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Abstract. This paper presents the first analysis of diffractive photon dissociation events in deep inelastic 
positron-proton scattering at HERA in which the proton in the final state is detected and its momentum 
measured. The events are selected by requiring a scattered proton in the ZEUS leading proton spectrometer 
(LPS) with XL > 0.97, where XL is the fraction of the incoming proton beam momentum carried by the 
scattered proton. The use of the LPS significantly reduces the contamination from events with diffractive 
dissociation of the proton into low mass states and allows a direct measurement of t, the square of the 
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four-momentum exchanged at the proton vertex. The dependence of the cross section on t is measured in 

the interval 0.073 < It] < 0.4 GeV 2 and is found to be described by an exponential shape with the slope 

parameter  b = 7.2 i 1.1(stat.)_+°i~(syst.) GeV -2. The diffractive structure function F ~  (4) is presented as 

a function of x s. _~ 1 - xL and fl, the momentum fraction of the struck quark with respect to xs, , and 

averaged over the t interval 0.073 < It[ < 0.4 GeV 2 and the photon vir tual i ty range 5 < Q2 < 20 GeV 2. 

In the kinematic range 4 x 10 -4 < z ~  < 0.03 and 0.015 < ¢~ < 0.5, the xw dependence of F.~ (4) is fitted 

with a form (1 /xs , )  ~ , yielding a = 1.00 =L 0.09 (stat.)_+°i~(syst.). Upon integration over t, the structure 

function F ~  (3) is determined in a kinematic range extending to higher x ~  and lower/3 compared to our 

previous analysis; the results are discussed within the framework of Regge theory. 
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1 Introduction 

A dis t inc t  class of events  in deep ine las t ic  neu t r a l  cur ren t  

p o s i t r o n - p r o t o n  sca t t e r ing  (DIS) is expe r imen ta l l y  char-  

ac te r ized  by  the  p ro ton  emerg ing  in tac t  (or exc i ted  into 

a low-mass  s ta te )  and  well s e p a r a t e d  in r a p i d i t y  from the  

s t a t e  p r o d u c e d  by  the  d i ssoc ia t ion  of the  v i r t ua l  p h o t o n  
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[1,2]. These large rapidity gap events can be interpreted 
as being due to diffractive interactions mediated by the 
exchange of a colourless object with the vacuum quantum 

numbers, generically called the pomeron. 
In diffractive single dissociation DIS events at HERA, 

ep --* eXp, the virtual photon dissociates into a hadronic 
system of mass Mx,  while the proton remains intact; for 

small [11 (111<1 GeV2), where t is the square of the four- 
momentum transfer at the proton vertex, the scattered 
proton escapes through the beam pipe without being de- 
tected in the central apparatus. Therefore diffractive in- 
teractions have been studied so far in the H1 and ZEUS 
experiments either by requiring a large rapidity gap [3-5] 
or exploiting the different behaviour of the ln(M})  dis- 
tribution for diffractive and non-diffractive events [6]. In 

both approaches, in the ZEUS results, the hadronic mass 
Mx was limited to values below 20 GeV. 

This paper presents the first analysis of diffractive DIS 
events in which the proton in the final state is detected 
and its momentum is measured. The measurement was 
performed with the ZEUS detector at HERA, using the 

leading proton spectrometer (LPS) which detects the scat- 
tered proton at small angles (<1 mrad) with respect to the 

incoming proton beam and measures its momentum. The 
events were selected by requiring that  the scattered proton 
carry a fraction of the incident proton beam momentum, 
XL, greater than 0.97, a region where pomeron exchange 
dominates. The use of the LPS allows a direct measure- 
ment of 1, and extends the measurement to higher values 
of M x  than in our previous analyses. 

2 The diffractive structure function F D(4) 

The dependence of the total hadron-hadron and photon- 

hadron cross sections on the centre of mass (c.m.) energy 

is related in the Regge approach to the pomeron trajec- 

tory. A fit to the hadron-hadron data [7] yielded a uni- 

versal pomeron trajectory (~(1) = ct~.(0) 4- c~t, with 

a~(0)  ~- 1.08 (the 'soft' pomeron). The dependence of 
the elastic hadron-hadron cross section on t is well de- 

scribed by an exponential distribution at small Itl, with 
a slope that  increases with the e.m. energy (shrinkage), 

~ 0.25 GeV -2. Regge theory can also be leading to c ~  

used to describe inclusive diffractive dissociation [8]. These 
processes have been studied in hadron-hadron (see e.g. [9]- 
[13]), photon-hadron ([14]-[16]) and DIS ([3]-[6]) interac- 
tions. 

For diffractive single dissociation in DIS, e + (k)p(P) ---, 

e + (U)Xp(P'), the cross section can be expressed in terms 

of the diffractive structure function FD(4): 

d4(Tdiff 2~o~ 2 
-- (1 4- (1 _y )2 )  FD(4)(~, Q2, xm,l) ,  

d~dQ2dx~ dt 8Q4 

(1) 
where c~ is the electromagnetic coupling constant and the 

contributions of the longitudinal structure function and 

of Z ° exchange have been neglected. Note that, with this 

definition, F2 D(4) has dimensions of GeV -2. Integrating 

over t, we can define a structure function k~D(3): 

daadiff 2~o~ 2 
- ( 1 ÷ ( 1 - y )  2) FD(3)(/3, Q2,x,.). (2) 

d/3dQ2dx~ /3Q 4 

The relevant kinematic variables are defined as follows. 
Deep inelastic scattering events are described by Q2 = 

_q2 = _ ( k - U )  2, the negative of the squared four-momen- 
tum transfer carried by the virtual photon; by the Bjorken 

Q2 . 

variable x = 2P.q, and by y = Q2/xs, the fractional energy 

transferred to the proton in its rest frame, where x/~ = 
300 GeV is the ep c.m. energy. The c.m. energy of the vir- 

tual photon-proton (7*P) system is W ~- ~/Q2(1/x - 1). 
Additional variables are required to describe diffractive 

scattering: 

(p -  p,).q 
t = ( P -  P' )2 ,  x ~  - p . q  , 

Q2 x 

/3-- 2 ( P -  P ' ) . q  x ~ '  (3) 

where x~ is the momentum fraction of the proton carried 

by the pomeron. In models where the pomeron has a par- 

tonic structure (see e.g. [17]), • is the momentum fraction 
of the struck quark within the pomeron. 

Assuming factorization, as in the model of Ingelman 

and Schlein [17], the structure function F D(4) is factor- 

ized into a pomeron flux, depending on z~  and 1, and a 

pomeron structure function, which depends on/3 and Q2: 

F D(4) = fm(x~ ,  t).  F~(/3,  Q2). (4) 

In Regge theory the x~ dependence of the flux can be 

expressed as ( 1 /x ~ )2 c~ ( t ) - l .  

In this paper, we present a measurement of the struc- 

ture function F2 D(4) in the process ep --~ eXp in the range 
0.015 < /3 < 0.5, 4 x  10 -4 < x~ < 0.03 and averaged 

over Q2 between 5 and 20 GeV 2 and over t in the interval 
0.073 < ttl < 0.4 GeV 2. We also present a measurement of 
the differential cross section as a function of I in a similar 
kinematic range. 

3 Experimental setup 

3.1 HERA 

In 1994 HERA operated with 153 colliding bunches of 

Ep = 820 GeV protons and E~ = 27.5 GeV positrons. Ad- 
ditionally 15 unpaired positron and 17 unpaired proton 

bunches circulated and were used to determine beam re- 
lated background. The integrated luminosity for the pres- 

ent study, which required the leading proton spectrometer 
to be in operating position (see below), is 900 4- 14 nb -1. 

3.2 The ZEUS detector 

A detailed description of the ZEUS detector is given else- 
where [18]. The main components of the detector used in 
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this analysis are the uranium-scintillator calorimeter, the 

tracking detectors and the leading proton spectrometer. 

The uranium-scintillator calorimeter (CAL) covers 

99.7% of the solid angle and is divided into three parts, 

the forward I (FCAL, covering the range 4.3 > 7] > 1.1 in 

pseudorapidity), the barrel (BCAL, 1.1 > ~] > -0.75) 

and the rear (RCAL, -0.75 > r] > -3.8). Each part 

is longitudinally subdivided into electromagnetic (EMC) 

and hadronic (HAC) sections with typical cell sizes of 

5 × 20 cm 2 in the EMC (i0 × 20 em 2 in the RCAL) and 

20 × 20 em 2 in the HAC. The timing resolution is bet- 

ter than 1 ns for energy deposits greater than 4 GeV. 

The energy resolution was measured in test beams [19] 

to be c r / E =  1 8 % / v ~ ( G e V )  for electrons and o / E  = 

35%/x/~(GeV) for hadrons. In order to minimize the ef- 
fects of noise due to the uranium activity, the isolated 
EMC (HAC) cells with energy less than 100 (150) MeV 

were discarded from the analysis. 
The tracking system consists of two concentric cylin- 

drical drift chambers, the vertex detector (VXD) [20] and 
the central tracking detector (CTD) [21], operating in a 
magnetic field of 1.43 T. The CTD, which encloses the 

VXD, is a drift chamber consisting of 72 cylindrical lay- 
ers, arranged in 9 superlayers. The measured resolution 
in transverse momentum for tracks with hits in all su- 

perlayers is CrpT/pT = 0.005pT (~ 0.016 (PT in GeV). The 
interaction vertex is measured with a resolution of 0.4 cm 
in Z and 0.1 cm in the X Y  plane. 

The position of the scattered positron close to the 

rear beam pipe region is determined with precision by the 

small-angle rear tracking detector (SRTD), consisting of 
2 planes of scintillator strips attached to the front face of 
the RCAL, covering an area of 68 x 68 cm 2. A hole of 
20 × 20 cm 2 at the centre of the RCAL and the SRTD 
accommodates the beam pipe. The SRTD signals resolve 
single minimum ionizing particles and provide a position 

resolution of 0.3 cm. The time resolution is better  than 2 
ns for a minimum ionizing particle. The SRTD is also used 
as a presampler to correct the positron energy for losses in 
the inactive material in front of the rear calorimeter [22]. 

The proton remnant tagger (PRT1) [16] is a set of scin- 

tillator counters surrounding the beam pipe in the forward 
part of the ZEUS detector at Z = 5 m. The tagger con- 
sists of two layers of scintillating materials separated by 
a 1 mm thick lead absorber. Each layer is split vertically 

into two halves and each half is read out by a photomul- 
tiplier tube. The geometric acceptance of PRT1 extends 
over the pseudorapidity region 4.2 < r] < 5.8. 

The luminosity is determined via the bremsstrahlung 
process e+p --~ e+p~/by  measuring energetic photons in a 
lead-scintillator calorimeter (LUMI) placed at Z = -1 0 7  m 

along the beam line [23]. 

1 The ZEUS coordinate system is right-handed with the Z- 
axis pointing in the proton beam direction, referred to as for- 
ward, and the X-axis horizontal pointing towards the centre of 
HERA. The pseudorapidity ~7 is defined as - ln(tan o), where 
the polar angle 0 is measured with respect to the proton beam 
direction 

The LPS [24] measures protons scattered at very small 
angles with respect to the beam line and escaping the 
central apparatus through the forward beam hole. Such 

protons carry a substantial fraction XL of the incoming 
proton momentum and have a small transverse momen- 

tum PT (<1 GeV). The spectrometer consists of six de- 
tector stations located at distances of 23 to 90 m along 
the proton beam line. In 1994 the three most forward 
stations $4, $5 and $6 were operational: each of these 
stations consists of an upper and a lower half, which par- 

tially overlap during data-taking. Each half is equipped 
with six rectangular parallel planes of silicon micro-strip 
detectors. Three different strip orientations (two vertical, 
two at +45 ° with respect to the vertical direction and two 
at - 4 5  ° ) are used, in order to remove reconstruction am- 
biguities. The dimensions of the planes vary from station 

to station and are approximately 4 x 6 cm2; the pitch is 
115 #m for the planes with vertical strips and 81 #m for 

the other planes. The edges of the detectors closest to the 
beam have an elliptical contour which follows the 10a pro- 
file of the beam, where cr is the standard deviation of the 
beam spatial distribution in the transverse plane. During 
data-taking , the planes are inserted in the beam pipe by 
means of re-entrant Roman pots [25] and are retracted 
during beam dump and filling operations of the HERA 
machine. The LPS coordinates are reconstructed with a 
precision of approximately 35 #m, which includes the in- 
trinsic resolution of the coordinate reconstruction and the 
alignment precision of the detector stations. The track de- 

flection induced by the magnets in the proton beam line 
is used for momentum analysis of the scattered proton. 
The XL resolution was determined using elastic p0 photo- 

production events to be better  than 0.4% at 820 GeV; the 
intrinsic PT resolution is approximately 5 MeV at XL = 1 

and is less than the spread introduced by the angular di- 
vergence of the proton beam (which is 40 MeV in the 

horizontal and 90 MeV in the vertical plane). 

4 Reconstruction of kinematic variables 

In order to reconstruct the kinematic variables x, Q2 and 

W (see Sect. 2), the so-called "Double Angle" method 

[26] was used, which derives the above quantities from 

the scattering angle of the positron and that of the struck 

(massless) quark. The latter is deduced from the momenta 

of all final state particles, except the scattered proton and 

positron. 

The final state particles in the reaction e+p --+ e+Xp 
were reconstructed from the tracks and calorimeter energy 

deposits. The scattered positron identification algorithm 

was based on a neural network [27] which uses information 

from the CAL. The momenta of the particles of the sys- 

tem X were reconstructed from calorimeter clusters and 

from tracks in the CTD. The calorimeter clusters were 

formed by grouping CAL cells into cones around the cell 

with a local energy maximum. The position of these ob- 

jects was given by the sum of the positions of the  single 
cells weighted by the logarithm of their energy. Recon- 
structed tracks were required to have transverse momenta 
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of at least I00 MeV and were matched to clusters with 

a procedure based on the distance of closest approach. In 

case the cluster (track) was not matched to a track (clus- 

ter), the momentum of the particle was reconstructed only 

from the cluster (track). When the calorimeter cluster was 

matched to a track, the track momentum measurement 

was taken if the following two conditions were satisfied: 

the ratio between the energy of the cluster and the track 

momentum was less than  0.8; the track momentum reso- 

lution was bet ter  than  the calorimeter energy resolution. 

If these two criteria were not satisfied, the particle mo- 

mentum was reconstructed from the calorimeter cluster 

energy. An appropriate  algorithm was developed for the 

cases in which more tracks pointed to a single cluster or 

more clusters were matched to one track. The use of tracks 

improves the M x  resolution and reduces the sensitivity to 

the losses due to inactive material  in front of the calorime- 

ter. 
The quantity t was determined from the fractional mo- 

mentum X L : pLPS /Ep ~ pLPS /Ep of the scattered pro- 

ton measured in the LPS and its transverse momentum 

p i  Ps with respect to the proton beam direction: 

t - ( 5 )  
XL 

The t resolution is approximately a(Itl) = 140 MeVv/~ (t 

in GeV 2) and is dominated by the angular beam spread. 

The quantities x~  and/3 were reconstructed using the 
values of Q2 and W 2 determined with the double angle 

method and the mass of the final hadronic system Mx: 

+ 0 2 0 2 
- + /3 - + ( 6 )  

The mass MN was measured in two ways. In the first 

method,  it was reconstructed as: 

h 2 h 2 h 2 (M~eas)2-~-~ ( E ' h ) 2 - - ( E P X )  - - ( E  pY) - - ( E  pZ) ' 

h h h h 
(7) 

where the sums run over all particles detected, except the 
scattered positron and proton, and p h = (Px,PY,Pz)h h h is 

the momentum vector assigned to each particle of energy 
E h. From Monte Carlo studies the resolution on M ~  ~ 

was found to be approximately 40% for M ~  ~ < 3 OeV, 

18% in the range between 3 and 10 OeV and 14% for 

M ~  ~* between 10 and 30 GeV. The mean reconstructed 

M ~  ~a* is 80% of its true value for all values of M ~ ¢ ~ :  

therefore an overall correction factor of 1.25 was applied. 
In the second method,  Mx was reconstructed using the 
LPS and the double angle variables: 

(8) 

where mp is the proton mass. When XL approaches unity 

(low Mx),  the resolution on M x  LPS worsens. Monte Carlo 
studies showed a resolution of 17% for M LPs > 10 GeV, 

of 35% for M L P s  between 3 and 10 GeV and a substan- 

tially worse resolution for M x  LPs < 3 GeV. No additional 
correction factor was needed. 

In the analysis described here, the first reconstruction 

method was used to evaluate the mass Mx,  calculated 

as 1.25 • M ~ a s :  the resulting resolutions on x~. and /3 

in the measured range are 30% and 25%, respectively. A 

mixed method with M LPs for high masses was used as a 

systematic check. 

5 Monte Carlo simulation and LPS 

acceptance 

The diffractive single dissociation process, e+p --~ e+Xp, 
was modelled using two Monte Carlo (MC) generators 

which assume pomeron exchange, the R A P G A P  program 

and a program based on the Nikolaev and Zakhaxov model, 

as well as a MC generator for the exclusive reaction e+p --~ 

e+ p°p. 
The R A P G A P  [28] program is based on a factoriz- 

able model [17] in which the incoming proton emits a 

pomeron, whose constituents take part  in the hard scat- 

tering. For the pomeron flux, the Streng parametr izat ion 

[29] was used, which has an effective t dependence rang- 

ing from e -hN to e -gIrl in the x ~  range covered by the 

present measurement;  for the pomeron structure function 

the form fitted in our previous analysis [4] was taken, 

which contains a mixture of a "hard" (o( /3(1 - / 3 ) )  and 

a "soft" (oc ( 1 - / 3 )  2) quark par ton density, with no Q2 

evolution. The program is interfaced to HERACLES [30] 

for the QED radiative corrections, the par ton shower is 

simulated using the colour-dipole model as implemented 

in ARIADNE [31] and the fragmentation is carried out 

with the Lund string model as in J E T S E T  [32]. The re- 

gion of low masses was tuned to the measured ratio of ¢ to 

p0 resonance production [33]. The events were generated 

with a lower XL cut of 0.9 and with Itl < 1 GeV 2. 

The Nikolaev and Zakharov model pictures the diffrac- 
tive dissociation of the photon as a fluctuation of the pho- 

ton into a q~ or q~t9 state [34]. The interaction with the 

proton proceeds via the exchange of a two-gluon colour- 

singlet state. The cross section can be approximated in 

terms of a two-component structure function of the pome- 

ron, each with its own flux factor. The hard component,  

corresponding to the q~ state, has a/3 dependence of the 

form /3(1 - / 3 )  and an exponential t distribution with a 

slope of approximately 10 GeV -2. The soft component,  

which corresponds to the q(19 state, has a /3  dependence 
of the form (1 - /3 )2  and a t slope of about  6 GeV -2. In 

the Monte Carlo implementat ion of this model [35], here- 

after referred to as NZ, the mass spectrum contains both  

components but  the qCtg states are fragmented (using JET-  

SET) into hadrons as if they were a q(/ system with the 
same mass. The generation is limited to Mx > 1.7 GeV. 

To improve the description of the low mass region, 

events in the region M x  < 1.7 GeV were generated sep- 

arately using a MC for exclusive p0 electroproduction, 

ep --~ ep°p. In this MC the total  cross section for the 
process ~/*p ~ pOp and the ratio of the longitudinal to the 

transverse cross section are derived from a parametriza-  

tion of ZEUS [36] and low energy data. The generator is 
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t ~  L P S  L P S  ne Px ,py plane. The lines indicate the regions where the 
acceptance is greater than 5%, 50% and 95% 

interfaced to HERACLES which simulates the initial and 

final s tate radiation. The R A P G A P  sample and the p0 

MC sample were mixed in such a way tha t  the weighted 

sum reproduced the observed M x  distribution in the data: 

only a small contribution from the p0 MC needed to be 

added and this mixture was used for the acceptance cor- 
rection. In a similar way, the NZ and the pO MC were 

mixed and used as a systematic check. 

In order to est imate the background, the following pro- 

cesses were generated. The events where the proton disso- 

ciates into a s tate  of mass M s  (ep --, e X N )  were gener- 

ated with the E P S O F T  [371 and P Y T H I A  [38] programs, 

where the mass spect rum of the nucleon system and the 

ratio of double to single dissociation are generated accord- 

ing to measurements  from proton-proton colliders [9]. The 

M~v spect rum is of the form 1 / M ~ ,  with c~ -~ 2. To eval- 

uate the background due to the one-pion exchange pro- 

cess, the R A P G A P  MC implementat ion of this exchange 

was used, in which the flux of pions is assumed to be 
f ~ ( x ~ , t )  ~-- (1 - 4m~)2/(1 - 4t) 2.  ( x~ t / ( t  - m~) 2) [39], 

where m~ denotes the pion mass and x~ is the fraction of 

the proton momen tum carried by the pion. 
All generated events were passed through the s tandard 

ZEUS detector simulation, based on the G E A N T  program 

[40], and through the trigger simulation and the event re- 
construction package. For the scattered proton the simu- 

lation includes the geometry of the beam pipe apertures,  

the HERA magnets  and their fields, and the response and 

noise of the LPS detectors. An accurate simulation of the 

interaction vertex position and of the effect of the proton 
beam tilt and emit tance is also included. 

The distribution of the detected proton transverse mo- 
mentum, p L P S ,  is limited by the geometric acceptance of 

the LPS, which depends on the geometry of the beam pipe 
and the elliptical cutouts in the silicon detector planes. 
Figure 1 shows the LPS geometric acceptance for tracks 

w i t h  39 L = 1 in the p~PS, pLPS plane, where pxL•S, I~y~LPS 

are the X and Y components of the proton momentum.  

Protons with p~PS<0.2  GeV and XL --~ 1 are too close to 

the beam to be safely measured. In the region covered by 
the LPS planes (200 < LPS < LPS < MeV~lPx  IN400 MeV, [py [~600 
MeV) the acceptance is large, as shown by the lines in 

the figure: however, integrating over the azimuthal an- 

gle ¢ the resulting acceptance is ~_ 6%. For XL > 0.97 
and < LPS < 0.25~p T ~0.65 GeV, the acceptance does not vary 
strongly with XL and changes from 15% at low pLPX to 2% 

at high pLPS. The alignment uncertainty does not signif- 

icantly affect the geometric acceptance, and, in this anal- 

ysis, cuts were applied to ensure that  the events lie in a 

well understood region. 

6 D a t a  se lec t ion  

Deep inelastic events in the ZEUS detector were first se- 

lected online by a three-level trigger system (details can be 

found in [41]). At the first level DIS events were selected 

by requiring a minimum energy deposit in the electromag- 

netic section of the CAL.  The threshold varied between 

3.4 and 4.8 CeV depending on the position in the CAL. 

At the second level trigger, beam-gas background was re- 

duced by using the measured times of energy deposits and 

the summed energies from the calorimeter. Events were 

accepted if a = ~ i  Ei(1 - cos 0i) > 24 GeV - 2E~, where 

Ei, 0i are the energies and polar angles of the calorime- 

ter cells and E~ is the energy measured in the luminos- 

ity photon calorimeter, thereby accounting for the photon 

emit ted in events with initial s tate radiation. For fully 

contained events, the quanti ty ~ is expected to be twice 

the positron beam energy, ~ -~ 55 GeV. At the third level, 

algorithms to reject beam-halo and cosmic muons, as well 

as a stricter 5 cut (5 > 25 GeV - 2E~), were applied, to- 

gether with the requirement of a scattered positron can- 

didate with energy greater than  4 GeV. 

Diffractive DIS candidate events were further selected 

offline in two steps: first the s tandard inclusive DIS selec- 

tion was applied, then a high XL t rack in the LPS was 

required. 

Neutral  current DIS events were selected as follows: 

- A scattered positron wit h E L > 10 GeV was required, 
where Eel is the energy after presampler  correction 

with the SRTD (when available). 

- The impact  point of the scattered positron in the SRTD 
was required to be outside a square of 26 × 26 cm 2 cen- 

tred on the beam. This cut ensures full containment of 

the positron shower in RCAL. 
- 40 < 5 < 65 GeV, to reduce the photoproduct ion back- 

ground and the radiative corrections. 

- The Z coordinate of the reconstructed vertex was re- 
quired to be in the range - 5 0  < Z < 100 cm. 

- ye < 0.95, where y~ = 1 - E'~(1 - cosO~)/2E~ is the 
value of y calculated from the positron variables (0~ is 
the polar angle of the scattered positron).  

--  Y J B  > 0.03, where Y J B  : ~ h E h ( 1  --cosOh)/2E~ is 
the value of y calculated from the hadronic energy flow 
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Fig. 2. Observed event distributions as a function of a Q2, 

b x, c W, and d yJB of the reconstructed data (dots) compared 

to the Monte Carlo model (solid line). The Monte Carlo is the 
weighted sum of-the RAPGAP and p0 samples. The errors, 

shown as vertical bars, are statistical only 

[42]: in this case the combination of tracks and clusters 

described in Sect. 4 was used. 

The following cuts were applied to select diffractive 

events: 

- A track in the LPS was required, with 0.97 < XL < 

1.01, where the lower limit was applied to reduce non- 

pomeron exchange contributions and to select a region 

of uniform acceptance, while the upper limit corre- 

sponds to a +2.5a distance from the XL = 1 peak, 

where a is the average LPS resolution at xL ~- 1. 

- The LPS track was extrapolated along the proton 

beam line. No track was accepted if, at any point, 

the minimum distance of approach to the beam pipe, 

Ap4p~, was less than 500 #m. This cut reduces the sen- 

sitivity of the acceptance to the uncertainty in the po- 

sition of the beam pipe apertures. 

- The total E +Pz  ~- (E +Pz)c~1 + 2P~ Ps = ~ E d l  + 

cos 0i) + 2p LPs of the event (the sum of the energy 

and the longitudinal component of the total momen- 

tum measured in the calorimeter and in the LPS) was 

required to be < 1655 GeV. For fully contained events 

this quantity should be equal to 2Ep = 1640 GeV; 

the cut, which takes into account the resolution on the 

measured value of ~LFS reduces the background due P Z  , 

to overlay events (see following section). 

After this selection 553 events were teft of which 376 

were in the Q2 region between 5 and 20 GeV 2. 

Figures 2 to 4 show the distributions of the selected 

events and of the Monte Carlo model used in the analysis 

(weighted sum of the R A P G A P  and the p0 MC samples), 

as a function of Q2, x, W, YJB (Fig. 2), of r/ . . . .  M x ,  x~.,/~ 
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Fig. 3. Observed event distributions as a function of a ~max, 
b Mx,  c lnM~ for 50 < W < 120 GeV, d lnM~ for 120 < 

W < 270 GeV, e x~ and f/~ of the reconstructed data (dots) 
compared to the Monte Carlo (solid line). The Monte Carlo is 

the weighted sum of the RAPGAP and p0 samples. The errors 

are statistical only 

(Fig. 3) and of XL, Itl,pLPS,p LPs (Fig. 4). The distribu- 

tions are all uncorrected and the MC histograms are nor- 

malized to the number of events in the data; a cut of 

Q2 > 5 GeV 2 was applied to both data and Monte Carlo 

samples. In Fig. 3a, the variable ~]~z is the maximum 

pseudorapidity of all calorimeter clusters with an energy 

of at least 400 MeV or tracks with momentum of at least 

400 MeV. In our previous analysis, events with a large 

rapidity gap were defined by 7]max<l.5-2.5 [4]: however 

the events with a tagged proton with XL > 0.97 can have 

larger values of Umax. This allows us to study events with 

Mx>20 GeV, where the hadronic system extends close 

to the proton beam pipe, and no gap may be observed in 

the detector. In Figs. 3c and 3d, the in M 2 distribution is 

shown in two W bins (50 < W < 120 GeV, 120 < W < 

270 GeV). The data and the diffractive MC model are 

in good agreement. Compared to our previous analyses, 

the data extend the explored kinematic region to higher 

values of Mx, and therefore to higher x~ and lower ~. 
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the calorimeter in the data (before the XL and the E + P z  cut). 
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7 Background ZEUS 1994 

After the selection described in the previous section, the 

sample still contains some background, mainly due to beam- 

halo and DIS processes which are not single diffractive 

dissociation. 

Proton beam-halo events originate from interactions of 

beam protons with the residual gas in the pipe or with the 

beam collimators. These events have a scattered proton of 

energy close to that  of the beam: when they accidentally 

overlap with a genuine DIS event, they may give a false 

diffractive signal. Most of these events, however, appear 

to violate energy and momentum conservation. Figure 5 

shows a scatter plot of XL and the (E + pz)c~I (mea- 

sured with the calorimeter) for the DIS events selected in 

the LPS (excluding the xc  and the E + Pz cuts): a clear 

band at XL --~ 1, uncorrelated with the energy measured 

in the calorimeter, can be ascribed t o  beam-halo events. 

This type of background can be rejected by requiring that 

the total E + Pz of the event be conserved, as for beam- 

halo it can exceed the kinematic limit of 1640 GeV (see 

line in Fig. 5). To evaluate the residual background af- 

ter the cuts mentioned in the previous section, the 2p LPS  

distribution of events with unphysical tracks in the LPS 

((E + Pz)c~l + 2P LPs > 1655 GeV) was randomly mixed 

with the (E +Pz)c~] distribution for DIS events, to create 

a E + p z  distribution for beam-halo events. The obtained 

E + Pz distribution was normalized to the observed data 

distribution for E + p z  > 1655 GeV. The remaining back- 

ground (below the E +Pz = 1655 GeV cut) was estimated 

to be less than 6%. 

225 

200 

175 

150 

125 

100 

75 

50 

25 

0.5 

%t 
7' "i.[.. 

0.6 0.7 0.8 0.9 1 

x L 

Fig. 6. The observed XL spectrum in the data (dots) where 

the XL cut at 0.97 has been removed. Overlaid is the result of 

fitting the distribution with a sum (full line) of the contribution 
due to proton dissociation (EPSOFT MC - shaded area), of 

the maximum contribution due to pion exchange (dotted line) 
and of the single photon dissociation signal (RAPGAP plus p0 

MC - dashed line) 

In order to evaluate the background due to proton 

dissociation and pion exchange, the cut on XL was re- 

moved. Figure 6 shows the observed uncorrected xc spec- 

trum for the data (dots): a narrow diffractive peak is seen 

at x L ~ i, together with a distribution at lower XL due 

to the background processes mentioned above. Note that 

the acceptance falls by almost an order of magnitude be- 

tween XL ~ 0.8 and XL ~ 1. These processes were mod- 
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elled using the Monte Carlo programs described in Sect. 5, 
E P S O F T  for the proton dissociation, RAPGAP for the 
pion exchange, while for the diffractive signal the com- 
bined RAPGAP and p0 MCs were used. The weighted 
sum of the three components was fitted to the observed 
x c  spectrum in the data  in two steps. The weight factor 
for the proton dissociation events was first determined by 
normalizing the EP SOFT MC sample to the data in the 
region x c  < 0.95 and r/,~a~ < 1.5, where double dissocia- 
tion dominates. The weight factors for the single diffrac- 
tion and the pion exchange processes were determined by 

fitting the weighted sum of the three MC samples to the 
observed XL distribution. The resulting sum is shown as 

the solid line in Fig. 6. After applying the XL > 0.97 cut, 
the background due to proton dissociation is less than 3%, 
to be compared with the 10-15% contamination estimated 
to be present in our previous analyses [4,6]. The fit was 
repeated using different MC models (PYTHIA for pro- 
ton dissociation, NZ plus p0 for the signal) and consistent 
results were found. This estimate of the background due 
to proton dissociation was checked by looking at events 
tagged both  in the proton remnant tagger PRT1 and in 
the LPS. According to simulations based on the EPSOFT 

Monte Carlo, the PRT1 has a tagging efficiency of approx- 
imately 50% for proton dissociation events; this leads, af- 

ter the XL cut, to an estimated contamination below 3%, 
consistent with the evaluation described above. 

The background due to the pion exchange was found 
to be less than 1% after the x c  > 0.97 cut. Note that 
the fit to the XL spectrum is used to give an estimate 
of the upper limit on the pion exchange background at 
high x c  and it is not meant to be a complete study of 
the distribution. The background due to other reggeon 
exchanges was not included in this evaluation: at high x s. 
values (xw>0.01), a contribution from other reggeon ex- 
changes is likely [5], however the predictions vary signif- 

icantly in different models [43,44]. The possible contri- 
bution of these additional trajectories at high x s. is dis- 
cussed in Sect. 9. Background due to non-diffractive DIS 

processes (not shown in the figure), in which one of the 
proton fragments is observed in the LPS, gives a contri- 
bution at small values of x c .  

The background due to non-ep interactions (excluding 
beam-halo events) was evaluated to be negligible from the 
data taken with the unpaired proton bunches. The back- 
ground due to photoproduction events was found to be 
negligible from Monte Carlo studies. 

As the backgrounds due to beam-halo, non-ep interac- 
tions, proton dissociation and pion exchange were found 

to be small compared with the statistical precision of the 
data, they were not subtracted in the results shown in the 
following. 

8 Measurement of the t distribution 

The measurement of the t dependence in diffractive DIS 
was limited to the kinematic range 0.073 < Itl < 0.4 GeV 2, 
5 < Q 2  < 2 0 G e V  2 , 5 0 < W < 2 7 0 G e V , 0 . 0 1 5 < / 3 < 0 . 5  

and XL > 0.97. The range in It[ was limited to values 
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Fig. 7. The differential cross section d~r/dt for diffractive DIS 
events with a leading proton of XL > 0.97, in the range 5 < 
Q2 < 20 GeV 2, 50 < W < 270 GeV and 0.015 < f~ < 0.5. 
The inner error bars indicate the statistical errors, the outer 

error bars show the statistical and systematic errors added in 
quadrature. The line is the result of the fit described in the 
text 

greater than 0.073 GeV 2, since for lower values of Itl the 
acceptance varies rapidly; the upper limit of 0.4 GeV 2 

restricts the data to a region where the LPS acceptance 
exceeds 2%. The bin widths in t were chosen to be larger 
than the resolution, resulting in four bins. The acceptance 

and the detector effects were unfolded using a bin-by-bin 
correction determined with the RAPGAP plus p0 MC. 

Figure 7 shows the measured differential cross section, 
d ~ / d t .  The distribution was fitted with a single exponen- 
tial form, shown as the solid line: 

d a / d t  = Aebt; (9) 

the value of the fitted parameter b is: 

b = 7.2 ± 1.1(stat.)+_°0:;(syst.) GeV -2, (10) 

where the first uncertainty is statistical and the second is 
systematic. 

The systematic uncertainties can be subdivided into 

three groups, those due to the DIS selection, those due to 
the LPS acceptance and background and, finally, those re- 
lated to the unfolding. The systematic error due to the DIS 
acceptance was evaluated by changing the following cuts: 
the positron energy cut was moved to 8 GeV and 12 GeV, 
the cut on the impact position of the positron using the 
SRTD was moved to 24 x 24 cm 2 and to 28 x 28 cm2; 

the YJB cut was changed to 0.02 and 0.04. The effects 
on the slope b varied between +5.5% and -3%.  To esti- 
mate the systematic contributions due to the LPS accep- 
tance, the following checks were performed: the Apip~ cut 
was increased to 0.1 cm causing a negligible variation to 
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Fig. 8. The distribution of the events used in the analysis in 
the ¢~, z n. plane. The bins in ~, :c~ used for the extraction of 
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the slope. The values of p~pS and p~PS were shifted by 

±3  MeV and ±6  MeV, respectively, as a test of the influ- 

ence of the alignment procedure (see [24]), yielding vari- 

ations on b between - 6 %  and +3%. The mass Mx was 

reconstructed using the calorimeter for low masses and the 

LPS for high masses, giving changes around ±5% on the 

slope. The NZ plus p0 Monte Carlo was used for the ac- 

ceptance calculation, the t slope in R A P G A P  was changed 
' value in the MC was changed from by 4-1 GeV -2, the azP 

0.25 GeV -2 to 0. These changes lead to variations of at 

most 4% for the slope b. The total  systematic error was 

obtained by adding in quadrature  the positive and nega- 

tive deviations separately. 
In a Regge-type approach [8], the slope of the exponen- 

tial t distribution in single diffractive interactions is pre- 

dicted to be b -~ b0 + 2 a ~  ln (1 / z~ ) .  Assuming the value of 

b0 = 4.6 GeV -2 inferred by Goulianos [45] from elastic 10p 

scattering at v G = 1800 GeV [46] and ~ '  = 0.25 GeV -2 zP 
I7], in the present kinematic range (< x~. > -  8 × 10 -3)  the 

measured b value is compatible with the predicted value of 

-~ 7 GeV -~ for a soft pomeron exchange; it is also consis- 

tent with the values predicted by some per turbat ive  QCD 

models [471 . 

g Measurement of F ~  (4) and F D ( s )  

The measurement of the proton in the LPS permits the 

determination of the cross section for single diffractive dis- 

sociation inDIS as a function of the four kinematic vari- 

ables/3, Q2 zw and t. Given the small statistics collected 

in the 1994 running, the measurement was performed in 

a single t bin, 0.073 < It[ < 0.4 GeV 2 and a single Q2 
bin, 5 < Q2 < 20 GeV 2, with average values of < Ltl > =  
0.17 GeV 2 and < Q2 > =  8 GeV 2. The sizes of the ~ and 

x~  bins were chosen to be larger than  the resolutions (see 
Sect. 4); a minimum number  of 8 events in each bin was 
also required. The chosen bins are shown in Fig. 8: they 

are in the range 4 × 10 -4 < x~  < 0.03, 0.015 < / 3  < 0.5. 

The acceptance, which includes the efficiency of the DIS 

selection and the geometric acceptance of the LPS, varies 
between 3% and 11% in these bins. The purity, defined 

as the ratio of the number  of MC events generated in a 

bin and reconstructed in the same bin over the number  

of events reconstructed in that  bin, was required to be 

greater than 25% in the bins used for the measurement 

and is typically more than 40%. The effect of the longitu- 

dinal structure function FL is assumed to be smaller than 

the statistical errors in the kinematic range considered [4] 

and is neglected. 

In order to extract the structure function F0 (4), the 

weighted sum of the RAPGAP and the p0 MC, which 

gives a good description of the data, was used to obtain 

the correction for acceptance with a bin-by-bin unfolding 

method. In addition a bin centring correction was applied, 

using the F D(4) parametrization of the RAPGAP MC. 

The following systematic checks were performed for 

the measurement of/'2/9(4): 

- To check the photoproduction background and the QED 

radiative corrections, the cut on g was changed to 

37 GeV and 42 GeV, and the cut on the scattered 

positron energy was varied to 8 GeV and 12 GeV. The 

effect was typically up to 3%. 

- To check the acceptance at low Q2 which is determined 

by the positron position, the cut on the impact point 

of the positron was changed to 24 × 24 cm 2 and to 

28 x 28 cm2; both induced variations on F D(4) smaller 

than 15~0. 

- An alternative method to reconstruct the kinematics, 

the Z method [48], was used, giving typical variations 

of about 20%. 

- The cut on YJB was moved by -4- 0.01, yielding changes 

of typically around 10%. 

- The cut on the minimum energy deposit of the EMC 

(HAC) cells was moved to 140 (160) MeV and to 80 

(120) MeV, to check the effect of the calorimeter noise 

on the mass reconstruction. The effect was between 

10% and 25% for the first cut, and up to 15% for the 

second check. 
- The LPS track selection was modified by raising the 

Apipe cut to 0.1 era, producing variations of F2 D(4) of 

less than  12%. 
- To check the background estimation due to one-pion 

exchange and proton dissociation, MC predictions 

were statistically subtracted from the bins, producing 
changes up to 5% in a few bins. The beam-halo was 

also subtracted with negligible effects on F D(4). The 

XL cut was moved to 0.96, causing changes on F ~  (4) 

of less than  5%, except in one bin at high x ~  where 

the change was 15%. 
- An alternative method to reconstruct the mass Mx 

was employed, which uses 1.25 • M ~  ~8 at low masses 
and M~ Ps at high masses, giving an effect of less than 

2% at high fl and up to 25% at low/3. 
- An unfolding method based on Bayes'  theorem [49] 

was applied for the acceptance correction causing vari- 
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Fig. 9. The structure function x w ./5 ̀9(4) (fl, Q2, xz,, t), plotted 

as a function of x~ in four fl bins, at < Q~ >=  8 GeV 2 and < 

Jtl > =  0.17 GeV 2. The inner error bars indicate the statistical 
errors; the outer error bars are the sum of the statistical and 

systematic errors added in quadrature. The 5.5% normalization 

uncertainty is not included. The solid line corresponds to the 
fit described in the text 
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Fig. 10. The function x~. F D(3) (fl, Q2, xw) for this analysis at 

< Q2 > =  8 GeV 2 and 0 < Itl < 0% compared to the results at 

< Q2 >=  7.5 GeV 2 and Itl < 1 GeV 2 from [5]. The statistical 

and systematic errors are added in quadrature. The 5.5% and 

6% normalization uncertainties of the ZEUS 1994 LPS data 

and of the Hi 1994 data, respectively, are not included 

is the same in all fl intervals, we performed fits of the form: 

ations typically less than 3%. The NZ plus p0 Monte 

Carlo was used to unfold, giving changes typically less 

than 20%, except at low fl where the changes were 

up to 40%. The xm and t dependence in R A P G A P  

were reweighted to a fixed t dependence of the form 

( 1 / x ~ ) e  -TN  or to a fixed x m dependence of the form 

(1/x~)  13, yielding changes of less than 5%. 

Most of the systematic checks yielded results which agree 

with the central value within the statistical errors. The 

negative and positive deviations in each bin were sepa- 

rately combined in quadrature. 

The results for F D(4) are given in Table 1. The sys- 

tematic errors do not include a 5.5% overall normaliza- 

tion uncertainty due to the luminosity determination and 

trigger efficiency (2%) and due to the LPS acceptance 

varying because, due to the proton beam conditions, the 

LPS stations had to be positioned differently in different 

runs (5%). The values of F D(4) are plotted in Fig. 9 as 

x z. • F ?  (4) as a function of xw, in four fl intervals, with 

central values of fl = 0.028, 0.07, 0.175 and 0.375, respec- 

tively. The F D(4) data are observed to fall rapidly with 

increasing x~.  To investigate whether the x z. dependence 

= i{. o , (11) 

where the normalization constants A~ were allowed to vary 

in each bin, while the exponent a was constrained to be 

the same in all four fl bins. The result of the fit is 

a(0.073 < jt I < 0.4 GeV 2) 

/ s t a r  ~+0.Ii / , = 1.00 :t: 0.09 ~ .)_0.05OYS~.), (12) 

with a X 2 value of 10 for 8 degrees of freedom, showing 

that the result is consistent with a single x~ dependence 

in all fi bins. The systematic error was obtained by re- 

fitting the F D(4) values obtained for each of the systematic 

checks mentioned above. The main contributions arose 

from changing the unfolding procedure (4%), using the 

S method (5%) and applying different noise suppression 

cuts (7%). 
In order to compare with previous measurements of the 

diffractive structure function, we extracted F ~  (3) 

(fl, Q 2 , x ~ )  by integrating F D(4) over t. The extrapola- 

tion to the whole t range (0 < itl < ec) was performed 

using the F D(4) parametrization in the MC. The result is 

shown in Table 1 and is plotted as x~, • F ~  (3) in Fig. 10. 
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Tab le  1. Results o n  -/7'? (4) and F D(3) using the ZEUS LPS 1994 data at Q2 __- 

8 GeV 2. The F D(4) values are in the t interval 0.073 < Itl < 0.4 GeV 2, the F D(3) 
values are in the t range 0 < ]t I < ec. The overall normalization uncertainty of 
5.5% is not included and no background is subtracted from the data 

F ~  (4) ± star. ± sys. GeV -2 #~D(3) ± s t a t .  ± sys. ZIP Nobs 

0.028 0.011 14 

0.028 0.024 17 
0.07 0.0044 13 

0.07 0.011 22 
O.O7 0.024 13 

0.175 0.0018 15 
0.175 0.0044 21 
0.175 0.011 22 
0.175 0.024 13 
0.375 0.0007 19 

0.375 0.0018 32 
0.375 0.0044 16 

0.375 0.011 8 

2.8±0.8+~:~ 1.3±0.4+_°:~ 
2.2±o.6_+1: ° 

° 

3.8±0.9+~: 3 1.8=t=0.4+°:6 

1.8±0.5_+% 
28.4±7.7_+~.3~ 7 13.4±3.6+_~i 5 
10.8±2.5_+3:4 5.0±1.2_+~:9 s 

3.6±1.1+I: ? 
± 42.7±10.4+ .  89.1 21.7_1s.6 

53.6±10.4+ L 25.3±4.9+d:  
10.4±2.7_+~: 8 4.9±1.3+°: 9 

3.9±1.4+~:~ 1.8+0.7_+~i ° 

F i t t ing  our d a t a  in each/9  interval  wi th  the  form ( l /m n. )~ 
+ 0 . 1 1  

yielded a value ~ : 1.01 4, 0.10 (stat .)_0.06(syst.) .  
This  value of ~ is much  lower t han  the  value ob ta ined  

with  the  ZEUS 1993 d a t a  [4], based  on a large rap id i ty  

gap  analysis  2. T h e  ZEUS 1993 F D(s) result  corresponds  

to 0.I < /3 < 0.8 and 6.3 × ]0 -4 < xip < 10 -2, for 

8 < Q2 < i00 GeV 2, and it is compatible with a sin- 

gle x~ dependence in all/3 bins, with slope ~ : 1.30 4- 
+ 0 . 0 8  

0.08(stat .)_o.14(syst .  ). As a l ready ment ioned,  the  present  

analysis  covers a different k inemat ic  range,  ex tending  to 

lower /9  and higher x ~  at  < Q2 > =  8 GeV 2. T h e  lower 

value of ~ c o m p a r e d  to our previous  result  m a y  be ascr ibed 

to  the  presence of addi t ional  subleading t ra jec tor ies  con- 

t r ibu t ing  in the  x~. range covered by  this analysis.  This  

cont r ibu t ion  has been  a l ready observed in the  analysis  of 

the  H1 1994 d a t a  [5], which are shown for compar i son  in 

F~g. 10. Only  the  points  at  the  Q2 a n d / 9  values closest 

to the  ones presented  here are shown. Assuming  p o m e r o n  

exchange to be  the  dominan t  contr ibut ion,  the  values of 

a(0.073 < It[ < 0.4 GeV 2) and  g can be related,  respec-  

tively, to the  a ~  value in the  given t range  and ~-~, the  

p o m e r o n  t r a j ec to ry  averaged over t (see Sect. 2). How- 

ever, as a l ready ment ioned  in Sect. 7, a t  high x ~  a con- 

t r ibu t ion  f rom reggeon exchange cannot  be  excluded, in 

addi t ion  to p o m e r o n  exchange: the  s ta t is t ical  precision of 

our d a t a  does not  allow us to identify this component .  As 

the  reggeon t r a j ec to ry  has  an in tercept  a M  --~0.5, lead- 
ing to an x~. slope a ~ 0, its presence would lower the  

expec ted  x~. slope in the  x z. region where  the  reggeon 
exchange contr ibutes .  T h e  x ~  range covered by this anal-  

ysis could then  explain the  different result  on the  slope 
com pa red  to our previous  result.  Moreover,  models  where  

the p o m e r o n  componen t  is not  factor izable  can lead to a 

2 We do not compare here to the result in [6], as this result 

was affected by a technical error in the Monte Carlo generation 

used for the unfolding, which led to a higher ~ value by about 

one unit of the quoted error 
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Fig.  11. The value of FD(3)(/3, < Q2 > =  8 GeV 2, x~  = 0.01), 

obtained from the fits to the individual bins in /3. The solid 

line represents the fit to the data as described in the text. The 
dashed line indicates the parameterization of [4] scaled down 
to remove the estimated 15% double dissociative contributions 

different x~ slope parameter, depending on the kinematic 

range. 

We have also examined the/9 dependence of the diffrac- 

tive structure function. In order to do this, the F D(3) 

values within each 13 bin are plotted in Fig. ii, extrap- 

olated to a common value of x~ : 0.01, assuming a uni- 

versal, fixed slope ~ = 1.01. The solid line represents a 

fit of the form b. (i/x~)~[/3(i - /9) + c/2(1 -/9)2] to 

the measured F D(3). The values obtained in the fit are: 
+0.014 

b = 0.087 4-0.015 (stat.)_0.022(syst.) and c = 0.34 4- 

0.11 +0.25 (stat.)_0.10(syst.). This fit to the present data indi- 

cates that both a hard (o(/3(1 -/9)) and a soft (o< (i -/9) 2) 

component are needed. The parametrization obtained in 

our previous analysis [4], extrapolated to x~ = O.01 and 

scaled down by 159~ to take into account the proton dis- 
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sociation background contribution, is also shown in the 

figure as the dashed curve. 

10 Conclusions 

Diffractive DIS events have been studied at HERA using 

the ZEUS leading proton spectrometer.  A clean sample of 

events was selected by requiring a scattered proton with 

XL > 0.97. The background due to proton dissociation 

was est imated to be approximately 3%, substantially lower 

than  in our previous analyses. The use of the LPS has also 

allowed an extension of the ZEUS measurements to values 

of the final s tate hadronic mass M x  as high as 35 OeV. 
The t dependence was measured for the first t ime in 

this process in the range 0.073 < Itl < 0.4 GeV 2, 5 < 
Q2 < 20 GeV 2, 0.015 < /~  < 0.5 and 50 < W < 270 GeV. 

The resulting distribution is described by the function e bt, 
+0.7 

with b = 7.2 ± 1.1(stat.)_0.9(syst. ) GeV -2. 

The diffractive structure function F ~  (4) (~, Q 2  xL,, t) 

was measured in the interval 0.015 < /3  < 0.5, 4 x 10 -4 < 

x z. < 3 x 10 -2 and averaged over the range 0.073 < It[ < 
0.4 GeV 2 and 5 < Q2 < 20 GeV% Because of the limited 

statistical precision of the data, it is not possible to deter- 

mine whether a different x~  dependence is needed in dif- 

ferent x~  and/3 ranges. The x~  dependence is consistent, 

in all/3 intervals, with the form (1 /x~)  a, with a(0.073 < 
+0.II 

It I < 0.4 GeV 2) = 1.00 ± 0.09 (stat.)_0.05(syst.). Inte- 

grating over t, the structure function F D(3) was deter- 

mined. A fit of the form (1 /x~)  a to F D(3) yielded g = 
+0.11 

1.01 ± 0.10 (stat.)_o.06(syst.). 
The result for the effective xw slope is lower than 

tha t  obtained in our previous measurement.  This analysis, 

however, extends the F D(3) measurement  to values of xw 

up to 0.03, where a significant component of reggeon ex- 

change could contribute to lowering the effective xw slope 

parameter  g. 
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