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Abstract The production of the ηc(1S) state in proton-

proton collisions is probed via its decay to the p p final

state with the LHCb detector, in the rapidity range 2.0 <

y < 4.5 and in the meson transverse-momentum range

pT > 6.5 GeV/c. The cross-section for prompt produc-

tion of ηc(1S) mesons relative to the prompt J/ψ cross-

section is measured, for the first time, to be σηc(1S)/σJ/ψ =
1.74 ± 0.29 ± 0.28 ± 0.18B at a centre-of-mass energy√

s = 7 TeV using data corresponding to an integrated lumi-

nosity of 0.7 fb−1, and σηc(1S)/σJ/ψ = 1.60±0.29±0.25±
0.17B at

√
s = 8 TeV using 2.0 fb−1. The uncertainties

quoted are, in order, statistical, systematic, and that on the

ratio of branching fractions of the ηc(1S) and J/ψ decays to

the p p final state. In addition, the inclusive branching frac-

tion of b-hadron decays into ηc(1S) mesons is measured, for

the first time, to be B(b→ηc X) = (4.88 ± 0.64 ± 0.29 ±
0.67B)× 10−3, where the third uncertainty includes also the

uncertainty on the J/ψ inclusive branching fraction from b-

hadron decays. The difference between the J/ψ and ηc(1S)

meson masses is determined to be 114.7±1.5±0.1 MeV/c2.

1 Introduction

High centre-of-mass energies available in proton-proton col-

lisions at the LHC allow models describing charmonium

production to be tested. We distinguish promptly produced

charmonia from those originating from b-hadron decays.

Promptly produced charmonia include charmonia directly

produced in parton interactions and those originating from

the decays of heavier quarkonium states, which are in turn

produced in parton interactions. While measurements of

J/ψ and ψ(2S) meson production rates at the LHC [1–6]

are successfully described by next-to-leading order (NLO)

calculations in non-relativistic quantum chromodynamics

(QCD) [7], the observation of small or no polarization in J/ψ

meson prompt production [2] remains unexplained within
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the available theoretical framework [8]. The investigation

of the lowest state, the ηc(1S) meson, can provide impor-

tant additional information on the long-distance matrix ele-

ments [9,10]. In particular, the heavy-quark spin-symmetry

relation between the ηc(1S) and J/ψ matrix elements can

be tested, with the NLO calculations predicting a different

dependence of the production rates on charmonium trans-

verse momentum, pT, for spin singlet (ηc(1S)) and triplet

(J/ψ , χcJ ) states [11–13]. Thus, a measurement of the pT

dependence of the ηc(1S) production rate, in particular in

the low pT region, can have important implications. Recent

LHCb results on prompt production of χc states [14] provide

information on the production of the P-wave states χc0 and
χc2 at low pT, using the well-understood χc1 production as

a reference. A measurement of the cross-section of prompt

ηc(1S) production may allow an important comparison with

the χc0 results and yields indirect information on the produc-

tion of heavier states.

At LHC energies, all b-hadron species are produced,

including weakly decaying B−, B0, B0
s , B−

c mesons, b-

baryons, and their charge-conjugate states. A previous

study of inclusive ηc(1S) meson production in b-hadron

decays by the CLEO experiment, based on a sample of

B− and B0 mesons, placed an upper limit on the com-

bined inclusive branching fraction of B− and B0 meson

decays into final states containing an ηc(1S) meson of

B(B−, B0→ηc(1S)X) < 9 × 10−3 at 90 % confidence

level [15]. Exclusive analyses of ηc(1S) and J/ψ meson

production in b-hadron decays using the B→K (pp) decay

mode have been performed by the BaBar experiment [16], by

the Belle experiment [17] and recently by the LHCb experi-

ment [18].

In the present paper we report the first measurement of the

cross-section for the prompt production of ηc(1S) mesons

in pp collisions at
√

s = 7 TeV and
√

s = 8 TeV centre-

of-mass energies, as well as the b-hadron inclusive branch-

ing fraction into ηc(1S) final states. This paper extends the

scope of previous charmonium production studies reported

by LHCb, which were restricted to the use of J/ψ or
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ψ(2S) decays to dimuon final states [1,2,14,19]. In order to

explore states that do not have J PC = 1−− quantum num-

bers, while avoiding reconstruction of radiative decays with

low-energy photons, the authors of Ref. [20] suggested to

investigate hadronic final states. In the present analysis, we

reconstruct ηc(1S) mesons decaying into the p p final state.

All well-established charmonium states decay to p p final

states [20,21]. With its powerful charged-hadron identifica-

tion and high charmonium production rate, the LHCb exper-

iment is well positioned for these studies. The measurements

are performed relative to the topologically and kinematically

similar J/ψ→pp channel, which allows partial cancellation

of systematic uncertainties in the ratio. This is the first such

inclusive analysis using decays to hadronic final states per-

formed at a hadron collider.

In addition, a departure in excess of two standard devi-

ations between the recent BES III results [22,23] and

earlier measurements [21] motivates the determination of

the difference between J/ψ and ηc(1S) meson masses

�MJ/ψ, ηc(1S) ≡ MJ/ψ −Mηc(1S) using a different technique

and final state. In the present analysis, the low-background

sample of charmonia produced in b-hadron decays is used

to determine �MJ/ψ, ηc(1S) and the ηc(1S) natural width,

Ŵηc(1S).

In Sect. 2 we present the LHCb detector and data sample

used for the analysis. Section 3 describes the analysis details,

while the systematic uncertainties are discussed in Sect. 4.

The results are given in Sect. 5 and summarized in Sect. 6.

2 LHCb detector and data sample

The LHCb detector [24] is a single-arm forward spectrome-

ter covering the pseudorapidity range 2 < η < 5, designed

for the study of particles containing b or c quarks. The

detector includes a high-precision tracking system consist-

ing of a silicon-strip vertex detector surrounding the pp

interaction region, a large-area silicon-strip detector located

upstream of a dipole magnet with a bending power of

about 4 Tm, and three stations of silicon-strip detectors

and straw drift tubes placed downstream of the magnet.

The combined tracking system provides a momentum mea-

surement with a relative uncertainty that varies from 0.4 %

at low momentum to 0.6 % at 100 GeV/c, and an impact

parameter measurement with a resolution of 20 µm for

charged particles with large transverse momentum. Differ-

ent types of charged hadrons are distinguished using infor-

mation from two ring-imaging Cherenkov detectors. Pho-

ton, electron, and hadron candidates are identified by a sys-

tem consisting of scintillating-pad and preshower detectors,

an electromagnetic calorimeter, and a hadronic calorime-

ter. Muons are identified by a system composed of alter-

nating layers of iron and multiwire proportional chambers.

The trigger consists of a hardware stage, based on infor-

mation from the calorimeter and muon systems, followed

by a software stage, which applies a full event reconstruc-

tion.

Events enriched in signal decays are selected by the

hardware trigger, based on the presence of a single high-

energy deposit in the calorimeter. The subsequent soft-

ware trigger specifically rejects high-multiplicity events and

selects events with two oppositely charged particles hav-

ing good track-fit quality and transverse momentum larger

than 1.9 GeV/c. Proton and antiproton candidates are iden-

tified using the information from Cherenkov and tracking

detectors [25]. Selected p and p candidates are required to

form a good quality vertex. In order to further suppress the

dominant background from accidental combinations of ran-

dom tracks (combinatorial background), charmonium can-

didates are required to have high transverse momentum,

pT > 6.5 GeV/c.

The present analysis uses pp collision data recorded by

the LHCb experiment at
√

s = 7 TeV, corresponding to

an integrated luminosity of 0.7 fb−1, and at
√

s = 8 TeV,

corresponding to an integrated luminosity of 2.0 fb−1.

Simulated samples of ηc(1S) and J/ψ mesons decaying

to the pp final state, and J/ψ decaying to the ppπ0 final state,

are used to estimate efficiency ratios, the contribution from

the decay J/ψ→ppπ0, and to evaluate systematic uncer-

tainties. In the simulation, pp collisions are generated using

Pythia [26] with a specific LHCb configuration [27]. Decays

of hadronic particles are described by EvtGen [28], in which

final-state radiation is generated using Photos [29]. The

interaction of the generated particles with the detector and its

response are implemented using the Geant4 toolkit [30,31]

as described in Ref. [32].

3 Signal selection and data analysis

The signal selection is largely performed at the trigger level.

The offline analysis, in addition, requires the transverse

momentum of p and p to be pT > 2.0 GeV/c, and restricts

charmonium candidates to the rapidity range 2.0 < y < 4.5.

Discrimination between promptly produced charmonium

candidates and those from b-hadron decays is achieved using

the pseudo-decay time tz = �z · M/pz , where �z is the

distance along the beam axis between the corresponding pp

collision vertex (primary vertex) and the candidate decay

vertex, M is the candidate mass, and pz is the longitudinal

component of its momentum. Candidates with tz < 80 fs are

classified as prompt, while those with tz > 80 fs are classified

as having originated from b-hadron decays. For charmonium

candidates from b-hadron decays, a significant displacement

of the proton tracks with respect to the primary vertex is also

required.
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The selected samples of prompt charmonium candidates

and charmonia from b-hadron decays have some candidates

wrongly classified (cross-feed). The cross-feed probability

is estimated using simulated samples and is scaled using

the observed signal candidate yields in data. The cross-

feed component is subtracted to obtain the ratio of pro-

duced ηc(1S) and J/ψ mesons decaying into the p p final

state. Corrections range from 2 % to 3 % for the ratio of

promptly produced ηc(1S) and J/ψ mesons, and from 8 %

to 10 % for the ratio of charmonia produced in b-hadron

decays.

The ratios of signal yields are expressed in terms of ratios

of cross-sections multiplied by the decay branching fractions

as

N P
ηc(1S)

N P
J/ψ

=
σ(ηc(1S)) × B(ηc(1S)→pp)

σ (J/ψ) × B(J/ψ→pp)
,

N b
ηc(1S)

N b
J/ψ

=
B(b→ηc(1S)X) × B(ηc(1S)→pp)

B(b→J/ψ X) × B(J/ψ→pp)
,

where N P and N b are the numbers of charmonia from prompt

production and b-hadron decays, respectively. The simula-

tion describes the kinematic-related differences between the

ηc(1S) and J/ψ decay modes reasonably well and predicts

that the relative efficiencies for selecting and reconstructing

ηc(1S) and J/ψ mesons differ by less than 0.5%. Equal effi-

ciencies are assumed for the ηc(1S) and J/ψ meson recon-

struction and selection criteria. The efficiency for selecting

and reconstructing prompt J/ψ mesons is corrected for polar-

ization effects, as a function of rapidity and pT, according to

Ref. [2].

The numbers of reconstructed ηc(1S) and J/ψ candi-

dates are extracted from an extended maximum likelihood

fit to the unbinned p p invariant mass distribution. The J/ψ

peak position MJ/ψ and the mass difference �MJ/ψ,ηc(1S)

are fitted in the sample of charmonia from b-hadron decays,

where the signal is more prominent because of the reduced

background level due to charmonium decay-vertex displace-

ment requirements. The results are then used to apply Gaus-

sian constraints in the fit to the p p invariant mass spec-

trum in the prompt production analysis, where the signal-

to-background ratio is smaller, due to large combinatorial

backgrounds.

The signal shape is defined by the detector response, com-

bined with the natural width in the case of the ηc(1S) reso-

nance. The detector response is described using two Gaus-

sian functions with a common mean value. In the descrip-

tion of each resonance, the ratio of narrow to wide Gaussian

widths, σ a
J/ψ/σ b

J/ψ = σ a
ηc(1S)

/σ b
ηc(1S)

, the fraction of the nar-

row Gaussian component, and the ratio of the ηc(1S) and

J/ψ narrow Gaussian widths, σ a
ηc(1S)

/σ a
J/ψ , are fixed in the

fit to the values observed in simulation. The only resolution

parameter left free in the fit to the low-background sample

from b-hadron decays, σ a
J/ψ , is fixed to its central value in

the fit to the prompt sample. The natural width Ŵηc(1S) of

the ηc(1S) resonance is also extracted from the fit to the b-

hadron decays sample, and is fixed to that value in the prompt

production analysis. Gaussian constraints on the J/ψ meson

mass and the �MJ/ψ, ηc(1S) mass difference from the fit to the

b-hadron decays sample are applied in the prompt produc-

tion analysis. The fit with free mass values gives consistent

results.

The combinatorial background is parametrized by an

exponential function in the fit of the sample from b-hadron

decays, and by a third-order polynomial in the fit to the

prompt sample.

Combinations of p p from the decay J/ψ→ppπ0 poten-

tially affect the region close to the ηc(1S) signal; hence,

this contribution is specifically included in the background

description. It produces a non-peaking contribution, and its

mass distribution is described by a square-root shape to

account for the phase space available to the p p system from

the J/ψ→ppπ0 decay, convolved with two Gaussian func-

tions to account for the detector mass resolution. In the fit

to the p p invariant mass spectrum, the normalization of this

contribution is fixed using the number of candidates found

in the J/ψ signal peak and the ratios of branching fractions

and efficiencies for the J/ψ→ppπ0 and J/ψ→pp decay

modes.

The p p invariant mass spectra for charmonium candi-

dates from b-hadron decays in the 7 TeV and 8 TeV data are

observed to be consistent. The two data samples are therefore

combined and the resulting spectrum is shown in Fig. 1 with

the fit overlaid.

The J/ψ meson signal is modelled using a double-

Gaussian function. The ηc(1S) signal is modelled using a

relativistic Breit–Wigner function convolved with a double-

Gaussian function. The background contribution from the

J/ψ→ppπ0 decay with an unreconstructed pion, is small.

The fit yields 2020±230 ηc(1S) signal decays and 6110±116

J/ψ signal decays.

The results of the fit to the p p invariant mass spectrum

of the prompt sample are shown in Fig. 2a and b for data

collected at
√

s = 7 TeV and
√

s = 8 TeV, respectively.

The fits yield 13 370 ± 2260 ηc(1S) and 11 052 ± 1004 J/ψ

signal decays for the data taken at
√

s = 7 TeV, and 22 416±
4072 ηc(1S) and 20 217 ± 1403 J/ψ signal decays for the√

s = 8 TeV data.

In order to assess the quality of these unbinned fits to

the invariant pp̄ mass spectra, the chisquare per degree of

freedom was calculated for the binning schemes shown in

Figs. 1, and 2a, b. The values are 1.3, 1.7 and 1.8, respectively.

From the observed ηc(1S) and J/ψ yields, and taking into

account cross-feed between the samples, the yield ratios are

obtained as
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Fig. 1 Proton–antiproton invariant mass spectrum for candidates orig-

inating from a secondary vertex and reconstructed in
√

s = 7 TeV and√
s = 8 TeV data. The solid blue line represents the best-fit curve,

the long-dashed red line corresponds to the ηc(1S) signal, the dashed-

dotted cyan line corresponds to the J/ψ signal, and the dashed magenta

line corresponds to the small contribution from J/ψ→ppπ0 decays with

the pion unreconstructed. The dotted blue line corresponds to the com-

binatorial background. The distribution of the difference between data

points and the fit function is shown in the bottom panel

(a)

(b)

Fig. 2 Proton–antiproton invariant mass spectrum for candidates orig-

inating from a primary vertex (upper panel in each plot), and distribution

of differences between data and the background distribution resulting

from the fit (lower panel in each plot), in data at a
√

s = 7 TeV and

b
√

s = 8 TeV centre-of-mass energies. Distributions on the upper

panels are zero-suppressed
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(N P
ηc(1S)/N P

J/ψ )√s=7 TeV = 1.24 ± 0.21,

(N P
ηc(1S)/N P

J/ψ )√s=8 TeV = 1.14 ± 0.21

and

N b
ηc(1S)/N b

J/ψ = 0.302 ± 0.039

for the prompt production and charmonium production in b-

hadron decays. Only statistical uncertainties are given in the

above ratios.

4 Systematic uncertainties

We consider systematic uncertainties due to limited knowl-

edge of the detector mass resolution, the J/ψ polariza-

tion, the ηc(1S) natural width, possible differences of the

prompt charmonium production spectra in data and simula-

tion, cross-feed between the prompt charmonium sample and

the charmonium sample from b-hadron decays, background

description and feed-down from J/ψ→ppπ0 decays.

Uncertainties due to limited knowledge of the detector

mass resolution are estimated by assigning the same σ a

value to the ηc(1S) and J/ψ signal description for the b-

hadron sample, and by varying the σ a parameters in the

prompt production analysis within their uncertainties. Uncer-

tainties associated with the J/ψ polarization in the prompt

production reflect those of the polarization measurement in

Ref. [2]. We evaluate a potential contribution from J/ψ polar-

ization in b-hadron decays using a BaBar study [32] of the

J/ψ polarization in inclusive decays of B mesons. Simula-

tions are used to estimate the effective polarization parameter

for the LHCb kinematic region where the b-hadrons have a

high boost and the longitudinal polarization is significantly

reduced. A conservative value for the polarization parame-

ter of −0.2 is used to estimate the corresponding systematic

uncertainty. In order to estimate the systematic uncertainty

associated with the ηc(1S) natural width, which enters the

results for the prompt production analysis, the world average

Ŵηc(1S) value of 32.0 MeV from Ref. [21] is used. Possible

differences of the prompt charmonium production spectra

in data and simulation are estimated by correcting the effi-

ciency derived from simulation according to the observed

pT distribution. The uncertainty related to the cross-feed is

estimated by varying the signal yields in each sample accord-

ing to their uncertainties. Uncertainties associated with the

background description are estimated by using an alternative

parametrization and varying the fit range. The uncertainty

due to the contribution from the J/ψ→ppπ0 decay is dom-

inated by the modelling of the pp invariant mass shape, and

is estimated by using an alternative parametrization, which

is linear instead of the square root. Possible systematic effect

related to separation between prompt and b-decays sam-

ples, was checked by varying the tz discriminant value from

80 to 120 fs. The results are found to be stable under variation

Table 1 Summary of uncertainties for the yield ratio Nηc(1S)/NJ/ψ

Production in

b-Hadron decays

Prompt production

√
s = 7 TeV

√
s = 8 TeV

Statistical

uncertainty

0.039 0.21 0.21

Systematic

uncertainties

Signal resolution

ratio (simulation)

0.006 0.04 0.03

Signal resolution

variation

0.01 0.01

J/ψ polarization 0.009 0.02 0.02

Ŵηc(1S) variation 0.15 0.14

Prompt production

spectrum

0.003 0.07 0.06

Cross-feed 0.008 0.01 0.01

Background model 0.011 0.09 0.09

Total systematic

uncertainty

0.018 0.20 0.18

of the value of the tz discriminant, and no related systematic

uncertainty is assigned. Table 1 lists the systematic uncer-

tainties for the production yield ratio. The total systematic

uncertainty is estimated as the quadratic sum of the uncer-

tainties from the sources listed in Table 1 and, in the case

of the prompt production measurement, is dominated by the

uncertainty associated with the ηc(1S) natural width. For the

measurement with b-hadron decays the uncertainties associ-

ated with the background model, the J/ψ polarization and

the cross-feed provide significant contributions.

5 Results

The yield ratio for charmonium production in b-hadron

decays is obtained as

N b
ηc(1S)/N b

J/ψ = 0.302 ± 0.039 ± 0.015.

In all quoted results, the first uncertainty refers to the statis-

tical contribution and the second to the systematic contribu-

tion. By correcting the yield ratio with the ratio of branching

fractions B(J/ψ→pp)/B(ηc(1S)→pp) = 1.39 ± 0.15 [21],

the ratio of the inclusive b-hadron branching fractions into

ηc(1S) and J/ψ final states for charmonium transverse

momentum pT > 6.5 GeV/c is measured to be

B(b→ηc(1S)X)/B(b→J/ψ X)

= 0.421 ± 0.055 ± 0.025 ± 0.045B,

where the third uncertainty is due to that on the J/ψ→pp

and ηc(1S)→pp branching fractions [21]. Assuming that the

pT > 6.5 GeV/c requirement does not bias the distribution

of charmonium momentum in the b-hadron rest frame, and
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(a) (b)

(c) (d)

Fig. 3 Transverse momentum spectra for ηc(1S) mesons (red filled

circles). The pT spectra of J/ψ from Refs. [1–3] are shown for com-

parison as blue open circles. Prompt production spectra are shown on

a and c for data collected at
√

s = 7 TeV and
√

s = 8 TeV, respec-

tively. The spectra from inclusive charmonium production in b-hadron

decays are shown on b and d for data collected at
√

s = 7 TeV and√
s = 8 TeV, respectively

using the branching fraction of b-hadron inclusive decays

into J/ψ mesons from Ref. [21], B(b→J/ψ X) = (1.16 ±
0.10)%, the inclusive branching fraction of ηc(1S) from b-

hadron decays is derived as

B(b→ηc(1S)X) = (4.88 ± 0.64 ± 0.29 ± 0.67B) × 10−3,

where the third uncertainty component includes also the

uncertainty on the J/ψ inclusive branching fraction from

b-hadron decays. This is the first measurement of the inclu-

sive branching fraction of b-hadrons to an ηc(1S) meson. It is

consistent with a previous 90 % confidence level upper limit

restricted to B− and B0 decays, B(B−, B0→ηc(1S)X) <

9 × 10−3 [15].

The prompt production yield ratios at the different centre-

of-mass energies are obtained as

(N P
ηc(1S)/N P

J/ψ )√s=7 TeV = 1.24 ± 0.21 ± 0.20,

(N P
ηc(1S)/N P

J/ψ )√s=8 TeV = 1.14 ± 0.21 ± 0.18.

After correcting with the ratio of branching fractions B(J/ψ

→pp)/B(ηc(1S)→pp) [21], the relative ηc(1S) to J/ψ

prompt production rates in the kinematic regime 2.0 < y <

4.5 and pT > 6.5 GeV/c are found to be

(σηc(1S)/σJ/ψ )√s=7 TeV = 1.74 ± 0.29 ± 0.28 ± 0.18B,

for the data sample collected at
√

s = 7 TeV, and

(σηc(1S)/σJ/ψ )√s=8 TeV = 1.60 ± 0.29 ± 0.25 ± 0.17B,

for the data sample collected at
√

s = 8 TeV. The third con-

tribution to the uncertainty is due to that on the J/ψ→pp and

ηc(1S)→pp branching fractions.

The absolute ηc(1S) prompt cross-section is calculated

using the J/ψ prompt cross-section measured in Refs. [2]

and [3] and integrated in the kinematic range of the present

analysis, 2.0 < y < 4.5 and pT > 6.5 GeV/c. The corre-

sponding J/ψ prompt cross-sections were determined to be

(σJ/ψ )√s=7 TeV = 296.9±1.8±16.9 nb for
√

s = 7 TeV [2],

and (σJ/ψ )√s=8 TeV = 371.4 ± 1.4 ± 27.1 nb for
√

s =
8 TeV [3]. The J/ψ meson is assumed to be produced unpo-

larized. The prompt ηc(1S) cross-sections in this kinematic
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region are determined to be

(σηc(1S))
√

s=7 TeV = 0.52 ± 0.09 ± 0.08 ± 0.06σJ/ψ ,B µb,

for
√

s = 7 TeV, and

(σηc(1S))
√

s=8 TeV = 0.59 ± 0.11 ± 0.09 ± 0.08σJ/ψ ,B µb,

for
√

s = 8 TeV. Uncertainties associated with the J/ψ→pp

and ηc(1S)→pp branching fractions, and with the J/ψ cross-

section measurement, are combined into the last uncertainty

component, dominated by the knowledge of the branching

fractions. This is the first measurement of prompt ηc(1S)

production in pp collisions. The cross-section for the ηc(1S)

prompt production is in agreement with the colour-singlet

leading order (LO) calculations, while the predicted cross-

section exceeds the observed value by two orders of mag-

nitude when the colour-octet LO contribution is taken into

account [33]. However, the NLO contribution is expected to

significantly modify the LO result [11]. Future measurements

at the LHC design energy of
√

s = 14 TeV may allow a study

of the energy dependence of the ηc(1S) prompt production.

The ηc(1S) differential cross-section as a function of pT

is obtained by fitting the p p invariant mass spectrum in three

or four bins of pT. The same procedure as used to extract the

ηc(1S) cross-section is followed. The J/ψ pT spectrum mea-

sured in Refs. [1–3] is used to obtain the ηc(1S) pT spectrum

for both prompt production and inclusive ηc(1S) production

in b-hadron decays (Fig. 3). The pT dependence of the ηc(1S)

production rate exhibits similar behaviour to the J/ψ meson

rate in the kinematic region studied.

The performance of the LHCb tracking system and the use

of a final state common to J/ψ and ηc(1S) decays allows a

precise measurement of the mass difference between the two

mesons. In order to measure the ηc(1S) mass relative to the

well-reconstructed and well-known J/ψ mass, a momentum

scale calibration [34] is applied on data, and validated with

the J/ψ mass measurement. The MJ/ψ and �MJ/ψ, ηc(1S)

values are extracted from the fit to the p p invariant mass in the

low-background sample of charmonium candidates produced

in b-hadron decays (Fig. 1). The J/ψ mass measurement,

MJ/ψ = 3096.66 ± 0.19 ± 0.02 MeV/c2, agrees well with

the average from Ref. [21]. The mass difference is measured

to be

�MJ/ψ, ηc(1S) = 114.7 ± 1.5 ± 0.1 MeV/c2.

The systematic uncertainty is dominated by the parametriza-

tion of the J/ψ→ppπ0 contribution. The mass difference

agrees with the average from Ref. [21]. In addition, the

ηc(1S) natural width is obtained from the fit to the p p invari-

ant mass (Fig. 1), Ŵηc(1S) = 25.8 ± 5.2 ± 1.9 MeV. The

systematic uncertainty is dominated by knowledge of the

detector mass resolution. The value of Ŵηc(1S) obtained is

in good agreement with the average from Ref. [21], but it is

less precise than previous measurements.

6 Summary

In summary, ηc(1S) production is studied using pp collision

data corresponding to integrated luminosities of 0.7 fb−1 and

2.0 fb−1, collected at centre-of-mass energies
√

s = 7 TeV

and
√

s = 8 TeV, respectively. The inclusive branching frac-

tion of b-hadron decays into ηc(1S) mesons with pT >

6.5 GeV/c, relative to the corresponding fraction into J/ψ

mesons, is measured, for the first time, to be

B(b→ηc(1S)X)/B(b→J/ψ X)

= 0.421 ± 0.055 ± 0.025 ± 0.045B.

The first uncertainty is statistical, the second is systematic,

and the third is due to uncertainties in the branching fractions

of ηc(1S) and J/ψ meson decays to the p p final state. The

inclusive branching fraction of b-hadrons into ηc(1S) mesons

is derived as

B(b→ηc(1S)X) = (4.88 ± 0.64 ± 0.29 ± 0.67B) × 10−3,

where the third uncertainty component includes also the

uncertainty on the inclusive branching fraction of b-hadrons

into J/ψ mesons. The ηc(1S) prompt production cross-

section in the kinematic region 2.0 < y < 4.5 and pT >

6.5 GeV/c, relative to the corresponding J/ψ meson cross-

section, is measured, for the first time, to be

(σηc(1S)/σJ/ψ )√s=7 TeV = 1.74 ± 0.29 ± 0.28 ± 0.18B,

(σηc(1S)/σJ/ψ )√s=8 TeV = 1.60 ± 0.29 ± 0.25 ± 0.17B,

where the third uncertainty component is due to uncertainties

in the branching fractions of ηc(1S) and J/ψ meson decays

to the p p final state. From these measurements, absolute

ηc(1S) prompt cross-sections are derived, yielding

(σηc(1S))
√

s=7 TeV = 0.52 ± 0.09 ± 0.08 ± 0.06σJ/ψ ,B µb,

(σηc(1S))
√

s=8 TeV = 0.59 ± 0.11 ± 0.09 ± 0.08σJ/ψ ,B µb,

where the third uncertainty includes an additional contribu-

tion from the J/ψ meson cross-section. The above results

assume that the J/ψ is unpolarized. The ηc(1S) prompt

cross-section is in agreement with the colour-singlet LO

calculations, whereas the colour-octet LO contribution pre-

dicts a cross-section that exceeds the observed value by

two orders of magnitude [33]. The pT dependences of the

ηc(1S) and J/ψ production rates exhibit similar behaviour

in the kinematic region studied. The difference between the

J/ψ and ηc(1S) meson masses is also measured, yielding

�MJ/ψ, ηc(1S) = 114.7 ± 1.5 ± 0.1 MeV/c2, where the first

uncertainty is statistical and the second is systematic. The

result is consistent with the average from Ref. [21].
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