L_{e f f}} \quad \frac{1}{\varepsilon \eta} \quad \frac{1}{\Delta n \Delta y} \quad c \tag{13}
\end{equation*}
$$

The effective length of the target is the length corrected for absorption of the incident beam; it is thus given by

```
                    \(L_{e f f}=\quad \lambda\left(1-e^{-L / \lambda}\right)\)
where \(\quad \lambda=\) hadronic absorption length of target material
L * length of target
```

The remainder of this section discusses the factors which enter Into Eq. 13.

2. SEN Calibration

The number of incident protons was measured by secondary emission monitor (SEM). The SEM was calibrated by inserting copper foils into the beam line and measuring the yield of ${ }^{24}$ Na per sem count. Using a ${ }^{24} \mathrm{Na}$ production cross-section of 3.5 mb per Cu nucleus,2s the $S E M$ calibration constant was found to be (1.01:0.02) $\times 10^{8}$ protons per SEM count.

3. Nuclear Effects

Equation (13) gives the cross-section per atomic nucleus of target material. To get the cross-section per nucleon we might divide by A, but this is not necessarily the cross-section that would be observed on hydrogen for three reasons: 1) our targets contain neutrons, 2) the target nucleons are not at rest within the target, and 3) the cross-section might not depend IInearly on A. The mix of neutrons and protons is handled by defining an average "nucleon" which, in the case of copper is 60 : neutron and 408 proton. In the détailed evaluation of structure functions, use is made of su(2) symmetry in unfolding the neutron and proton contributions. Below, we discuss the remaining nuclear effects.
a) Fermi Motion

Nuclear motion modifies the dimuon yields because of the strong energy dependence of the cross-section. Some proton-nucleon collisions have more energy in the CM and some have less. The form of the energy dependence is such that cancellation is imperfect and a small correction results. Corrections were made by pontf Carlo calculation. A simple Fermi gas model ${ }^{26}$ vith a maximum momentum of 260 MeV was used and the sensitivity checked by also using an experimentally determined Permi momentum distribution. ${ }^{7}$ The results were similar in the two cases. The major effect of the Fermi motion is mass dependent correction to the apectrum which can be expressed (averaged over the rapidity (y) acceptance)

The rapidity, y, dependent correction is presented in Table VIIIa. Another effect of nucleon motion is to shift the observed y distribution by an amount $\Delta y=0.1 / \tau$, where

$$
\begin{equation*}
\left.E \frac{d^{3} \sigma}{d p^{3}}\right|_{y}(\cos r)=\left.E \frac{d^{3} a}{d p^{3}}\right|_{y+\Delta y}(\text { uncor } r) \tag{16}
\end{equation*}
$$

This is accompanied by a slight loss of resolution in y (0.02 units, rms) and in $p_{T}(0.03 \mathrm{GeV}$, rms). These latter effects are not Eignificant.
b) $\boldsymbol{\lambda}$-dependence

An A-dependence given by $\sigma \alpha A^{2 / 3}$ would be expected (and has been observed) ${ }^{27}$ for the bult $c f$ hadronic scatering crosssections; these are the "soft" collisions in which little momentun is transferred from the beam particle to the target particle. Such a dependence can be understood in terms of "shadowing" of nucleons inside the nucleus by nucleons on the surface: the incident hadron does not penetrate very far into the nucleus (note that a platinum nucleus is about 3 nuclear collision lengths thick) and so doesn't see the nucleons in the interior.

What has been said above implies that all hadronic scattering cross-sections should have an $\mathrm{A}^{2 / 3}$ dependence. Hovever, faster A dependences may occur if (as seems to be the case) hadrons have Internal structure. Then some components of hadrons the ones responsible for soft collisions) might interact before reaching the Intersor of the nucleus, while other components uhich interact less strongly might see all of the nucleons and interact with linear Adependence. In the parton model, soft processes are due to the interaction of "wee" partons. Wee partons cary a tiny fraction of the momentum of their hadrons, so wee partons from the beam and target move slowly with respect to each other and interact with large probability and $x^{2 / 3}$ dependence. By contrast, within this model, partícles of large transverse momentum and pairs of large mass are produced in collisions of "hard" partons, which carry slgnificant fractions of the momenta of their hadrons. Rard partons from the beam and target move very rapidly with respect to each other in high energy collisions and so interact rarely. Their -interactions should thus exhibit linear A-dependence.

Stronger than linear A-dependence has also been observed, both for the production of single hadrons at large $P_{r} \boldsymbol{r}^{2 \prime}$ and for hadron pair production at large mass. ${ }^{29}$ The mechanisms responsible for this are not understood. There is then the possibility that A dependence reflects some subtle and possibly interesting physics Involving the behavior of quarks inside a nucleus.

To investigate the A-dependence we took a set of data runs using both platinum and beryllium targets, switching targets every fev runs. We parametrize the A-dependence by the functional form

$$
\begin{equation*}
0=\mathbf{A}^{\alpha} \tag{17}
\end{equation*}
$$

and determine the exponent a according to the formula

$$
\begin{equation*}
a=\ln \frac{\mathrm{gPt}}{\sigma_{\mathrm{Be}}} / \ln \frac{\boldsymbol{A}_{\mathrm{Pt}}}{\mathrm{~A}_{\mathrm{Be}}} \tag{18}
\end{equation*}
$$

The relative normalization of the two data samples depends only on the amount of incident flux in each data sample and the targeting Eractions for the Pt and Be targets. All other factors cancel since the two samples were taken with the same apparatus and during the same period of time.

The bean targeting efficiencies for the two targets vere carefully measured by observing the ratio of the 90° monitor counts divided by the SEM as a function of horizontal target position. The beryllium target vas sufficiently wide to intercept all of the beam. The platinum targeting.fraction was 0.927 ± 0.073.

The incident flux was measured by the sEM. The flux factor for each data sample is (from Eq. 13) Ninc Leff. The flux calculation It sumarized in Table viIIb.

The values for a versus mass and transverse momentum are given in rable $1 X$ and Fig. 8. The data are consistent with a constant value of α in our mass and transuerse momentum range. Averaging over mass and transuerse momentum, ve obtain

$$
\langle a\rangle=1.007 \pm 0.018 \pm 0.028 \quad 5<m<11 \mathrm{GeV}
$$

where the first error is statistical and the second is systematic (due chiefly to the uncertainty in the platinum targeting frac(ion).

4. Rasiative Corrections

Radiative corrections change the shape and the normalization of the continuum mass spectrum. This takes place through the emission of photons and the consequent reduction of the mass of the mon pair. We follow the calculations of Soni" and find that we can parameterize the result by the form:

$$
\frac{\frac{d^{2} \sigma}{d m d y} \operatorname{cor} r}{\frac{d^{2} o}{d m d y} \text { uncor } r}=e^{0.0046(m+0.95 \mathrm{GeV})}
$$

C. Acceptance

The horizontal acceptance of each arm extended from 50 to 95 mr in the lab (0 mr being the beam direction). For light particles and 400 GeV beam energy this corresponds to 70° to 110° in the proton-nucieon center of mass. For lower beam energies the acceptance moves forward in the center of mass frame. The vertical acceptance was a function of momentum, approaching $\pm 10 \mathrm{mr}$ at high momenta. At 72.5 mr horizontal angle this corresponds to an azimuthal acceptance of 1138 mr in the center of mass.

The pair acceptances are calculated by integrating over irrevelant variables by the Monte Carlo method. In calculating the acceptance for the invariant cross section $E d^{3} \sigma / d p^{3}$ at fixed mass, the only non-trivial variables are the muon pair decay (spherical) angles ϵ_{D} and ${ }_{D}$. In general the decay angle distribution can depend on four density matrix elements each of which is a function of four invariants. ${ }^{3}$ For some processes and for appropriate choice of reference frame orientation the distribution reduces to the form

$$
\begin{equation*}
W\left(\theta_{D} \cdot \phi_{D}\right)=1+6 \cos ^{2} \theta_{D} \tag{21}
\end{equation*}
$$

For example in the Drell-Yan model the distribution is $1+\cos ^{2} \theta_{D}$ In the frame whose 2 axis lies along the directions of motion of the (colinear) quark and antiquark (the "quark-antiquarkframe"). This presumably is modified somewhat by $Q C D$ corrections. If on the other hand the intermediate state were an unpolarized particle the decay would be isotropic.

Detailed discussions of the decay angular distribution can be found in the literature. 2 For the continum analysis we have assumed that the Drell-yan prediction is correct. This has been shown to be true in the experiments of S. Childress et al. ${ }^{3}$ and G. E. Bogan et al. 's in a kinematic range relevant to this experiment. In our experiment, in the quark-antiquark or any closely related frame the acceptance is restricted to amall range of $\cos \theta$ near 0 . Therefore the acceptance ambiguity introduced by uncertainty in 6 cannot be cesolved within this experiment but is just one of overall normalization. Fos simplicity we have chosen
to do our calculation in the frame determined by the incident proton (the "Gottfried-Jackson" frame of our previous publications. also called the t-channel helicity frame); such a choice avoids the anbiguity of specifying a partition of p_{T} between the quark and antiquark as is required to define the quark-antiquark frame. For reasonable partition assumptions the acceptance thus calculated is the same to within fev percent as the acceptance calculated in the quark-antiquark frame. The acceptance calculated using a $1+\cos ^{2} \theta_{D}$ distribution is 0.78 of that calculated using an isotropic distribution, independent of y and nearly independent of $P_{T} .^{\prime s}$ The acceptance vs. p_{T} for data sets 1 and II under the assumption of $1+\cos ^{2} \theta_{p}$ decay is shoun in Fig. 9a. To obtain the acceptance for the cross section $d^{2} o / d m d y$ it is necessary to integrate over the P_{T} of the pair. We did so using the PT distribution determined from our measured invariant crosssections. These vere fit with the form

$$
\begin{equation*}
=\frac{d^{3} a}{d p^{3}}<\frac{1}{\left[1+\left(P_{T} / p_{0}\right)^{2}\right]^{6}} \tag{22}
\end{equation*}
$$

A typical value for p_{0} vas 2.8 GeV . This form was also used to extrapolate to P_{T} 's for which ve had no data. The fraction $c f$ the integral in this region vas typically is. Detailed fits using this Lor: have already been presented in Ref. 5. We discuss this further In Section E.

The acceptance vs. center of mass rapidity (y) is shown in Fig. 9b. The y acceptance for 3 energies is shown in Fig. 9c. Note that the acceptance peaks near $y=0$ for 400 GeV incident protons and shifts to forward y for lower energies. Since the y acceptance is narrow ve present cross-sections differential in rapidity evaluated at the mean rapidity of the acceptance, <yacc>. The values of $\left\langle Y_{\text {acc }}\right.$ for the three beam energies are indicated in Fig. 11. The observed rapidity interval at each energy is <yace> 20.3. The acceptances vs mass calculated for these intervals are shown in fig. 9 d . All figures show "observed" y, uncorrected for Fermi Motion.

D. Backgrounds

Having evaluated all the terms in Eq. 13, ve now discuss the background events included in the accepted data sample. Backgrounds can come from directly produced muons from two different Interactions in the target (accidentals) or from the decays of hadrons. The latter can be from the same or different interactions. We estimate most of these backgrounds with our Eimultaneous measurement of the $\mu^{+} \mu^{+}$and $\mu^{-} \mu^{-}$rates. If the backgrounds are of accidental origin, whether directly produced or from hadron decays. they obey the relation

$$
\begin{equation*}
\mathrm{N}_{+-}^{\text {back }+\mathrm{N}_{-+}^{\text {back }}=2 \sqrt{\mathrm{~N}_{++} \mathrm{N}_{--}} . . .} \tag{23}
\end{equation*}
$$

Since in our case $\mathrm{N}_{++} \geq \mathrm{N}_{\ldots}$ this simplifies to

$$
\begin{equation*}
N_{+-}^{b a c k}+N_{-+}^{\text {back }}=N_{++}+N_{--} \tag{24}
\end{equation*}
$$

We observed that $\left(N_{++}+N_{--}\right) f^{\prime}\left(N_{+-}+N_{-+}\right)$was proportional to beam intensity in our data. This implies that indeed most of $N_{++}+N_{-\infty}$ has an accidental rather than a physics origin.

We can also use the same sign events to estimate nonaccidental backgrounds. If the two-particle correlations (R) of the parent hadrons are independent of particle type and satisfy R_{+-} $* \sqrt{R_{++} R_{--}}$then formula (23) given for accidentals also holds for correlated pairs. The above premise has been shown to be true at the sof level for ordinary hadrons. ${ }^{21}$ Thus since $N_{++}+N_{--}$is mostly accidental, we conclude that the same sign pairs give a good estimate of our backgrounds due to accidentals and decays of ordinary hadrons.

The equal correlation premise is not, however, necessarily true for charmed particles. While reasonable models of charm production do not predict a significant background, not enough is known about charm production (particularly at high P_{T}) to rule it out.

A final possible source of background at high mass is mismeasured real muon pairs of lower mass. These were effectively eliminated by remeasurement of the muon momentum using the steel magnet.

Figure loa shows our mass spectrum for unlike and like sign pairs from data set I at 400 GeV . We see that background is less than 10: for $\mathrm{M}_{\mu^{+} \mu^{-}} \geq 5 \mathrm{GeV}$ and drops rapidiy at higher masses. We handle this small tackground by subtracting the spectrum of same sign pairsfrom that of opposite sign palrs. Since, however, the P_{T} acceptance of same sign pairs is broader than that of opposite sign
pairs, some care must be taken in order not to bias the p_{T} distribution at the lowest masses. We therefore use a technique to correct for the difference in same-sign vs. opposite-sign p_{T} acceptance ${ }^{\mathbf{3}}$.
 reflect one of the muons through the horizontal mid-plane of the apparatus. In general this changes the mass and p_{T} of the pair, but if it is an accidental the reflected pair has the same production cross section as the original pair, and if it is from correlated hadron pair decay the cross sections are approximately the same.

IV. RESULTS

A. Data Presentation

Figure 11 shows the differential cross sections $d^{2} \sigma / d m d y l_{<y>}$ for data sets I and II. ${ }^{3}$ The overall systematic normalization uncertainty of all the data can be assumed to be less than ± 25. Figure 10 b shows the highest mass $\mu^{+} \mu^{-}$pair data (data set III, 400 GeV high intensity).

Invariant cross sections vs. P_{T} at 400 GeV are presented in Table XII and shown in Fig. 12. In Fig. 13 we give the moments < p_{T} > and $\left\langle p_{T}{ }^{2}\right\rangle$ vs. mass. In all cases the moments were calculated directly from the data. The variation of the cross-section vs. y for various mass bins at 3 different incident proton energies is shown in Pigure 14 and presented in Table $X I$. We use the scaling form s $d^{2} \sigma / d / i d y$ for convenience.
B. Scaling

The Drell-Yan model Eq. 4 embodies scaling and we have already published a scaling comparison' in some detail. The exponential scaling Eit't to the data is: $^{\prime \prime}$ to
$\left.\frac{d^{2} \sigma}{d \gamma \tau d y}\right|_{y=0.2}=(42 \pm .2411.) \exp [-(25.1 \pm .1 \pm .6) / \tau] \mu b \mathrm{Gev}^{2}$

The scaling data and the ift are shown in Fig. 15. Also shoun is a Drell-Yan model fit which is discussed in detail in Section C. In Fig. 16, we compare the exponential fit and the Drell-ran model fit to our data with preliminary pp data from the CERN 1SR. in We note that the CERN data is all at lover values of $f t=x$ and that the higher data agrees with the extrapolation of our data vithin the statistical errors.

It resiains to discuss the question whether or not the agreement vith scaling is too good, in view of the scaling violations observed in deeply inelastic μN scatteringit, " and in neutrino charged current interactions.* $1-4$:

In Fig. l7a we present the scaling plot as computed using the OCD calculation of Owens and Reya. ${ }^{31}$ It is seen that in the region Tre. 15 to . 45 the predicted $Q C D$ scale breaking effects are small. The data has insufficient statistics to see such amall variation.
 havior discussed in Section E.

C. Extraction of Nucleon Sea:

Equation 4 can be differentiated $v i t h$ respect to tapidity to give the form:

$$
\begin{align*}
& s \frac{d^{2} \sigma}{d T d y}=\frac{8 \pi a^{2}}{9 T^{3 / 2}} \quad \sum_{i, S} e_{i}^{2} \quad\left[f_{i}^{b}\left(x_{b}, m^{2}\right) f_{i}^{t}\left(x_{t}, m^{2}\right)\right. \\
&\left.+\bar{f}_{i}^{b}\left(x_{b}, m^{2}\right) f_{i}^{t}\left(x_{t}, m^{2}\right)\right] \tag{26}
\end{align*}
$$

Here we follow the usual procedure of neglecting the heavier (c, b, ...) quarks. The f's are the quark structure functions which can be expressed as

$$
\begin{equation*}
f_{u}\left(x, m^{2}\right) \equiv u_{v}\left(x, m^{2}\right)+u_{s}\left(x, m^{2}\right) \tag{27}
\end{equation*}
$$

taking explicit notice of the fact that the u quark in the proton for example has a large component which is due to the presence of u valence quarks and small piece which comes from the sea of uu quark pairs. The f's are defined such that

$$
\int_{1}^{1}(x) d x
$$

is the fraction of the proton's momentum carried by the quark of Llavor i. We assume the SU(2) symmetry:

$$
\begin{aligned}
& u^{P}\left(x, m^{2}\right)=d^{n}\left(x, m^{2}\right) \\
& u^{n}\left(x, m^{2}\right)=d^{P}\left(x, m^{2}\right)
\end{aligned}
$$

there p Eproton and n Eneutron.

In principle, sufficient dilepton data over a large enough domain of y, m^{2} could be used to unfold the structure functions. Because our data is concentrated near $y=0$, we cannot perform this unfolding without additional knowledge or assumptions. To proceed further, we substitute data from inelastic lepton scattering for the quark distributions $f_{i}\left(x, m^{2}\right)$. Inelastic electron or muon scattering measures:

$$
\begin{equation*}
W_{2}^{P}\left(x, Q^{2}\right)=\sum_{i} e_{i}^{2}\left[f_{i}^{P}\left(x, Q^{2}\right)+\dot{E}_{i}^{P}\left(x, Q^{2}\right)\right] \tag{28}
\end{equation*}
$$

QCD calculations of the underlying sub-processes contributing to lepton scattering and dimuon production ${ }^{11, n s}$ suggest the identification of

$$
\left|Q^{2}\right| \rightarrow\left|m^{2}\right|
$$

Purthermore, the $Q C D$ diagrams of these processes, to order $a_{s}{ }^{2} \log Q^{2}$, amount to the use of Q^{2}-dependent structure functions. We thus use a Q^{2}-dependent fit to the data' ${ }^{6}$ on electron-nucleon and muon-proton scattering to providev $W_{2}{ }^{P}$. We use a fit ${ }^{\circ \prime}$ suggested by low Q^{2} slac data for $\mathrm{UW}_{2}{ }^{n}$.

$$
\begin{equation*}
\frac{v W_{2}^{n}}{v W_{2}^{p}}=1.0-0.8 x \tag{29a}
\end{equation*}
$$

$$
\begin{aligned}
& \bar{a}=A(1-x)^{N} \\
& \bar{u}=A(1-x)^{N+B} \\
& \bar{s}=(\bar{u}+\bar{d}) / 4 .
\end{aligned}
$$

The inequality of \bar{u} and \bar{d}, originally suggested by an argument of Feynman and Field," has recently been discussed within, QCD: The $\overline{\mathbf{s}}$ suppression is suggested by neutrino scattering; ${ }^{2}$. ${ }^{\circ}$ but it has a small effect on the predicted dimuon rate and the results of our fits. We assume that these antiquark distributions are independent of Q^{2} over the observed x-range. $A Q C D$ analysissisuggests that this should be true to the level of -10% for $x>0.2$ and $10<Q^{2}<300$ (See Fig. 170).

We use W_{2} measurements as input and use the muon pair data to fit the : : ameters A, N and B. The results are given in Table Xa both for the assumption $\bar{u}=\bar{Z}$ and for the case where the value of B is determined by the fit. The data clearly favor $\bar{u} \neq \bar{a}$.

For the results in Table $X a$ we assumed no Q^{2} dependence in equation 29a. The QCD calculation of Owens and Reyasi can be used to obtain an estimate for the expected Q^{2} dependence of the ratio. Using the data of Bodek et al* in the range. $2 \leq x \leq .6$ and correcting the data to m^{2} appropriate for our 300 GeV data we obtain

$$
\begin{equation*}
\frac{v W_{2}^{n}}{v H_{2}^{p}}=0.807-0.535 x \tag{29c}
\end{equation*}
$$

The result of the fit using equation 29 c is shown in Table Xb . The data still favor $\bar{u} \neq \mathbf{Z}$.

We can avoid parameterizing the antiquark distributions and extract them directly if we assume a relationship between the flavors of antlquark, e.g. the floating fit of Table Xa:

$$
\begin{gathered}
\bar{u}(x) / \bar{d}(x)=(1-x)^{3.48} \\
s(x)=\bar{s}(x)=(\bar{u}(x)+\vec{d}(x)) / 4
\end{gathered}
$$

To do this we take data pairs at symetric y values, the vis ${ }_{2}$ measurements, and equation $29 a$ for $v N_{2}^{n}$ at the corresponding x_{b} =beam and $x_{t}=t a r g e t$. We then have a system of 6 measurements and 6 unknowns:

$$
\begin{aligned}
& u\left(x_{b}\right) \quad s d^{2} \sigma / d / \tau d y \quad\left(+y, / \tau, m^{2}\right) \\
& u\left(x_{t}\right) \quad s d^{2} \sigma / d f t d y \quad\left(-y, f t, m^{2}\right) \\
& d\left(x_{b}\right) \quad \operatorname{vin}_{2}{ }^{p}\left(x_{b}, w^{2}\right) \\
& d\left(x_{t}\right) \quad \operatorname{vH}_{2}^{p}\left(x_{t}, \mathrm{~m}^{2}\right) \\
& J\left(x_{b}\right) \quad \operatorname{vin}_{2}{ }^{n}\left(x_{b}, m^{2}\right) \\
& a\left(x_{t}\right) \quad \quad v H_{2}{ }^{n}\left(x_{t}, m^{2}\right)
\end{aligned}
$$

Host of the 400 GeV data and one third of the 300 GeV data provide us with suitable data pairs.

Fig. 18a shows the results for $\ddot{+}+\mathbb{d}$, the sea combination most independent of our assurptions about relative antiquark strengths. It is also possible to form the quantity $\bar{q}(x)+\bar{s}(x) \equiv \bar{u}(x)$ $+\bar{d}(x)+2 \bar{s}(x)$. In Fig. 18 be compare our values of $\bar{q}(x)+\bar{s}(x)$ to those measured in inelastic neutrino scattering at CERN ${ }^{+1}$ and at Fermilab."

The comparison involves the explicit factor of 3 for color in dilepton production and also the QCD prediction that $Q^{2} \leftrightarrow \omega^{2}$. Our values of $\bar{q}(x)+\bar{s}(x)$ appear to lie about 508 higher than the neutrino data in the vicinity of $\quad \downarrow=0.2$. Note however that for the same \mathbb{V} the average Q^{2} for the neutrino data is lower than that for the dilepton data; a correction computed using the results of Owens and Reyas (Fig. 170) would slightly lower the neutrino points at $V_{T}=0.2$, increasing the discrepancy.

We therefore observe a dilepton production rate larger than would be predicted by the Drell-Yan model using the $F_{2}\left(x, Q^{2}\right)$ from muon scattering and $\bar{q}(x)$ from neutrino data. Recent results frow experiments at the CERN SPS indicate that dimuon production for nucleon collisions is larger than the Drell-Yan calculation by approximately a factor of 2.33 This discrepancy was not observed in an earlier measurement made at Fermilab.s*

Several recent calculations of QCD contributions of next order (beyond leading logarithm) for both decp inelastic scattering and dilepton production have the effect of increasing the theoretical dilepton yields by about a factor of two. ${ }^{5,}{ }^{\text {s6 }}$ This factor is independent of x for $x<0.5$. However, lacking calculations or estimates of contributions from yet higher orders, the consistency of experiment and theory must be taken as somewhat fortuitous. Taking a broader view, agreement of the dilepton data with the neutrino scattering data within a factor of 2 represents a substantial success for the quark-partion model.

D. Slope at Zero Rapidity

The difference in the \bar{u} and \bar{a} content of a proton, which was considered in the previous section, also manifests itself in the slope of the data in Fig. $14 a$ near $y=0$. We assume that the higher order corrections mentioned in Section C are not y dependent. The doubly differential cross section:

$$
=\frac{d^{2} \sigma}{d \gamma x d y}
$$

must be symmetric relative to $y=0$ for $p p$ collisions. However the QPM favours a positive slope in y for pn collisions and therefore also $\mathrm{p}-\mathrm{Cu}$ collisions since the nnucleon" in Cu is 40% protion and 60% neutron. This slope near $y=0$ is the result of several features of the model; first, the larger number of 2/3-charged u quarks in the protion, second, the increase of u / d as $x+1$ observed in electron scattering, and third, the possible SU(3) violating dominance of d over 0 quarks in the protion

$$
\begin{equation*}
\bar{u}(\dot{x})-\bar{d}(x)<0 \tag{30}
\end{equation*}
$$

which is mirrored as a dominance of the \bar{u} sea in the neutron. It is interesting that this same quantity appears in the QPM interpretation of the Adier sum rule ${ }^{2,57}$

$$
\Delta \equiv f_{0}^{1}\left(v w_{2}^{e p}-v w_{2}^{e n}\right) \frac{d x}{x}-0.33=\frac{2}{3} \int_{0}^{1}(\bar{u}-\bar{d}) d x
$$

The negative value of Δ derived from experiment motivated Feynman and Field* to propose the relation

$$
\begin{equation*}
\bar{a}=\tilde{u}(1-x)^{3} \tag{31}
\end{equation*}
$$

Figure lib plots versus $/ t$, the slope

$$
\begin{equation*}
\frac{d}{d y}\left[\ln \left(s \frac{d^{2} a}{d \sqrt{ } d y}\right)\right]_{y=0} \tag{32}
\end{equation*}
$$

obtained by fitting the data in Fig. $14 a$ near $y=0$. The slopes are larger than the Drell-Yan model fit which assumes asymmetries only in the valence u and d distributions (solif curve). Thus the data Eavours a surplus of $\overline{\mathrm{Z}}$ quarks over \bar{u} quarks in the proton. This has been examined recently in QCD theory by Ross and Sachrajda." They evaluated $\propto C D$ diagrams which contribute to the structure functions derived in lepton scatering. This enables them to calculate a
contribution to Eq. 30 and to show that it is indeed negative but perhaps a factor of 5 smaller than implied by the Ader sum rule. The connection between the Adler difference and Eq. 30 is also discussed by Contogouris and Papadopoulos." We note that whereas the dilepton data estabilshes the symmetry breaking for $x>0.2$. the Adler integral is dominated by the small x region.

2. Transverse Momentum of Lepton Pairs

The simple application of the quark model for dilepton production predicts very small transverse momentum for the dileptons. The observation of average dilepton transuerse monentum of the order of 1 Gev and larger provided qualitative support $f o r \operatorname{QCD}$ descriptions of dilepton production. The large < p_{T} > comes about because of the probability (order as of one of the colliding quarks to radiate hard gluon and recoil to large P_{T}. Figure 19 thows the experimental results plotted vs σ for this experiment. another FNAL experiment:" and ISR experiments. ${ }^{30}$ The increase of everage P_{T} with d is a direct prediction of QCD. ${ }^{10,1 \%, W}$

We Eind for $f=0.21$, using our 300 and 400 GeV data and the ISR* data

$$
\left\langle p_{T}\right\rangle=\{.028 \mathrm{Js}+.37 \mathrm{GeV}
$$

In approximate agreement with the predictions of OCD. Note that the lop' is calculable from perturbation theory vhereas the intercept (intrinsic P_{T} of the quarks) is related to the confining torce. Eq. 33 is the most dramatic confirmation of QCD faluon effects) as applied to dilepton production.

F. Explicit OCD Contributions

It is of futher interest to see if a Drell-yan calculation including explicit contritutions from $9 C D$ diagrams involving gluon emission and absorption can be accomodated by the data. Ignoring higher order corrections, Altarelli et al! and kajentie and Raitio** have presented such calculations. They remove the divergence of the gluon propagator at small momenta by assigning a constant exponential "intrinsic" momentum to the bound-state quarks vithin a hadron. The fit then involves a time-consuming folding over the intrinsle fermi momentum, k_{T}, of the quark at each data point. In addition to the parameters A, N, and B introduced above to describe the antiquark distributions, we introduce $g(x)=B(1-x)^{\text {m }}$, the gluon distribution within a nucleon, $f\left(k_{T}\right)=e^{-a k_{T}^{2}}$. the intrinsic zermi motion of the quarks bound in the nucleon, and ag, the strong coupling constant at the gluon-quark vertex. We then ε it all the data in bins of m. Y, and p_{T} at the three energies 200, 300, and 400 Gev Eimultaneousiy. Again ve assume no explicit Q^{2} dependence of the parameters in the limited range of our fit. The results are given In rable IIII. Note that the fit is quite good and that the parametcrs have reasonable values. No detalled study has been made of the erior matrix because we believe that systematic errors may well dominate.

G. Muon-Electron Universality

As a final topic we present data on muon-electron universality. Figure 20 shows the data obtained in 1975 - 1977 on the dielectron continum. Superimposed in the insert is the muon data. It appears that ue universality holds (to 50 or better) in the production of massive lepton pairs near < Q^{2}; $40 \mathrm{Gev}^{2}$.

B. Conclusions:

In sumary, we find a linear nucleon number dependence for the dimuon production cross section using Be and Pt targets. The dimuon continuum cross sections scale over the energy and mass range studied by this experiment. In addition, fits to our data using the Drell-Yan model are in good agreement with the isR datas when extrapolated to their range of \mathbb{J}.

The sea quark distribution as measured by this experiment is about a factor of 1.5 above the sea distribution determined from neutrino experiments. The fits to our data indicate that the \bar{u} distribution in the proton is suppressed relative to the distribution.

We can obtain a good fit simultaneously to the y, Pr, and mass dependence of the dimuon cross section using the model of Altarelli et al. ${ }^{17}$ and Kajantie et al." The gluon distribution determined by the fit is $g(x)=2.55(1-x)^{4.1}$ and the value $a_{5}=0.27$.

Scaling violations as expected from ocD calculations are observed in the dependence of $\left\langle p_{T}\right\rangle$ with $/ s$ at fixed $\boldsymbol{\tau}$.

Acknowledgements

We would like to express our thanks and appreciation to the many people from Fermilab and the participating institutions who made this experiment possible. In particular we wish to thank our excellent technicians K. Gray, R. Kephart, F. Pearsall. T. Reagan. and J. Upton as well as the able staff of the fermilab proton Department and the Accelerator Division. We would also like to thank M. Luba, M. Bennett and M. Fisk for the typing of this manuscript and E. Luisada and J. Schellpfeffer for drawing the figures. We are grateful to A. VanGinneken of fermilab for modifying his hadronic cascade program for our use in the design studies for our target box. This vork was funded in part by the National Science Foundation and the U.S. Dept. of Energy.

REFERENCES

a) Present address: Fermi National Accelerator Laboratory, Batavia, 111. 60510
b) Present address: Nevis Laboratories, Columbia University, Irvington, N.Y. 10533
c) Present address: Riverside Research, 80 West End Ave. New York, N.I. 10023
d) Present address: Fhysics Dept. Gallaudet College, Washington, D.C. 20002
e) Present address: S.L.A.C., P. O. Box 4349, Stanford, California 94305

1 D. C. Hom et al. Phys. Rev. Lett. 36, 1236 (1976).
B. D. Snyder et al. Phys. Rev. Lett. 36, 1415 (1976).
B. C. Brown et al. Fermilab-PuB-77/54-EXP (1977),
B. D. Snyder, Ph. D. thesis, Columbia University (1977).
D. C. Rom, Ph. D. Thesis, Columbia University (1977)

2 D. C. Hom et al. Phys. Rev. Lett. 37, 1374 (1976).
s. W. Herb et al. Phys. Rev. Lett. 39. 252 (1977).
W. R. Innes et al. Phys. Rev. Lett. 39, 1240 (1977).

- D. H. maplan et al. Phys. Rev. Lett. 40, 435 (1977).

1 J. R. Yoh et al. Phys. Rev. Lett. 41, 684 (1978).

* The most complete description of the dinuon apparatus used to obtaln most of the data below is contalned in: D. M. Kaplan, Ph.D. thesis, State University of Nev York at Stony Brook (1979).
, R. Deno et al. Phys. Rev. Lett. 12.486 (1979).
- S. D. Drell, T. M. Yan. Phys. Rev. Lett. 25. 316 (1970): Ann. Phys. 66. 578 (1971).
- J. H. Christenson et al. Phys. Rev. D8, 2015 (1973).
${ }^{10} \mathrm{C}$. Chang et al. Phys. Rev. Lett. 35, 901 (1975).
R. E. Taylor. Proceedings of the 1975 International Spraposiun on Lepton and Photon Interactions at High Energies, W. T. Kirk. ed., Stanford University (1975), p. 679.
${ }^{11}$ B. D. Politzer, Nucl. Phys. Bl29, 301 (1977).
${ }^{12}$ F. Balzen and D. Scott, Phys. Rev. D19. 216 (1979); D1Br 3378 (1978).
${ }^{13} \mathrm{C}$. S. Lam, T. M. Yan, Phys. Lett. 71B, 173 (1977).
1"A. Fiftzeh, P. Minkowski, Phys. Lett. 738, 80 (1978).
${ }^{13}$ C. T. Sachrajda, Phys. Lett. 73B, 185 (1978).
${ }^{16}$. Rajantie, J. Lindfors, R. Raitio, Phys, Lett. 74B, 384 (1978).
'TG. Altarelli, G. Parisi, R. Petronzio, Phys. Lett. 768, 351 (1978): Phys. Lett. 768, 356 (1978).
${ }^{10}$ R. C. 日wa, "Recent Theoretical Developments in Lepton pair Production, " IX International Symposium on High Energy Multiparticle Dynamies, Tabor, Czechoslovekia, July 1978.
19s. Matsuda. "Parton Transverse Momenta," Proceedings of the 19 th International Conference on figh Energy Physics, Physical Society of Japan, Tokyo, Japan, (1978), P. 221.
R. C. Bra, J. Wosiek, Nonfactorizablity of Inclusive DistributIons in Perturbative OCD," Rutherford preprint No. RL-78-079 (1978).
${ }^{2}$ E. L. Berger "Hadroproduction of Massive Lepton Pairs and OCD^{\prime}. SLAC-PUB-2314 (April 1979).
2^{1} R. D. Kephart et al. Phys. Rev. Lett. 39, 1440 (1977).
R. J. Fisk, Ph.D. thesis, State University of New York at Stony Brook (1978).
日. Jostlein et al., Phys. Rev. D, 20, 53 (1979).
22 description of an early version of the MWPC electronics is given in E . Cunitz et al., Nucl. Instr. and Methods 91, 211 (1971)
2^{3} V. L. Highland, Nucl. Inst. and Meth. 129, 497 (1975).
$2{ }^{\circ} \mathrm{Y}$. -S. Tsai, Rev. Mod. Phys. 46, 815 (1974).
2 sthis value was measured at Brookhaven National Laboratory by J. Hudis et al. Phys. Rev. 129, 434 (1963). A recent measurement at Fermilab by s . Baker et al. (unpublished) yielded 3.8 mb . If this new number were used, our cross-sections would increase by 98. In order to maintain continuity with earlier fermilab experiments, we have used the BNL cross-section.
26 J . Orear, A. B. Rosenfeld, R. A. Schluter, Nuclear Physics, Univ. of Chicago press, 1950, p. 159.
${ }^{27 p}$. A. Piroue and J. S. Smith, Phys. Rev. 148, 1315 (1966).
$2: 3$. W. Cronin et al. Phys. Rev. Dll, 3105 (1975).
L. Kluberg et al. Phys. Rev. Lett. 38, 670 (1977).

29R. L. McCarthy et al. Phys. Rev. Lett. 40, 213 (1978).
30A. Soni, Phys. Rev. D8, 2264 (1973).
2rR. J. Oakes, Nuovo Cimento 44A.. 440 (1966).
:2 J. C. Collins and D. E. Soper, Phys. Rev. Dl6, 2219 (1977).
:1s. Childress et al.paper 674, XIX International Conference on High Energy Physics, Tokyo, 1978.

3*G. E. Hogan et al. Phys. Rev. Lett. 42. 948 (1979).
3sthe isotropic decay p_{t} acceptance is larger than the $1+\cos ^{2} \theta_{p}$ acceptance by 30 at small p_{t}. This decreases to 5% at $p_{t}=5$ GeV/c.
${ }^{3}$ 6We are indebted to J. Rutherfoord for this suggestion.
3The normalization of the data presented here differg from our previous publications (refs. 3-5). The primary cause of this change was the discovery that the target used in data set I had partially melted. Other causes are changes in the decay-angle distributions assumed in calculating the acceptance and the inclusion of nucleon motion and radiative corrections.
sid.L.S. Angelis et al., Int. Symp. on Lepton and Photon Int. at Aigh Energies, Batavia (1979)
0. Becker et al., EPS Int. Conf. on High Energy Physics, Geneva (1979)
J. Pilcher, ${ }^{\text {Review of }}$ Dimuon Production in Hadron Collisions". Int. Sypp. on Leptons and Photons, Batavia (1979).
33. G. Branson et al.. Phys. Rev. Lett., 38. 1334 (1977)
*B. A. Gorden et al. Phys. Rev. Lett. 41. 615 (1978).
-1J. G. . . de Groot et al., Zeitschrift fur Physik C, Vol. 1, 2, 143 (1979).
*2p. C. Bosetti et al., Phys. Lett. 70B, 273 (1977).

- Benvenuti et al. Phys. Bev. Lett. . 42, 1317 (1979).
- "R. Kajantie and R. Raitio, Nucl. Phys. Bl39. 72 (1978).
-5y. L. Dokhitzer, D. J. Dyakanov and S. I. Trojan, Proc. 13th Leningrad Winter School, SLAC Trans. 183. (1978) p. 1.
-6H. L. Anderson et al., Fermilab Pub. -79/30-Exp (1979), submitted to Phys. Rev. D.; we use the fit for $R=.52$.
- 'W. B. Atwood, Fh.D. thesis, Stanford Univ., SLAC Report.-185 (1975).
A. Bodek et al., Phys. Rev. Lett. 30,1087 (1973).
${ }^{-1}$ R. P. Feynman and F. D. Field, Phys. Rev. D15, 2590 (1977).
${ }^{-9}$ D. A. Ross and C. T. Sachrajda, Nucl. Phys. B149, 497 (1979).
sf. Sciulli, Proccedings 1977 International Symposium on Lepton and Photon Interactions at High Energies, F. Gutbrod, ed., Deutsches Elektronen-Synchrotron, Hamburg, Germany (1977)p. 239.
siJ. F. Owens and E. Reya, Phys. Rev. D17, 3003 (1978).
: S. Adler, Phys. Rev. 143, 1144 (1966).
sw. Kienzle et al., Int. Symposium on Lepton and Photon Int. at High Energies, Batavia, 111 (1979)
M. A. Abolins et al., EPS Int. Conf. on High Energy Physics, Geneva (1979).

```
*C.B Newman et al., Phys. Rev. Lett., 42, 951 (1979).
```

${ }^{3}$ g. Alterelli et al., Nucl. Phys. B157, 461 (1979).
stJ. Krifganz, McGill Univ. preprint (1979).
s'A. P. Contogouris and S. Papadopoulos, McGill Univ. preprint (1979)

TABLE I

Target Properties

Material	$\begin{aligned} & \text { Length } \\ & (\mathrm{cm}) \end{aligned}$	Width （mm）	A	$\begin{aligned} & \text { Density } \\ & \text { (g/cm } 3 \text {) } \end{aligned}$	Abs． Lengths	Effective Length （cin）
Pt	1．87士．04	．660土．013	195.09	$20.65 \pm .40$	． 2	1．70土．04
Be	$10.38 \pm .10$	$1.65 \pm .013$	9.01	$1.835 \pm .014$	． 28	$9.04 \pm .09$
Cu	7.62	． 889	63.54	8.96	． 52	5.94
Cu	10.16	． 889	63.54	8.96	． 69	7.35

Hote：Length of Pt target is given as measured after run．Widths and densities of $P t$ and Be were measured using laftover pieces from the same sheet metal stock．

TABLE II
Detectors

Mame	Type	2 position Up Arm	(inches) Down Arm
MM	MWPC	440.0	440.0
EO	hodoscope	500.0	500.0
H1	hodoscope	529.0	529.0
JV	MWPC	537.6	537.9
JY	NWPC	538.6	538.9
30	MWPC	539.6	539.9
V1	hodoscope	558.8	555.6
18	MWPC	588.1	588.1
c	Cerenkov		
$2 \mathbf{Y}$	MNPC	688.0	688.0
V2	hodoscope	724.0	724.0
3 x	EWPC	745.1	745.2
3 P	EWPC	750.6	750.7
3Y	SHPC	756.1	756.2
H2	hodoscope	817.0	817.0
4Y	MWPC	875.0	875.0
V3	bodoscope	893.0	893.0
5Y	MWPC	990.6	990.6
V4	hodoscope	1056.5	1053.0
:3	hodoscope	1173.0	1173.0

TABLE III

J / \Downarrow Resolution

Current (A)	Predicted	Observed
750	0.275	0.277,
1000	0.227	0.251
1250	0.195	0.204

Sample Selection Requirements

1. 1 track found in each arm
2. ≥ 6 chambers participating in each track
3. Track confidence level cut:

If 6 chamber track C. $2 . \geq 0.021$
If 7 chamber track C. L. ≥ 0.011
$1 f 8$ chamber track C. L. 20.001
4. Fiducial cuts
5. Huon cuts: ≥ 5 out of (4Y, $5 \mathrm{Y}, \mathrm{H} 2, \mathrm{H} 3, \mathrm{~V} 3, \mathrm{~V} 4)$ within 30 of extrapolated track
6. Target cut: projected horizontal position at target

$$
\leq 0.3^{\circ}+20 / p
$$

TABLE V
Fiducial Cuts ${ }^{\text {a }}$

Position	x limits	(inches)	y limits	(inches)
Mag. entr.	-8.80	8.80	-5.00	5.00
Mag. exit	-11.80	11.80	-5.00	5.00
H1	-12.50	12.50	-5.90	5.90
$\boldsymbol{J Y}$	-12.25	12.25	-6. 30	6.30
v1	-13.15	14.05	-7.50	7.50
11	-14.00	14.00	-7.56	7.56
12	-16.00	16.00	-11.34	11.34
V2	-18.63	19.13	-16.50	16.50
37	-18.00	18.00	-14.17	14.17
82	-19.00	19.00	-17.00	17.00
14	-22.50	22.50	-16.54	16.54
V3	-24.13	24.13	-16.50	16.50
75	-27.00	27.00	-17.00	17.00
V4	-27.00	27.00	-16.50	16.50
E 13	-28.00	28.00	-17.00	17.00

TABLE VI
Levels of Compression

Level	Requirements ${ }^{\text {a }}$	Comments	Compr . Factor
A	Crude reconstr. prescale $m<3.8 \mathrm{GeV}$	$\begin{aligned} & 800 \mathrm{BPI} \text { to } \\ & 1600 \mathrm{BPI} \end{aligned}$	7
C	Standard reconstr. 4 chamb. $\geq 6 . \mathrm{Y}_{\text {max }}<5.4^{\prime \prime}$		5
D	$\begin{aligned} & m>4.8, \mathrm{CL}>10^{-5} \\ & \text { if } 6 \text { chamb. } \end{aligned}$	Scalers to 25 words	3
E	$y_{\text {max }}<5.2^{n}$, 4Y or 5Y within 30	Scalers to 7 words	3

a $Y_{\text {max }}$ is the maximum vertical excursion of the track in the ais magnet.

TABLE VII

Efficiency Summary
（A－dependence Data）

	Pt target	Be target
Trigger	．884土．051	． 9332.038
Compression	．956士．014	．963土．013
Reconstruction	．937土．021	．9512．019
Muon cuts	． $990 \pm .002$	． $987 \pm .002$
Target cut	$.988 \pm .005$	． $972 \pm .008$
Track C．L．	$1.000 \pm .002$	$1.000 \pm .003$
One track	．990土．004	$.993 \pm .003$
Combined	． $767 \pm .057$	． $814 \pm .045$
Average	． $796 \pm .035$	

TABLE VIIIa

Fermi Motion Correction

$\frac{\left(\frac{d^{2} o}{d i d y}\right)_{\operatorname{corr}}}{\left(\frac{d^{2} o}{d \sqrt{t} d y}\right)_{\text {uncor } r}}$	B_{0}	$8_{1} y+$	$\mathrm{y}^{2}+\mathrm{B}_{3}$	
$\sqrt{7}$	$\begin{gathered} B_{0} \\ \left(\times 10^{-4}\right) \end{gathered}$	$\begin{gathered} \mathrm{B}_{1} \\ \left(\times 10^{-4}\right) \end{gathered}$	$\begin{gathered} 8_{2} \\ \left(\times 10^{-3}\right) \end{gathered}$	$\begin{gathered} B_{3} \\ \left(\times 10^{-3}\right) \end{gathered}$
. 547 -. 620	5949	1774	-1280	-2071
. 500 - . 547	6831	1652	- 659	-1546
. 450 - . 500	7506	1711	- 225	-1760
. 386 - . 450	8199	1060	- 68	- 944
. 332 - . 386	8701	712	- 5	- 519
. 300 - . 332	8973	519	26	- 353
. $250-.300$	9218	375	36	- 231
. 211 - . 250	9407	266	34	- 147
. 185 - . 211	9517	199	36	- 110
. 168 -. 285	9582	164	29	- 81

TABLE VIIIb
A-dependence Flux Calculation

TABLE IXa
A-dependence vs. Mass

Mass (GeV)	No.	$s \mathrm{Pt}$			0	
Charge	0	2	0	2		
5.0-5.4	146	8	142	4	. 986	$\pm .041$
5.4-5.8	120	2	115	0	. 994	$\pm .043$
5.8-6.2	95	0	95	2	.993	$\pm .048$
6.2-6.6.	87	0	68	0	1.066	$\pm .053$
6.6-7.0	67	0	63	0	1.006	$\pm .057$
7.0-7.4	44	0	44	0	. 986	$\pm .069$
7.4-7.8	35	0	34	0	. 995	$\pm .078$
7.8-8.2	23	0	24	0	. 972	$\pm .095$
8.2-8.6	20	0	9	0	1.246	$\pm .132$
8.6-9.0	11	0	7	0	1.133	$\pm .157$
9.0-9.4	24	0	18	0	1.079	$\pm .101$
9.4-9.8	20	0	19	0	1.003	$\pm .104$
9.8-10.2	9	0	8	0	1.024	$\pm .158$
10.2-10.6	2	0	9	0	.497	$\pm .254$
10.6-11.0	3	0	4	0	. 892	2.248

Note: Errors are statistical only. There is an additional .028 systematic error at all masses.

TABLE IXb
A-dependence vs. P_{t}

$P_{t}(\mathrm{GeV})$	Ho. events Pt		No.			a
Charge	0	2	0	2		
0.0-0.2	35	0	49	1	1.089	$\pm .073$
0.2-0.4	120	2	107	1	. 951	$\pm .044$
0.4-0.6	127	2	124	1	. 981	$\pm .042$
0.6-0.8	105	1	102	0	.980	$\pm .046$
0.8-1.0	90	0	93	1	.993	$\pm .049$
1.0-1.2	69	1	84	4	1.039	$\pm .055$
2.2-1.4	44	0	50	0	1.027	$\pm .067$
1.4-1.6	28	0	37	1	1.068	$\pm .083$
1.6-1.8	27	0	26	2	1.098	$\pm .107$
1.8-2.0	10	0	12	0	1.045	$\pm .139$
2.0-2.2	8	0	9	0	1.024	$\pm .158$
2.2-2.4	4	0	6	0	1.118	$\pm .210$
2.4-2.6	5	0	2	0	. 688	$\pm .272$

Note: Errors are statistical only. There is an additional .028 systematic error at all transverse momenta.

PARAMETERS FOR NUCLEON SEA FIT ${ }^{\text {a }}$

$$
\begin{aligned}
& \overline{\mathbf{d}}=A(1-x)^{n} \\
& \bar{u}=A(1-x)^{n+B} \\
& \overline{\bar{u}}=(\bar{u}+\bar{x}) / 4
\end{aligned}
$$

a. Fix $=\quad \bar{u}=\boldsymbol{Z}$

$$
\begin{aligned}
A & =.476 \pm .011 \\
& =0.62 \pm .08 \\
\frac{x^{2}}{D F} & =300 / 154
\end{aligned}
$$

B. Allow to float
$A=.548 \pm .002 \pm .17$

- $\quad 3.48 \pm .25 \pm 1.2$
\# $\quad 7.62 \pm .08 \pm .38$
$\frac{x^{2}}{b F}=211 / 156$

The first ecror is statistical and the second when given is systenatic.

TABLE Xb

Parameters for Nucleon Sea fit Using Q^{2} correction for v_{2}^{n}

$$
\begin{aligned}
& \bar{d}=A(1-x)^{N} \\
& \bar{u}=A(1-x)^{n+B} \\
& \overline{\mathbf{B}}=(\bar{u}+\bar{d}) / 4
\end{aligned}
$$

a. $\quad \mathrm{IX} \overline{\mathrm{u}}=\mathbf{d}$

$$
A=.504 \pm .011
$$

$$
n=8.69 \pm .08
$$

$$
\frac{X^{2}}{D F}=249 / 154
$$

B. Allow B to float

$$
\begin{aligned}
A & =.536 \pm .016 \\
& =2.51 \pm .39 \\
n & =7.77 \pm .11 \\
\frac{x^{2}}{D} & =208 / 155
\end{aligned}
$$

TABLE XI
Cross section verses rapidity (y) for bins of $/ T * m / / s$. Nucleon motion and radiative corrections have been applied to the cross sections as described in the text.

$\sqrt{1}$	y	$\begin{aligned} & \mathrm{s} \frac{d^{2} o}{d \sqrt{\tau d y}}\left(\mathrm{~cm}^{2}-\mathrm{GeV}^{2} \text {-nucleon }{ }^{-1}\right) \\ & 400 \mathrm{GeV} \quad 300 \mathrm{GeV} \quad 200 \mathrm{GeV} \end{aligned}$
. 198	-. 189	$\begin{aligned} & 2.59 \pm .28 \times 10^{-31} \\ & 2.88 \pm .11 \\ & 2.86 \pm .08 \\ & 3.20 \pm .08 \\ & 3.37 \pm .17 \end{aligned}$
. 229	-.187 -.097 .067 .063 .143 .233 .263 -353	$1.11 \pm .10 \times 10^{-31}$ $1.10 \pm .04$ $1.61 \pm .29 \times 10^{-31}$ $1.16 \pm .03$ $1.29 \pm .08$ $1.33 \pm .04$ $1.33 \pm .05$ $1.40 \pm .07$ $1.48 \pm .06$
	-.184 -.094 -.064 .026 .146	$\begin{array}{rll} 3.61 & \pm .16 \times 10^{-32} & \\ 3.63 & & \\ & & \\ 3.98 \pm .07 & & \\ 4.55 \pm .55 \pm .64 \times 10^{-32} \end{array}$
.273	.176 .236 .266 .356 .386 .506 -596	
	-.180 -.090 -.060 .030 .150	$\begin{array}{rl} 1.27 & \\ 1.27 \pm .09 \times 10^{-32} \\ & =.04 \\ 1.33 \pm .03 & 1.11 \pm .32 \times 10^{-32} \\ 1.46 \pm .04 & \therefore 1.16 \pm .15 \end{array}$
. 315	.180 .280 .270 .360 .390 .510 .600	

TABLE XI (Cont'd)

$\begin{aligned} & \underset{\sim}{1} \\ & \underset{\sim}{m} \end{aligned}$	シペ～～～ $+i+i+i+i+i$ 	コロロッド －$\underset{1+i+i+i+i}{ }$ ๓゙ベーデ ．．．．．				
$\underset{\sim}{\underset{\sim}{\prime}}$	ががmin $+i+i+i+i+i$ nonind Ninini	＋i＋iti＋i＋i がNuño $-$				
$\begin{aligned} & \underset{\sim}{1} \\ & \underset{\sim}{1} \end{aligned}$	戸ため゚ロッ ～••＊ $+1+1+1+1+1$ gognor aiorinim	MORNN $+i+i+i+i$ migno miniन				
$\begin{aligned} & -7 \\ & \mathbf{1} \\ & \mathbf{0} \end{aligned}$	Nonot NOMーH ©inNin			－N～～O $+i+i+i+1$ ＋ome －．．．	$+\dot{+}+\dot{+}!!:$ －	
$\begin{aligned} & \text { O-1 } \\ & \text { g } \end{aligned}$				ºnNMN ＋i＋i＋i＋i＋i －シーシ		
¢						
$\stackrel{\infty}{i}$		6utmm $+1+1+1+1+1$ 윽思行テ －-1				
¢			inनmmm な＋1＋1＋1 			
i	옹우웅 71＋1＋1＋1＋1 용ㅇㅇㅇ 品 wnNT					
			N『ーのO ベヘiヘi －N＋6 Niñini	ウiलimi ONサーめ mimimis．		

 units of $10^{-39} \mathrm{~cm}^{2}-\mathrm{GeV}^{-2}$-nucleon ${ }^{-1}$

Table XIIc
Invariant Cross section ($\mathrm{Bd}^{3} \sigma / \mathrm{dp}^{3}$) evaluated at <y> . 40 with 200 GeV incident protons, in units
of $10^{-39} \operatorname{cin}^{2}-\mathrm{GeV}^{-2}$-nucleon ${ }^{-1}$. vith nucleon motion and radiative correctione applied to the

Table xIII

Explicit QCD Fit Parameters

j	$=$	$\lambda(1-x)^{N}$
\bar{u}	$=$	$A(1-x)^{N+\beta}$
\bar{s}	$=$	$(\bar{u}+\bar{d}) / 4$
\bar{j}	$=$	$B(1-x)^{m}$
\dot{f}	$=$	$e^{-a k_{T}^{2}}$

\boldsymbol{A}	-	0.56 ± 0.01
*	-	8.1 ± 0.1
B	=	2.6 ± 0.3
B	=	2.55 (fixed by $f(\mathrm{f}(\mathrm{x}) \mathrm{dx}=0.5$)
m	-	4.1 ± 0.2
${ }^{\text {cs }}$	-	0.27 ± 0.01
\cdots	-	$1.14 \pm 0.02 \mathrm{Gev}^{-2}$
$\mathrm{x}^{2} / \mathrm{DF}$	-	805/876

FIGURE CAPTIONS

Fig. 1: Basic Drell-Yan process: a parton-antiparton pair annihilate via a virtual photon into a pair of leptons.

Fig. 2: Schematic plan view of the two magnetic spectrometers used to measure the yield of muon pairs. The various detector stations are described in the text.

Fig. 3: Target shielding box containing ten removable cariages on which vere housed the target, beam dump and aperture defining be:yllium channels.

Fig. 4: Detail of solid steel magnets used to re-analyze the moon momentum and harden the trigger.

Fig. 5: Mass resolution of the dual spectrometers at full excitation. The various calculated contributions to the resolution are explained in the text along with the event by event resolution calculated from the data.

Fig. 6: Mass resolution plots in the region of the $3 / 4$ resonance taken at lower magnet excitation.

Fig. 7: Reconstructed target distribution in a coordinate perpendicular to the bean for a) all masses bl masses from 7-8 GeV c) masses $9.2-10 \mathrm{GeV}$ and $10.5-14 \mathrm{GeV}$.

Fig. 8: A-dependence power, a, derived from the platinam and beryllifum target data runs. a) A-dependence of the dimuon yield on mass (integrated over all P_{T}). b) Adependence versus P_{T} (integrated over all masses).

Fig. 9: Dimuon acceptance of the apparatus calculated on the assumption of a $1+\cos ^{2} \theta$ decay angular distribution with respect to the beam axis and a phenomenological y and p_{T} production distribution which approximates the data. a) acceptance for data set I versus P_{T} of the dimuon pair, at 400 GeV b) acceptance for data set 1 versus center-ofmass rapidity y of the dimuon pair, at 400 GeV c) acceptance for data set I and $I I$ versus cm rapidity y of the dimuon pair for 3 energies d) acceptance versus mass for the different incident energies.

Fig. 10: a) Dimuon yield for data set $1,400 \mathrm{GeV}$ protons incident. The like-sign pairs are a measure of the contributions from accidentals asd pion decay. b) Dimuon gield for data set III, 400 GeV protons incident. The cross sections in a) and b) do not have nucleon motion or radiative corrections. Symbols $=\mu^{+} \mu^{-} \Delta=\mu^{+} \nu^{+}+\mu^{-}$.

Fig. liz Ifeld of dimuon pairs versus mass for incident proton energies of 200, 300 and 400 GeV . Like-sign pairs were subtracted to correct for accidentals and hadron decays. The cross-section per standard nucleon (60\% neutron, 40t proton) is defined in the text. The cross sections do not have nucleon-motion or radiative corrections.

Fig. 12: Invariant gield of dimuons as a function of the transverse momentum, P_{T}, of the muon pair for 400 GeV incident protons.
Fig. 13: The average value of $\left\langle P_{T}\right\rangle$ and $\left\langle P_{T}{ }^{2}\right\rangle$ for the observed dimuon pairs.

Fig. 1f: a) yield of dimuons versus the center-of-mass rapidity, Y. of the pair of muons $0 \equiv 400 \mathrm{GeV}, \Delta \equiv 300 \mathrm{GeV}$ and DE 200 GeV . b) Slope of the rapidity distribution evaluated at $y=0$. The solid line is the Drell-Yan model fit to the data with $\bar{u}=d$ and the dotted line is the fit with üd.

Fig. 15: Scaling form of the cross section for 200, 300, and 400 GeV data with the exponential scaling fit defined in text. The dotted line is the exponential fit described In the text. The solid line is the Drell-Yan model fit to the data for \bar{u} and ∂.

Fig. 16: CERN 1SR : $: ~ d i l e p t o n ~ d a t a . ~ T h e ~ d o t t e d ~ l i n e ~ i s ~ t h e ~$ exponential fit defined in the text and the solid line is - Drell-Yan model fit to this experiments dimuon data, taking into account the fact the CERN data are proton on proton and our data is proton on nucleon.

Fig. 17:
a) Cross section vs $V T$ at 3 different beam energies computed following a QCD calculation by Owens and Reyas b) Sea distribution using the OCD calculation by Owens and Reya -
19. 28: a) $\bar{u}+\bar{d}$ distribution for this experiment for various 0^{2} bims. b) Sea distribution for this experiment for various Q^{2} bins. Also shown are data points from CDHS* and EPWFOR*'. The dotted line is the fit with $\bar{u}=d$ and the solid line is the fit with $\bar{u}=\bar{d}(1-x)^{3.48}$.

Fig. 19: Average P_{T} verses ft for this experiment compared with Fermilab's and ISR's data.

-73-

Fig. 20: Dielectron yield for 400 GeV incident protons from a previous CES experiment. Shown in the inset with wider binning is the dielectron spectrum compared with the dotted line which is a fit to the dimuon data from this experiment.

PARTON-ANTIPARTON ANNIHILATION

Fig. 1

Pig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 7

Fig. 8a
-82-

Fig. 8b

Fig. 9a

Pig. 9b

Fig. 9c

Fig. 9d

Fig. 10a
-88-

Fig. 10b

Fig. 11

rig. 12

Fig. 13a

Rig. 13b

Fig. 14a

Fig. 14b

Fig. 15

Fig. 16

Fig. 17a

F1g. 17b

Fig. 18a

Fig. 18b

Fig. 19

Fig. 20

APPENDIX I

THE DATA ACQUISITION SYSTEM

Figure $A 1$ is a block diagram of the data acquisition system. The system is very flexible and allowed the trigger requirements to be studied and modified as the data taking progressed.

A. Fast trigger Logic

Figure $A 2$ is a diagram of the fast logic. The first stage triggering decision was made by a LeCroy model 380 Multiplicity Logic Unit for each arm, set to require four out of five of hl. C, \#2, 13 , and v4. This crudely defines track traversing the entire length of the arm. This signal was called T :

$$
T=(B 1, C, H 2, R 13, V 4) 4 / 5
$$

We used a mitiplicity trigger rather than coincidence of all five counters so that events could be recorded in which one of the counters falled to fire, allowing us to monitor the efficiencies of the trigger counters. Typical T rates were 100 kHz individual trigger counter rates ranged from 0.5 to 5 MHz .

The loose muon pair trigger was formed from the T signals of both arms by Lecroy 364 Majority Logic Unit (which is capable of 150 MAz operation) set to ero-fold coincidences

```
TUD = TO - TD
```

where urefers to one arm and D refers to the other.

Also formed was the out-of-time coincidence

```
TODAX = TU - TD delayed
```

used to monitor accidental coincidence rates; TD delayed was delayed by 57 nsec (three accelerator $R F$ buckets) relative to $T U$ by the insertion of extra cable. The TUD rate was about 1 kHz , the TUDAX rate roughly half that. The TUD rate was dominated by accidental two-arm coincidences. It counted more than TUDAX because the RF buckets did not all contain the same number of protons; rather, occasional buckets containing several times more than the average made the probability of generating a TUD higher than the probability of generating a TUDAX. TUD and fodax together enabled us to monitor the RF structure of the bean, and TUDAX together with TU and TD enabled monitoring of beam structure on a slover time scale.

The TU and TD signals prescaled by 128 and the TOD signal generated arigger Pan In (TFI) gate for the MWPC coincidence registers (CR's) and triggered the DC logic.

B. DC Logic

The DC logic (Fig. A3) was a sophisticated and flexible. general-purpose triggering system designed by H. Cunitz and \mathbf{w}. Sippach at Columbia University's Nevis Laboratories. Input signals were strobed by the TPI signal and latched, so that further processing could be done with DC levels without woriging about tiaing. Two l6-bit "logic bus" crates containing logic modules had
these $D C$ signals bussed along their backplanes and available to every module. Each module formed the and" of any of the 16 bus signals or their complements (selectable by the insertion of pins) as well as an optional input signal from some other module. The outputs included a"trigger" signal and complementary logic signals which could be connected to other logic module inputs, es, well, as an - inhibit* input for prescaling and scaler outputs with and without deadtime. The DC logic could be run with as little as 100 nsec deadtime per TFI, but since cur TFI rate was so low we set it to 400 neec to simplify timing and to cover deadtimes in the readout system.

The THI signal fron the fast logic cane to the Trigger Generator Input (TGI) module which strobed the logic bus and hodoscope CR's and started the DC logic decision cycle. A "matrix unit" for each arm was used to discriminate against tracks originating upstream of the target in vacum windous etc. or downstream in the shielding. It looked for pairs of hodoscope elements of the form (Vl_{i}, Vt_{j}) which lay neat the diagonal of the $\mathrm{Vl}-\mathrm{VA}$ matrix (if no such pair of elements fired the track did not point back to the target) and set a logic bus bit (called K) if one was found.

We used the DC logic to implement one main muon pair trigger and four study triggers, two pair and tyo single-ara. The prescaled study triggers required only subsets of the main muon pair trigger requirements in order to check the efficiency of the various trigger elements.

block diagram of data acouisition system
Fig. Al

Fig. A2

