
https://helda.helsinki.fi

Measurement of the forward charged-particle pseudorapidity

þÿ�d�e�n�s�i�t�y� �i�n� �p�p� �c�o�l�l�i�s�i�o�n�s� �a�t� "�� �s� �=� �7� �T�e�V� �w�i�t�h� �t�h�e� �T�O�T�E�M� �e�x�p�e�r�i�m�e�n�t

Antchev, G.

2012-05-08

Antchev , G , Brucken , E , Garcia , F , Heino , J , Hilden , T , Kurvinen , L K-P ,

Lauhakangas , R , Mäki , T , Oljemark , F , Orava , R , Österberg , K , Saarikko , H , Welti , J

& TOTEM Collaboration 2012 , ' Measurement of the forward charged-particle

þÿ�p�s�e�u�d�o�r�a�p�i�d�i�t�y� �d�e�n�s�i�t�y� �i�n� �p�p� �c�o�l�l�i�s�i�o�n�s� �a�t� "�� �s� �=� �7� �T�e�V� �w�i�t�h� �t�h�e� �T�O�T�E�M� �e�x�p�e�r�i�m�e�n�t� �'� �,

Europhysics Letters , vol. 98 , no. 3 , pp. 31002 . https://doi.org/10.1209/0295-5075/98/31002

http://hdl.handle.net/10138/37169

https://doi.org/10.1209/0295-5075/98/31002

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



Measurement of the forward charged-particle pseudorapidity density in pp collisions at √s =

7 TeV with the TOTEM experiment

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2012 EPL 98 31002

(http://iopscience.iop.org/0295-5075/98/3/31002)

Download details:

IP Address: 128.214.56.250

The article was downloaded on 09/05/2012 at 07:23

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0295-5075/98/3
http://iopscience.iop.org/0295-5075
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


May 2012

EPL, 98 (2012) 31002 www.epljournal.org

doi: 10.1209/0295-5075/98/31002

Measurement of the forward charged-particle pseudorapidity den-
sity in pp collisions at

√
s = 7TeV with the TOTEM experiment

The TOTEM Collaboration

G. Antchev
(a)

, P. Aspell
8
, I. Atanassov

8(a)
, V. Avati

8
, J. Baechler

8
, V. Berardi

5b,5a
, M. Berretti

7b
, E. Bossini

7b
,

M. Bozzo
6b,6a

, P. Brogi
7b

, E. Brücken
3a,3b

, A. Buzzo
6a

, F. S. Cafagna
5a

, M. Calicchio
5b,5a

, M. G. Catanesi
5a

,

C. Covault
9
, M. Csanád

4
, T. Csörgő
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Abstract – The TOTEM experiment has measured the charged-particle pseudorapidity density
dNch/dη in pp collisions at

√
s = 7TeV for 5.3 < |η| < 6.4 in events with at least one charged

particle with transverse momentum above 40MeV/c in this pseudorapidity range. This extends
the analogous measurement performed by the other LHC experiments to the previously unexplored
forward η region. The measurement refers to more than 99% of non-diffractive processes and to
single and double diffractive processes with diffractive masses above ∼ 3.4 GeV/c2, corresponding
to about 95% of the total inelastic cross-section. The dNch/dη has been found to decrease with |η|,
from 3.84 ± 0.01(stat) ± 0.37(syst) at |η| = 5.375 to 2.38 ± 0.01(stat) ± 0.21(syst) at |η| = 6.375.
Several MC generators have been compared to data; none of them has been found to fully describe
the measurement.
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Introduction. – The pseudorapidity density of
charged particles produced in high-energy proton-proton
(pp) collisions reflects the strong interaction dynamics
that is only partly described by perturbative QCD. Non-
perturbative models and parametrisations are used in the
Monte Carlo (MC) event generators to describe the hadro-
nisation of the partonic final states and to model diffrac-
tive processes [1, 2]. In the forward region, where periph-
eral diffractive processes are important, the uncertainties
are pronounced. A better understanding of these effects is
also important for the interpretation of high-energy show-
ers recorded by cosmic-ray experiments [3–5]. A direct
measurement of the forward particle densities is, there-
fore, extremely valuable in constraining the theoretical
models for particle production in pp interactions. The
measurement of the charged-particle pseudorapidity den-
sity (dNch/dη) in the range 5.3 < |η| < 6.4 is presented
here. This quantity is defined as the mean number of
charged particles per single pp collision and unit of pseu-
dorapidity η, where η ≡ −ln[tan(θ/2)], and θ is the polar
angle of the direction of the particle with respect to the
counterclockwise beam direction.

Experimental apparatus. – TOTEM is a dedicated
experiment to measure the total cross-section, elastic scat-
tering and diffractive processes at the LHC [6,7]. The ex-
perimental apparatus [8], composed of three subdetectors
(Roman Pots (RP), T1 and T2 telescopes), is placed sym-
metrically on both sides of Interaction Point (IP) 5, shared
with the CMS experiment. All three subdetectors have
trigger capability. The Roman Pot stations, equipped with
silicon detectors and placed at 147 and 220 m from the IP,
detect elastically and diffractively scattered protons with
a small scattering angle down to a few μrad. The T1 and
T2 telescopes, placed at about 8 and 14 m from the IP, re-
spectively, detect charged particles produced in the polar
angular range of a few mrad to ∼ 100 mrad. The T1 tele-
scope (3.1 < |η| < 4.7) consists of Cathode Strip Cham-
bers, while the T2 telescope (5.3 < |η| < 6.5) is made of
triple-GEM (Gas Electron Multipliers) chambers [9]. The
present analysis is based on measurements with the T2
detector that consists of 2 quarters with 10 semicircular
chambers each, on both sides of the IP. Each chamber pro-
vides two-dimensional information of the track position in
an azimuthal coverage of 192 ◦ with a small overlap region
along the vertical axis between chambers of two neigh-
bouring quarters [10]. Every chamber has a double layered
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read-out board containing two columns of 256 concentric
strips (400 μm pitch, 80 μm width) for the measurement of
the radial coordinate and a matrix of 1560 pads, each one
covering Δη×Δφ � 0.06×0.018 rad, for the measurement
of the azimuthal coordinate and for triggering. Radial
and azimuthal coordinate resolutions are about 110 μm
and 1 ◦, respectively [11]. The total material of 10 cham-
bers amounts only to ∼ 0.05 X0 [12]. The read-out of
all TOTEM detectors is based on the “VFAT” front-end
ASIC, which provides as output a digital signal and trig-
ger [13].

Detector simulation. – The TOTEM software [14],
based on the CMS framework [15], embeds the necessary
interfaces to the GEANT4 [16] simulation toolkit, the de-
scription of the material placed between the IP and T2
and the offline software used for the event reconstruction.
The description of the T2 detector is implemented within
this framework. The GEM signal digitisation has been
parametrised using a dedicated model that, after proper
tuning, reproduces well the measured cluster (a group of
neighbouring strip or pad channels) size and reconstruc-
tion efficiency as a function of the ionisation energy re-
leased in the gas by the incident particle, diffusion coeffi-
cient of the fill gas, chamber gain and the VFAT thresh-
olds [12, 17]. A special effort was devoted to understand
and quantify secondary particles produced by the interac-
tion of particles with the material in front of and around
T2 and then seen in the detector. The simulation of the
forward region, properly tuned with the data, showed that
a large number of secondary particles is produced in the
vacuum chamber walls in front of the detector, in the beam
pipe conical section at |η| = 5.53 and at the lower edge of
the CMS Hadron Forward (HF) calorimeter [18].

Track reconstruction and alignment. – The track
reconstruction is based on a Kalman filter-like algo-
rithm [17] that is simplified due to the small amount of
material traversed by the particle crossing the 10 GEM
planes and to the low local magnetic field in the T2 region.
The particle trajectory can, therefore, be successfully re-
constructed using a straight line fit. The reconstructed
tracks have at least 4 hits (pad clusters with or without
an overlapping strip cluster), of which at least three have
a pad/strip cluster overlap. A χ2-probability greater than
1% is required for the straight line fit.

Using a coordinate system with the origin located at the
nominal collision point, the X-axis pointing towards the
centre of the LHC ring, the Y -axis pointing upward (per-
pendicular to the LHC plane), and the Z-axis along the
counterclockwise beam direction, two geometrical track
parameters are defined: Z0 and ZImpact. Z0 is the Z
value at the position of the minimum approach of the track
to the Z-axis; the ZImpact parameter (see fig. 1) is the
Z coordinate of the intersection point between the track
and a plane (“π2”) containing the Z-axis and orthogonal
to the plane defined by the Z-axis and the track entry
point in T2 (“π1”). Due to the short lever arm of the T2
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Fig. 1: Definition of the track ZImpact parameter. The de-
scription is discussed in the text.

detector (∼ 40 cm) compared to the distance to the IP,
the ZImpact and Z0 resolution is of the order of 1 m.

The relative position of the detector planes within a T2
quarter (internal alignment) and the overall alignment of
all the detector planes with respect to their nominal po-
sition (global alignment) have been investigated in detail
to define possible misalignment biases of the track mea-
surements [17]. The most important internal alignment
parameters which can be resolved within the T2 hit resolu-
tion are the shifts of the planes in the X and Y directions.
Two different methods (iterative and MILLIPEDE [19])
were used to correct for such displacements. Both gave
consistent results, with an uncertainty on the transverse
position of the plane of about 30 μm. The relative align-
ment between the two neighbouring quarters was obtained
using tracks reconstructed in the overlap region.

The global alignment of the detector is of main impor-
tance for the present analysis. This was achieved by ex-
ploiting the symmetric distribution of the track parame-
ters and the position of the “shadow” of the beam pipe, a
circular shaped zone of the T2 planes characterised by a
very low hit rate due to interactions of primary particles
in the |η| = 5.53 beam pipe cone in front of T2.

The combination of these methods gave, for each quar-
ter, the X-Y shift with respect to the nominal position
with a precision of ∼ 1 mm and the tilts in the XZ and
Y Z planes with a precision of ∼ 0.4 mrad.

After the local and global alignment parameters had
been measured with the data, the corresponding misalign-
ments were introduced into the GEANT4 simulation and
the same algorithm for the correction of the hit positions
was applied in the reconstruction of both simulation and
data. In this way one can also take into account, in the
simulation, the non-uniform effect that misalignment has

on the reconstructed hit position, which depends on its
X-Y coordinate in the GEM plane.

Data and MC sample. – The sample used for the
present analysis consists of 150000 pp collisions at

√
s =

7 TeV recorded in May 2011 during a low pile-up run at
standard optics. Each beam was composed of six bunches
with an average luminosity per colliding bunch pair of
about 8×1027 cm−2 s−1 corresponding to an inelastic pile-
up probability of ∼ 3%. The rate of beam gas interactions
for such beam conditions is expected to be negligible. The
trigger required at least one trigger road, defined as more
than 3 “superpads” (3 radial and 5 azimuthal neighbour-
ing pads) fired in the same r-φ sector of different planes of
the same T2 quarter. This condition is satisfied if at least
one charged particle traverses the T2 detector. The ob-
served trigger rate was about 3 kHz. The fraction of dead
or noisy channels in this data sample has been measured
to be 6% for the pads and 9.5% for the strips.

With the requirement of at least one reconstructed track
in the T2 detector, the visible cross-section seen by T2
has been estimated to be about 95% of the total inelastic
cross-section. This is based on the comparison of the di-
rect measurement of the T2 visible inelastic cross-section
(to be published) to the TOTEM inelastic cross-section
measurement deduced from the difference between the to-
tal and elastic cross-sections [20]. The fractions of the
total inelastic cross-section visible to T2 obtained from
Pythia 6.42 [21] and Pythia 8.108 [22] are in agreement
with the above estimate. The T2-triggered sample con-
tains more than 99% of all non-diffractive events and all
single and double diffractive events having at least one
diffractive mass larger than ∼ 3.4 GeV/c2 [18].

The transverse momentum (PT ) acceptance for single
charged particles going into T2 is limited by the magnetic
field and multiple scattering effects. Simulation studies
have shown that the charged particle tracks are recon-
structed, within the analysis cuts utilised in this work,
with a good efficiency for PT ≥ 40 MeV/c, defining ef-
fectively the minimum PT acceptance. The fraction of
charged particles with PT < 40 MeV/c produced in the
T2 acceptance is predicted to be very small (∼ 1%).

Analysis procedure. – Our pseudorapidity density
measurement refers to charged particles with a lifetime
longer than 0.3× 10−10 s, and to the charged decay prod-
ucts of particles with shorter lifetime, which is consistent
with the ATLAS [23], ALICE [24] and CMS [25] defini-
tion of a primary charged particle. With this definition,
decay products of the K0

s and Λ hadrons are considered
secondary particles, together with all of the charged par-
ticles generated by interactions with the material in front
and around T2. The η value of a track is defined here
as the average pseudorapidity of the T2 track hits, calcu-
lated from the angle that the hit has with respect to the
beam at the IP. This definition has been adopted on the
basis of detailed MC simulation studies to find the optimal
definition of the true η of a particle produced at the IP.

31002-p3
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Fig. 2: ZImpact parameter distribution for the data tracks re-
constructed in one T2 quarter in the 5.35 < η < 5.4 range. The
reported χ2/ndf refers to the global (double Gaussian + expo-
nential) fit, performed in the range from −15 m up to 9 m. The
blue solid curve represents the exponential component due to
secondaries, while the red dashed curve is the double-Gaussian
component mainly related to primary tracks. The condition
Z0 · sign(η) < 13.5 m has been required, reducing the amount
of secondary tracks by about 60%.

The pseudorapidity density has been measured for each
quarter independently, allowing an important consistency
check among the four analysis results, as each quarter dif-
fers in its alignment and track reconstruction efficiency.

Since about 80% of the T2 reconstructed tracks are
secondaries, it is important to have a procedure for the
discrimination between them and primary charged parti-
cles. Based on detailed simulation studies, the most ef-
fective primary/secondary-particle separation is achieved
using the ZImpact track parameter [17]. This parame-
ter is proven to be stable against misalignment errors and
is well described by a double Gaussian function for the
primary particles and by an exponential function for the
secondaries. The track ZImpact distribution, with the
exponential and double Gaussian fit, is shown in fig. 2
for data tracks reconstructed in one T2 quarter in the
5.35 < η < 5.4 range.

The mean, required to be the same for both Gaussians,
the standard deviation and the amplitude of the two Gaus-
sians for primaries as well as the mean and the amplitude
of the exponential for secondaries have been left free in the
fit. Since the fit results have been found to be η dependent,
the fit, performed on data, has been repeated for each
η bin of the pseudorapidity distribution giving standard
deviations (amplitudes) of both Gaussians that increase
(decrease) with η. The relative abundance of secondary
particles has been found to be smaller for higher |η|.

The primary tracks were selected using the ZImpact
and Z0 parameters: ZImpact was required to be in the
range for which the area covered by the double Gaussian
is 96% of the total, while Z0 was required to fulfill the
condition Z0 · sign(η) < 13.5 m. The fraction of primary
tracks, among the ones passing the above selection criteria,
was calculated for each η bin as a function of the ZImpact
value using the double Gaussian and exponential fits. This
fraction, found to range from about 75% (lower |η| bins)
to about 90% (higher |η| bins), allows each data track to
be weighted by the probability for the track to be primary,
according to its η and ZImpact value.

Each track has then been weighted for the primary-track
efficiency according to its η and to the pad cluster multi-
plicity in the corresponding quarter. This efficiency, eval-
uated by MC, is defined as the probability to successfully
reconstruct a GEANT4 generated primary track that tra-
verses the detector and yields the Z0 and ZImpact param-
eters within the allowed region. The dependence of the ef-
ficiency from the pad cluster multiplicity was included to
make this correction independent of the tuning of the MC
multiplicity. Once the combined Z0 and ZImpact require-
ments were applied, an average primary-track efficiency of
∼ 80% was obtained.

A small contribution to the double-Gaussian peak is
given by the decay products of strange particles and by
conversion of photons from π0 decays in the material near
T2. The overall non-primary contribution to the central
peak, to be subtracted, has been estimated using different
MC generators and found to range between 6% and 13%
according to Pythia, Phojet [26] and Sherpa [27]. For im-
proving the description of the non-primary fraction of the
tracks, the K0

S dN/dη and γ dN/dE in the MC were nor-
malised in order to reproduce, in their acceptance region,
the measurements by CMS [28] and LHCf [29].

MC studies also provided the fraction of primary
charged particles which do not arrive in the T2 detec-
tor. The associated correction factor, in average ∼ 1.04,
has been calculated for each η bin in events with at least
a charged particle in the 5.3 < |η| < 6.5 range, by con-
sidering the number of primary GEANT4 tracks cross-
ing the detector and the corresponding number of pri-
mary charged particles generated at the IP with PT >
40 MeV/c.

A bin migration correction accounting for all smearing
effects on the reconstructed track η was also derived. The
track distribution was then normalised to the full accep-
tance in azimuthal angle. The pile-up probability, deter-
mined from data, was finally subtracted by means of an
overall correction factor of 0.97.

Events characterised by a high hit multiplicity, typically
due to showers generated in interactions with the material,
were not included in the analysis. These events, where
track reconstruction capability is limited, constitute about
11% of the data sample, and have an average pad cluster
multiplicity per plane larger than 70. The effect of not
considering these events has been evaluated in a MC study,
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giving an overall correction factor on the measurement of
about 1.02.

dN

dη

⏐⏐⏐⏐⏐
η=η0

=
∑

Trk∈S

W (η0,Z Impact)
∑

j Bj(η0)
ε (η0, m)Δη NEv

×G(η0)Sp(η0)
2π

Φ
H P. (1)

Equation (1) was used for the dNch/dη determination: η0

is the η value of the bin centre, S is the sample of tracks
with η0 − Δη/2 < η < η0 + Δη/2 satisfying the selec-
tion criteria above, Δη = 0.05 is the bin width, NEv is
the number of events in the data sample, W is the prob-
ability for a track to be primary, ε is the primary-track
efficiency (where m indicates the event pad cluster multi-
plicity), Bj is the bin migration correction associated with
the j-th bin, G is the correction factor for primary parti-
cles not reaching T2, Sp is the correction factor for the
non-primary contribution to the double-Gaussian peak,
Φ/2π is the azimuthal acceptance, H is the correction
factor taking into account the effect of the exclusion of
the events with high secondary multiplicity and P is the
pile-up correction factor.

Systematic uncertainties. – The systematic uncer-
tainty associated with the primary-track efficiency has
been evaluated in studies where tracks were reconstructed
using a set of 5 detector planes (out of the total of 10) in a
single T2 quarter. The track reconstruction efficiency was
determined using the other set of 5 detector planes in the
same quarter. The associated systematic uncertainty, es-
timated with this procedure, was defined as the difference
between the result obtained using the above data-driven
method, and the MC analysis using the same definitions.
This uncertainty, computed as a function of the pad clus-
ter multiplicity and of the track η, has been found to give
a relative contribution from 1 to 7%.

In order to evaluate the systematics due to the align-
ment corrections, the global alignment parameters have
been varied around the optimal values within their reso-
lution. The data have been again reconstructed and anal-
ysed for the different misalignment configurations. The
corresponding variation in the dNch/dη result defined the
systematics due to the alignment. This uncertainty, which
is η and quarter dependent, has been found to be in the
range of 3–4%.

The systematic uncertainty associated with the fraction
of the non-primary contribution to the central peak, Sp,
has been evaluated by considering the maximum variation
obtained from several MC generators. It has been found
to be η dependent, ranging from 1% to 3%.

The systematic uncertainty on the W function, needed
for the primary-to-secondary separation, has been esti-
mated to be in the range of 2–3% considering the uncer-
tainty on the fitting parameters.

The primary-track efficiency variation due to magnetic
field (B) effects and to the uncertainty on the energy spec-
trum resulted in an error of about 2%. This contribution

Table 1: Summary of the relative uncertainties in the bin cen-
tred at η0 = 6.025 in one of the T2 quarters. The first two
contributions are quarter dependent.

η0 = 6.025 dNch/dη error summary (one quarter)
1. Primary-track efficiency 4%
2. Global alignment 3%
3. Non-primaries in the central peak 2%
4. Primary-to-secondary separation 2%
5. B-field and energy spectrum 2%
6. Primaries not arriving in T2 2%
7. Track quality criterion 1%
8. Trigger bias 1%
9. Pile-up probability 1%
10. Events with high secondary multiplicity 1%
11. Statistical 0.7%
Total (single-quarter measurement) 10%

has been evaluated in the simulation by switching on and
off the magnetic field and by varying in a reasonable range
the energy spectrum1.

The variation of the G function from the MC genera-
tor has been estimated to be around 2%, while the Bj

functions have been found to have a negligible variation.
The effect of the track quality criterion requirement, χ2-
probability > 1%, has been estimated to be around 1% by
evaluating the data/MC discrepancy observed with and
without using this requirement. The effect of the trigger
bias in our measurement has been evaluated by compar-
ing the data selected with a pure bunch crossing trigger
with the sample triggered with T2 and has been found to
be around 1%. The pile-up probability systematic uncer-
tainty has been estimated to be 1%. The uncertainty on
the correction accounting for the exclusion of events with
high multiplicity of secondary particles has been found
to be about 1% from the difference between Pythia8 and
Sherpa MC predictions.

Table 1 shows the uncertainties of the bin centred at
η0 = 6.025, for one of the T2 quarters. The double dashed
line separates the quarter-dependent contributions (top)
from the ones in common for all the quarters (bottom).
The total systematic uncertainty has been computed by
first linearly adding the global alignment and track effi-
ciency systematics to take into account misalignment ef-
fects on the primary-track efficiency estimation, then this
result has been added in quadrature to the uncertainty
contributions from 4) to 10) of table 1 and finally the un-
certainty associated with the non-primary contribution to
the central peak has been added linearly. To obtain the

1The CMS experiment reported a discrepancy, that increases with
|η|, between data and Pythia inelastic event simulation [30]. Pythia
underestimates the energy flow in the CMS HF calorimeter, mea-
sured in the pseudorapidity range 3.15 < |η| < 4.9. The effect of this
discrepancy on the reported analysis has been taken into account us-
ing a dedicated simulation, where the input energy spectrum of the
particles has been increased according to the extrapolated discrep-
ancy expected in the 5.3 < |η| < 6.5 region.
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Fig. 3: Charged-particle pseudorapidity density distribution.
The experimental points (black squares) represent the average
of the four T2 quarters, with the error bars including both
statistical and systematic error. Red triangles, blue circles and
orange diamonds show, respectively, the Phojet, Pythia8 and
Sherpa predictions for charged particles with PT > 40 MeV/c
in events where at least one charged particle is generated in
the 5.3 < |η| < 6.5 range.

total uncertainty of the single-quarter measurement, the
statistical error is then added in quadrature.

Results. – The dNch/dη measurements obtained for
the different T2 quarters are compatible within the
quarter-dependent systematic uncertainties. For each η
bin, the measurements for the four quarters have been
combined with a weighted average using only the quarter-
dependent uncertainties.

A conservative approach has been adopted for the com-
bination of the quarter-dependent systematic uncertain-
ties: an error propagation on the weighted averages has
been applied, considering the measurements completely
and positively correlated. The resulting error has then
been combined with the systematic contributions that are
common to all quarters and with the statistical one, as in
the case of the single-quarter measurement.

The pseudorapidity density measurement is shown as
black squares in fig. 3 where the error bars represent the
total uncertainty including the statistical error. The pseu-
dorapidity bins at the edges of the T2 detector, where large
corrections due to the reduced geometrical acceptance are
needed, are not reported here, nor are the three bins in the
5.425 ≤ |η| ≤ 5.625 range, where large corrections should
be applied because of the interaction of the primary parti-
cles with the beam pipe. Figure 3 also shows the compar-
ison of the data with some MC expectations. Phojet 1.12
(red triangles) estimates a ∼ 30% (∼ 20%) lower dNch/dη
than measured at |η| = 5.3 (6.4). Both Pythia 8.108 with

Table 2: TOTEM dNch/dη measurement for inelastic pp events
at

√
s = 7 TeV. The reported values represent the average

for the four T2 quarters, with the corresponding systematic
(syst) and statistical (stat) error. η0 represents the central
pseudorapidity value in each η bin.

η0 dNch/dη syst stat
5.375 3.84 0.37 0.01
5.425 3.64 0.38 0.01
5.625 3.54 0.33 0.01
5.675 3.50 0.32 0.01
5.725 3.40 0.30 0.01
5.775 3.42 0.31 0.01
5.825 3.32 0.29 0.01
5.875 3.27 0.29 0.01
5.925 3.20 0.28 0.01
5.975 3.07 0.27 0.01
6.025 3.04 0.26 0.01
6.075 2.94 0.26 0.01
6.125 2.80 0.25 0.01
6.175 2.74 0.26 0.01
6.225 2.65 0.24 0.01
6.275 2.58 0.23 0.01
6.325 2.53 0.21 0.01
6.375 2.38 0.21 0.01

default tune (blue circles) and Pythia 6.42 D6T estimate a
∼ 20% (∼ 12%) lower dNch/dη than measured at |η| = 5.3
(6.4). Sherpa 1.3.0 with default tune (orange diamonds) is
in agreement with the data for |η| < 5.9, while it estimates
a higher dNch/dη by ∼ 25% at |η| = 6.4. Similar trends in
the comparison of the data with MC predictions have also
been found by the ATLAS [23], ALICE [24], CMS [25] and
LHCb [31] experiments in their own η acceptance. When
comparing with cosmic-ray MC generators, SYBILL [32]
predicts a 4–16% lower dNch/dη, while QGSJET01 [33],
QGSJETII [34] and EPOS [35] predict a 18–30% higher
dNch/dη.

The dNch/dη measurement is also reported in table 2
for each η bin with the corresponding systematic and sta-
tistical error.

Conclusions. – The TOTEM experiment has mea-
sured the charged-particle pseudorapidity distribution in
pp collisions at

√
s = 7 TeV for 5.3 < |η| < 6.4 in

events with at least one reconstructed track in this range.
This extends the measurements performed by the other
LHC experiments to this previously unexplored forward η
range. The measurement refers to charged particles with
PT > 40 MeV/c and with a mean lifetime τ > 0.3×10−10 s,
directly produced in pp interactions or in subsequent de-
cays of particles having a shorter lifetime. A preliminary
measurement of the T2 visible inelastic cross-section con-
firms that about 95% of the inelastic pp events have been
considered in the present study. This comprises more
than 99% of non-diffractive processes and the single and
double diffractive processes with diffractive masses above
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∼ 3.4 GeV/c2. The pseudorapidity density has been found
to decrease with increasing |η|, from 3.84 ± 0.01(stat) ±
0.37(syst) at |η| = 5.375 to 2.38±0.01(stat)±0.21(syst) at
|η| = 6.375. Several MC generators have been compared
to data; none of them has been found to fully describe the
measurement.

∗ ∗ ∗

We thank M. Ferro-Luzzi and the LHC machine co-
ordinators for scheduling and providing us the dedicated
TOTEM runs. We are very grateful to the CMS Col-
laboration for providing us the software framework where
all the toolkits used for the analysis reported here have
been developed. We express gratitude to R. Ulrich and
C. Baus for providing us the cosmic-ray MC predictions.

This work was supported by the institutions listed on
the front page and partially also by NSF (US), the Mag-
nus Ehrnrooth foundation (Finland), the Waldemar von
Frenckell foundation (Finland), the Academy of Finland,
the OTKA grants NK 73143 and NK 101438 (Hungary).

REFERENCES

[1] Skands P. Z., Phys. Rev. D, 82 (2010) 074018.
[2] Ryskin M. G., Martin A. D. and Khoze V. A.,

Eur. Phys. J. C, 71 (2011) 1617.
[3] Engel R., Nucl. Phys. B Proc. Suppl., 122 (2003) 437.
[4] The CMS and TOTEM diffractive and forward

physics working group (M. Albrow et al.), CERN-
LHCC-2006-039-G-124 (2006).

[5] D’Enterria D. et al., Astropart. Phys., 35 (2011) 98.
[6] TOTEM, Letter of Intent, CERN-LHCC-97-49 (1997).
[7] TOTEM Collaboration (Berardi V. et al.), CERN-

LHCC-2004-002; CERN-LHCC-2004-020 (2004) (Adden-
dum).

[8] TOTEM Collaboration (Anelli G. et al.), J. In-
strum., 3 (2008) S08007.

[9] Sauli F., Nucl. Instrum. Methods A, 386 (1997) 531.
[10] Lami S. et al., Nucl. Phys. B, 172 (2007) 231.

[11] Bagliesi M. G. et al., Nucl. Instrum. Methods A, 617
(2010) 134.

[12] Oliveri E., PhD Thesis, CERN-THESIS-2010-178
(2010), http://cdsweb.cern.ch/record/1319607.

[13] Aspell P. et al., Proceedings of TWEPP-07 (2007),
http://cdsweb.cern.ch/record/1069906.

[14] Avati V. et al., Proceedings of 11th ICATPP Conference
(2010), http://adsabs.harvard.edu/abs/2010apsp.

conf..658A.
[15] CMS Collaboration (Bayatian G. L. et al.), CERN-

LHCC-2006-001 (2006).
[16] GEANT4 Collaboration (Agostinelli S. et al.),

Nucl. Instrum. Methods Phys. Res. A, 506 (2003) 250.
[17] Berretti M., PhD Thesis, in preparation (2012), https:

//cdsweb.cern.ch/collection/CERN%20Theses.
[18] Brogi P., Master Degree Thesis, CERN-THESIS-2011-

099 (2011), http://cdsweb.cern.ch/record/1384794.
[19] Blobel V., Nucl. Instrum. Methods A, 566 (2006) 5.
[20] TOTEM Collaboration (Antchev G. et al.), EPL,

96 (2011) 21002.
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