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The electric form factor of the neutron was determined from measurements of the ~dd� ~ee; e0n�p reaction
for quasielastic kinematics. Polarized electrons were scattered off a polarized deuterated ammonia
(15ND3) target in which the deuteron polarization was perpendicular to the momentum transfer. The
scattered electrons were detected in a magnetic spectrometer in coincidence with neutrons in a large
solid angle detector. We find Gn

E � 0:0526� 0:0033�stat� � 0:0026�sys� and 0:0454� 0:0054� 0:0037
at Q2 � 0:5 and 1:0 �GeV=c�2, respectively.

DOI: 10.1103/PhysRevLett.92.042301 PACS numbers: 14.20.Dh, 13.40.Gp, 24.70.+s, 25.40.Ve

The electric form factor of the neutron Gn
E is a funda-

mental quantity in nuclear physics. Knowledge of Gn
E

over a large range of momentum transfer leads to insight
to physics beyond the simple SU(6) symmetric models,
for which it must vanish. Beyond nucleon structure, our
understanding of Gn

E has an impact on a broad range of
topics, which vary from the charge radii of nuclei [1] to
extracting the strangeness content of the nucleon [2].

Historically, measurements of Gn
E have suffered from

large uncertainties due to experimental technique and
nuclear model dependence. Early attempts to measure
Gn
E from cross sections sometimes failed to determine

even the sign. Until recently, the best determination of Gn
E

came from elastic electron-deuteron measurements, but
the errors were large, �30%, due to their dependence
on the nucleon-nucleon potential model [3]. The first
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polarization measurements of Gn
E, conducted with 2H and

3He targets, differed significantly because final state in-
teractions were not addressed [4,5]. These experiences
highlight the importance of measuringGn

E using different
reactions.

In the past few years, the experimental understanding
of Gn

E has improved considerably. The results from polar-
ization experiments described in Refs. [6–11] are con-
sistent and provide good accuracy in the kinematic
region of the four-momentum transferred squared Q2 �
0:7 �GeV=c�2 [henceforth units of Q2 are assumed to be
�GeV=c�2]. Until now, values of Gn

E determined from the
deuteron quadrupole form factor [12] provide the only
information in the kinematic region above Q2 � 0:7 and
leave the Q2 > 1:6 region undetermined.

This Letter describes a first measurement of Gn
E at

Q2 � 1:0 using a polarized target. In addition, the result
for Q2 � 0:5 has half the uncertainty as the previous
measurement [6] and is the most precise result near the
peak of Gn

E. These results are largely insensitive to the
model of the nucleon-nucleon (NN) potential so that,
compared to those of Ref. [12], they are more reliable.

To determine Gn
E, the helicity dependent rate asymme-

try in electron scattering was measured. In the ideal case
of a polarized electron scattering elastically off a free
polarized neutron, with the neutron polarization vector in
the scattering plane and perpendicular to the momentum
transfer ~qq, Gn

E is related to the beam-target asymmetry
term AV

en [13] by

AV
en �

	2
������������������
���
 1�

p
tan��e=2�Gn

EG
n
M

�Gn
E�

2 
 ��1
 2�1
 ��tan2��e=2���G
n
M�

2 ; (1)

where � � Q2=4M2
n, Mn is the mass of the neutron, Gn

M is
the magnetic form factor of the neutron, and �e is the
electron scattering angle.

For lack of a free neutron target, the actual measure-
ments were performed on a polarized deuterium target.
The measured experimental asymmetries were due to a
combination of several physics asymmetries scaled by the
electron and target vector and tensor polarizations (that
are described in detail in our previous work [6], not
repeated here for brevity’s sake). The proper averaging
of the asymmetry (symmetrically around ~qq) and the
negligible contributions from the target tensor asymme-
try simplify the relationship of the measured asymmetry
� to the deuteron vector asymmetry AV

ed so that � �
fPeP

d
1A

V
ed, where Pe is the beam polarization, Pd

1 is
the deuteron vector polarization, and f is the dilution
factor due to scattering from nucleons other than polar-
ized deuterons in the target. Calculations show that
AV
ed depends linearly on Gn

E for the kinematics of the
experiment [14].

The measurements were conducted in Hall C of the
Thomas Jefferson National Accelerator Facility in a setup
similar to that of the previous measurement [6]. The

longitudinally polarized electron beam [15] was scat-
tered off a polarized frozen deuterated ammonia
(15ND3) target. The scattered electrons were detected by
the high momentum spectrometer (HMS), and the neu-
trons were detected by a dedicated neutron detector. The
central kinematics for the two measurements as well as
the average beam and target polarizations are listed in
Table I. The average deuteron luminosity was 1035 cm2 s.

The polarized target [16] consisted of ammonia gran-
ules submerged in liquid He and maintained at 1 K by a
4He evaporation refrigerator. The target spins were
aligned by a 5 T magnetic field generated by a pair of
superconducting coils. The polarization was enhanced via
dynamic nuclear polarization [17] and measured with a
continuous-wave NMR system [18]. To minimize local-
ized heating and depolarization of the target material, the
electron beam was rastered uniformly in a circular pat-
tern with a 1 cm radius.

A two-magnet chicane compensated for the deflection
of the electron beam by the target field. After traversing
the target, the beam passed through a helium bag to a
special dump in the experimental hall. The polarization
of the beam was measured at regular intervals throughout
the experiment with a Møller polarimeter [19]. The beam
helicity was changed in a pseudorandom sequence 30
times per second to minimize charge fluctuations corre-
lated with helicity.

The HMS was operated in its standard mode for the
detection of electrons. The established reconstruction
algorithms were augmented to account for the large
beam rastering and the effects of the target magnetic
field on the scattered electrons.

The neutron detector consisted of multiple vertical
planes of segmented plastic scintillators. Two planes of
thin scintillators served to distinguish charged particles.
Behind these were six planes of thick scintillators to
detect the neutrons. All scintillators were equipped with
photomultipliers on both ends to provide spatial and time
information for the detected particle. The 88 thick scin-
tillators provided a neutron detection volume that was
roughly 160 cm wide, 160 cm tall, and 90 cm deep. The
front of the detection volume was approximately 4.2 m
and 6.2 m from the target during the Q2 � 0:5 and 1.0
measurements, respectively. The detector was shielded

TABLE I. Central kinematics and average polarizations. E
(E0) is the energy of the incident (scattered) electron. �e (�n) is
the angle of the scattered electron (neutron). �B is the orienta-
tion of the target polarization axis. hPei and hPti are the average
beam and target polarizations, respectively.

Q2 E E0 �e �n �B hPei hPti

�GeV=c�2 (GeV) (GeV) (deg) (deg) (deg) (%) (%)

0.5 2.331 1.963 	18:5 60.5 150.4 78.2 24.1
1.0 3.481 2.810 	18:0 53.3 143.3 71.8 23.8
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from direct gamma rays from the target by a 2.5 cm lead
curtain, and the entire assembly was housed in a thick-
walled concrete hut, which was open to the target.

The trigger was set up so that the neutron detector was
read out for every electron trigger in the HMS. Coin-
cidences between the electrons and the knockout nucleon
were determined off-line.

The experiment was simulated using Monte Carlo
(MC) techniques. The simulation package, based on
MCEEP [20], included the charged particle transport
through the target’s magnetic field and the optical and
aperture model of the HMS from the Hall C simulation
package SIMC [21]. The MC served two principal func-
tions: to determine the dilution factor and to average the
theoretical asymmetries over the acceptance. For the
dilution factor, all target materials were included in
the simulation: the deuterium and the nitrogen in the
ammonia, the liquid helium bath, the aluminum target
cell windows, and the NMR coil.

Contributions from electron-neutron events originating
from quasielastic scattering and pion production were
included in the MC for all target materials. It was found
that the �e; e0n�� contribution to the event sample was
negligible for Q2 � 0:5 and less than 0:5% for Q2 � 1:0.
Two-body knockout contributions were examined in the
MC (following [22]) and were also negligible.

The simulated rates were normalized to the measured
ammonia rates, and the variations in the ratios of MC rate
to observed rate for various target materials were used to
determine the uncertainty in the dilution factor. A com-
parison of event distributions of the data and MC for
several kinematic variables for Q2 � 1:0 is shown in
Fig. 1; agreement is very good. The comparison for the
Q2 � 0:5 data is similar and slightly better than in the
previous experiment [6].

Several corrections to the measured asymmetry were
applied. The leading correction was for charge exchange
of protons in the lead shielding: 	3:8� 1:1% (	3:3�
3:0%) for Q2 � 0:5 (Q2 � 1:0). The charge exchange
in the target material itself was small: 	0:3� 0:3%
(	0:3� 0:3%). The accidental background rate was
1:9� 0:1% (0:5� 0:2%) with no statistically significant
asymmetry. Internal radiation effects on the asymmetry
were also corrected: 0:9� 0:5% (0:6� 0:5%). The effect
of external radiation was insignificant compared to the
0:5% MC statistical uncertainty. The contamination from
neutral pions generated by protons in the lead shielding of
the neutron detector was also found to be insignificant.

The physics model of AV
ed used in the MC was based on

the calculations of Arenhövel, Leidemann, and Tomusiak
[14]. It included a nonrelativistic description of the n	 p
system in the deuteron using the Bonn R-space NN po-
tential [23] for both the bound state and the final state
interactions. The full calculation included meson ex-
change, isobar configuration currents, and relativistic
corrections.

The model assumed a scaled Galster parametrization
[24] for Gn

E and the dipole parametrization for Gn
M.

The Galster parametrization is Gn
E�Q

2� � 	�n�=�1

5:6��GD�Q

2�, where GD � 1=�1
Q2=0:71�2 is the di-
pole form factor. Various scale factors of this parametri-
zation, ranging from 0.5 to 1.5, were examined. The
potential impact of the Q2 dependence of the Gn

E parame-
trization was found to be negligible because the Q2 ac-
ceptance was not large and the Q2 dependence of Gn

E over
the acceptance was mostly linear. The acceptance-
averaged value of AV

ed has a linear dependence on Gn
M,

so one can trivially correct for more accurate Gn
M values.

The value of Gn
E was determined by comparing the

acceptance averaged AV
ed of the data to that of the MC. The

theoretical asymmetries were determined for a range of
scaling factors of the Galster parametrization to deter-
mine the corresponding Gn

E: Gn
E=Galster � 1:003� 0:064

and 1:172� 0:140 for Q2 � 0:5 and 1.0, respectively. The
uncertainties are statistical only. To account for the slight
deviations of Gn

M from the dipole form factor, the recent
fit to the Gn

M data [25] was used: Gn
M=�nGD � 1:007�

0:005 and 1:072� 0:014 for Q2 � 0:5 and 1.0, respec-
tively. Then the values for Gn

E are

Gn
E�Q

2 � 0:5� � 0:0526� 0:0033� 0:0026;

G n
E �Q

2 � 1:0� � 0:0454� 0:0054� 0:0037;
(2)
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FIG. 1. Comparison of Q2 � 1:0 MC and data electron-
neutron event distributions from all materials in the target
for four kinematic variables: invariant mass W, Q2, angle
between the neutron and ~qq in lab frame �nq, and angle between
neutron-proton system and the momentum transfer in the
center-of-momentum frame �cmnp . The solid grey histograms
correspond to the data, and the dotted black histograms cor-
respond to the simulation. Only the shaded regions, dominated
by events from 2H were used to determine Gn

E.
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where the first uncertainty is statistical and the second is
systematic. The Q2 � 0:5 result agrees well with the
previous result reported in Ref. [6].

Other systematic uncertainties forQ2 � 0:5 (Q2 � 1:0)
were dilution factor 3:4% (3:0%), target polarization
2:9% (4:6%), central kinematic values 1:2% (3:4%), and
beam polarization 1:1% (3:3%).

The results as compared to recent measurements are
shown in Fig. 2. The new data at Q2 � 1:0 provides the
important experimental confirmation of the decline of Gn

E
following the Galster form. The data shown in the figure
were fit to the form Gn

E�Q
2� � 	�na�=�1
 p��GD�Q2�.

The parameter a � 0:895� 0:039, the slope at Q2 � 0, is
fixed by atomic measurements of the neutron charge
radius [26]. The fit yielded p � 3:69� 0:40. The errors
obtained for the fit parameters are uncorrelated. The one-
sigma error region of the fit is shown in Fig. 2 as the
shaded band.

Many recent models [27–31] have attempted to predict
or fit the nucleon electromagnetic form factors. Figure 2
compares the data with two recent calculations that use
covariant formulations of the constituent quark model
with quark-quark interactions fitted to spectroscopic data.
The pointform spectator approximation (PFSA) of [30]
(dot-dashed line) uses a Goldstone boson exchange inter-
action with pointlike constituent quarks while the light-
front (LF) calculation of [28] (short-dashed line) uses a
one-gluon exchange interaction with constituent quark
form factors fitted to data for Q2 < 1. The use of con-
stituent form factors improves the fit to the nucleon
magnetic form factors at larger Q2, but the PFSA seems
to describe Gn

E better at low Q2 with fewer parameters.
Also shown in Fig. 2 are the results from a hybrid

model that interpolates between vector-meson dominance
at low Q2 and perturbative QCD at high Q2 [27] (solid
line), from a light-front model where the nucleon is
considered a system of three bound quarks surrounded

by a cloud of pions [31] (long dashed line) and from a
soliton model [29] (dotted line) whose basic features
include an extended object, partial coupling to the vector
mesons, and relativistic recoil corrections.While all these
models agree qualitatively with the data, none agree with
the data for the entire range of Q2.

It is remarkable that, in the past five years, the experi-
mental precision inGn

E measurements has improved to the
10% level. This significant improvement provides a rig-
orous challenge for models of the nucleon structure be-
cause this electromagnetic form factor is the most
sensitive to physics beyond the simplistic SU(6) symmet-
ric picture.

In conclusion, the electric form factor of the neutron at
Q2 � 0:5 and 1.0 has been determined from measure-
ments of the beam-target asymmetry. This experiment
provides the highest Q2 measurement to date using a
polarized target and the most precise measurement near
the maximum of Gn

E.
We wish to thank the Hall C technical and engineering

staff at TJNAF as well as the injector, target, and survey
groups for their outstanding support. This work was
supported by the Commonwealth of Virginia, the
Schweizerische Nationalfonds, the U.S. Department of
Energy, the U.S. National Science Foundation, the U.S.-
Israel Binational Science Foundation, and the Deutsche
Forschungsgemeinshaft. The Southeastern University
Research Association (SURA) operates the Thomas
Jefferson National Accelerator Facility for the U.S.
Department of Energy under Contract No. DE-AC05-
84ER40150.

[1] J. L. Friar and J.W. Negele, Adv. Nucl. Phys. 8, 219
(1975).

[2] K. S. Kumar and P. A. Souder, Prog. Part. Nucl. Phys. 45,
S333 (2000).

[3] S. Platchkov et al., Nucl. Phys. A510, 740 (1990).
[4] J. Becker et al., Eur. Phys. J. A 6, 329 (1999).
[5] M. Ostrick et al., Phys. Rev. Lett. 83, 276 (1999).
[6] H. Zhu et al., Phys. Rev. Lett. 87, 081801 (2001).
[7] I. Passchier et al., Phys. Rev. Lett. 82, 4988 (1999).
[8] J. Golak et al., Phys. Rev. C 63, 034006 (2001).
[9] T. Eden et al., Phys. Rev. C 50, R1749 (1994).

[10] C. Herberg et al., Eur. Phys. J. A 5, 131 (1999).
[11] J. Bermuth et al., Phys. Lett. B 564, 199 (2003); D. Rohe

et al., Phys. Rev. Lett. 83, 4257 (1999).
[12] R. Schiavilla and I. Sick, Phys. Rev. C 64, 041002(R)

(2002).
[13] T.W. Donnelly and A. S. Raskin, Ann. Phys. (N.Y.) 169,

247 (1986); A. S. Raskin and T.W. Donnelly, Ann. Phys.
(N.Y.) 191, 78 (1989).
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H. Arenhövel, W. Leidemann, and E. L. Tomusiak,
Phys. Rev. C 46, 455 (1992); H. Arenhövel (unpublished).
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