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The flux of high-energy neutrinos passing through the Earth is attenuated due to their interactions with

matter. The interaction rate is determined by the neutrino interaction cross section and affects the flux

arriving at the IceCube Neutrino Observatory, a cubic-kilometer neutrino detector embedded in the

Antarctic ice sheet. We present a measurement of the neutrino cross section between 60 TeV and 10 PeV

using the high-energy starting event (HESE) sample from IceCube with 7.5 years of data. The result is

binned in neutrino energy and obtained using both Bayesian and frequentist statistics. We find it compatible

with predictions from the Standard Model. While the cross section is expected to be flavor independent

above 1 TeV, additional constraints on the measurement are included through updated experimental particle

identification (PID) classifiers, proxies for the three neutrino flavors. This is the first such measurement to

use a ternary PID observable and the first to account for neutrinos from tau decay.

DOI: 10.1103/PhysRevD.104.022001

I. INTRODUCTION

In the Standard Model (SM), neutrino interactions are
mediated by W� and Z0 bosons for charged-current (CC)
and neutral-current (NC) channels, respectively. At ener-
gies above a few GeV, the dominant process is deep
inelastic scattering (DIS) off of individual partons within
the nucleon. Calculations in the perturbative QCD (pQCD)
formalism rely on parton distribution functions (PDFs)
obtained mostly from DIS experiments [1–3]. Uncertainties
on the PDFs lead to uncertainties on the cross section. An
alternative approach [4] based on an empirical color dipole
model of the nucleon along with the assumption that all

cross sections increase at high energies as ln2 s results in
good agreement with the latest pQCD calculations.
Proposed extensions of the SM based on large extra
dimensions opening up above the Fermi scale predict a
sharp rise in the neutrino-nucleon cross section above the

SM value. One such model [5], which was motivated by the
claimed detection of cosmic rays above the Greisen–
Zatsepin–Kuzmin (GZK) bound, assumes that neutrino-
nucleon interaction is mediated by a massive spin-2 boson.
This allows the neutrino-nucleon cross section to climb

above 10−27 cm2 at Eν > 1019 eV. Another possibility if
spacetime has greater than four dimensions allows for the
production of microscopic black holes in high-energy
particle interactions and also leads to an increased neu-
trino-nucleon cross section above approximately 1 PeV [6].
Such scenarios where the cross section increases steeply
with energy could also be due to the existence of exotic
particles such as leptoquarks [7] or sphalerons [8], both of
which have been discussed in the context of neutrino
telescopes and could be probed via measurements of the
high-energy neutrino cross section.
At energies above 40 TeV, the Earth becomes opaque to

neutrinos. For a power-law spectrum proportional to E−γ at
Earth’s surface, the ratio of the flux arriving at IceCube to
that at Earth’s surface, ΦðEνÞ=Φ0ðEνÞ, depends on the
Earth column density, neutrino energy, Eν, spectral index γ

(through secondaries), and neutrino cross section. The

Earth column density is defined as tðθÞ¼
R ymax

0
ρðy;θÞdy,

where θ is the arrival direction of the neutrino, ymax is its
path length through the Earth, and ρðy; θÞ is the density at a
point y along the path. Figure 1 shows the electron neutrino
and antineutrino ΦðEνÞ=Φ0ðEνÞ assuming a surface flux
with γ ¼ 2, arising from Fermi acceleration at shocks
[9,10]. The spectral index affects the arrival flux through
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secondaries produced by tau decay in CC interactions or
NC interactions. In νe and νμ CC interactions, the neutrino

is effectively destroyed, whereas in ντ CC interactions, the
outgoing tau-lepton may decay into lower-energy neutrinos
[11]. In NC interactions, the incoming neutrino is not
destroyed but cascades down in energy [12]. These flavor-
dependent processes alter the neutrino flux as a function of
the traversed path length [13], which allows for probing the
neutrino cross section at high energies. The dip in the ν̄e
flux ratio due to the Glashow resonance [14] is visible in
the right panel of Fig. 1 near Eν ¼ 6.3 PeV. The Glashow
resonance occurs from the interaction of an electron
antineutrino with a bound atomic electron and is indepen-
dent of the CC and NC interactions of nucleons. A related,
but subdominant, effect that has found renewed interest is
the production of an on-shell W-boson off of the nucleus
[15–18]. While this measurement is insensitive to the
process, prospects for detection seem favorable with
IceCube-Gen2 [19,20].
The IceCube Neutrino Observatory, an in-ice neutrino

detector situated at the South Pole, is capable of detecting
high-energy neutrinos originating from both Northern and
Southern hemispheres [21–24]. IceCube comprises over
5000 digital optical modules (DOMs) encompassing
approximately a cubic kilometer of ice [25–27]. The ice
acts as a detection medium by which Cherenkov radiation
from charged particles produced in neutrino interactions
can be observed. The high-energy starting event (HESE)
sample selects events that interact within a fiducial region
of the detector across a 4π solid angle [24,28]. Here, we
report a new cross section measurement using information
from all three neutrino flavors with 7.5 years of data.
While SM calculations are generally consistent in the

TeV–PeV energy range, few experimental measurements
exist, and none have been performed with all three neutrino

flavors [29,30]. Recently, an IceCube measurement of the
neutrino DIS cross section using up-going, muon neutrinos
gave a result consistent with the Standard Model [29].
The measurement in Ref. [30] used showers in publicly
available HESE data with six years of data taking. This
result, using the latest HESE sample with 7.5 years of data,
includes classifiers for all three neutrino flavors and
accounts for neutrinos from NC interactions and tau
regeneration. Out of a total of 60 events above 60 TeV,
33 are also used in Ref. [30]. However, updates described
in Ref. [28] affect the measurement and are incorporated
in this work. These include updated parametrizations of
absorption and scattering of light in the ice [31,32], more
accurate atmospheric neutrino passing fractions [33], a
likelihood construction that properly accounts for the
stochastic nature of IceCube simulations [34], and
improved systematics treatment [35].
As the sample updates are detailed in Ref. [28], this

paper focuses on the results of the neutrino-nucleon cross
section measurement. A brief description of the event
selection is given in Sec. II. Section III details the analysis
procedure. Section IV presents our Bayesian and frequent-
ist results and compares them to existing measurements.
We conclude in Sec. V.

II. EVENT SELECTION

The measurements presented here rely on a sample of
high-energy events that start within a fiducial region of the
IceCube detector [24,28]. In this context, events are taken
to be the interaction byproducts of neutrino interactions, or
background muons from cosmic-ray interactions in the
atmosphere. The 90 m of the top and outer side layers of the
detector, 10 m of the bottom of the detector, and a 60 m
horizontal region near the highest concentration of dust in
the ice are used as an active veto. Only events with fewer

FIG. 1. Ratio of the arrival flux to surface flux for both electron neutrinos and antineutrinos as a function of Eν and zenith angle in
IceCube detector coordinates. The flux at the surface is assumed to have a spectral index of γ ¼ 2. The core-mantle boundary is visible
as a discontinuity near a zenith angle of 147°, and the enhanced suppression due to Glashow resonance is visible near 6.3 PeV in the
electron antineutrino channel. Flux ratios for the other flavors are similar to that of electron neutrinos.
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than 3 photoelectrons (PEs) and fewer than 3 hit DOMs in
the veto region within a predefined time window are kept.
In addition, the total charge must exceed 6000 PE [28].
This removes almost all of the background due to atmos-
pheric muons from the Southern sky. Neutrinos arriving
from above and below the detector are included in the
sample, thus allowing for constraints across the full allowed
region in zenith.
Events are grouped into three experimental particle

identification (PID) classifiers: cascades, tracks, and double
cascades. These PIDs are related to the true interaction
channel of the neutrino. Electromagnetic and hadronic
showers appear cascadelike, stochastic energy losses from
high-energy muons appear tracklike, and the production
and subsequent decay of a tau can appear as double
cascades (in addition to the other two PIDs) [28,36].
Since a NC interaction produces a hadronic shower, it is
not directly distinguishable from a CC interaction. In
addition, misclassifications can occur, and as such, the
mapping from true to reconstructed observables is imper-
fect. To model such effects, detailed Monte Carlo (MC)
simulations are performed, taking into account systematic
variations in the ice model. The MC is then processed
in an identical manner as the data. It thus provides the
connection from the physics parameters of interest to the
observed data events.

III. ANALYSIS METHOD

The cross section is probed by measuring neutrino
absorption in the Earth, which effects an angular and
energy dependence in the neutrino flux arriving at
IceCube. In essence, we perform fits to the measured

energy-zenith distribution for different hypotheses of the
cross section, using a MC to model the expected signal
under these hypotheses. A proper modeling accounts for
neutrino interactions in the Earth as well as in the detector,
with the event rate being proportional to the product of
the cross section and the arrival flux. Knowledge of the
number of events detected in data and the expected arrival
flux can thus be used to measure the cross section. This is
accomplished by binning the data and the expectation
from MC (under a particular assumption of the cross
section and flux) in observable space and then construct-
ing a representative likelihood. The MC expectation varies
as the cross section, as well as other systematic param-
eters, is modified. These modifications on theoretical
parameters are captured via event-by-event reweighting
of the MC [37]. For this analysis, the neutrino DIS cross
section is parametrized as a function of four independent
energy slices.
Figure 2 illustrates the effect of scaling the DIS cross

section up or down on the survival probability as a function
of energy for a neutrino traveling through the full diameter
of the Earth. It is plotted for each flavor individually as a
function of the neutrino energy, Eν; at a zenith angle of
180°; and for a surface flux with spectral index of γ ¼ 2.
The dependence on the spectrum arises from secondary
neutrinos, which cascade down in energy and are produced
in NC interactions and tau decay [11]. As the cross section
increases, ΦðEνÞ=Φ0ðEνÞ decreases since the neutrinos are
more likely to interact on their way through the Earth. The
reason there is a slight flavor dependence is due to the fact

that CC ν
ð−Þ

e and ν
ð−Þ

μ interactions are destructive, while a

CC ν
ð−Þ

τ interaction produces a tau lepton, which, unlike

FIG. 2. Ratio of the arrival flux to surface flux for both neutrinos and antineutrinos as a function of Eν for three realizations of the cross
section. The flux at the surface is assumed to have a spectral index of γ ¼ 2. The scaling is applied to the cross section given by Cooper-
Sarkar et al. (CSMS) [2].
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muons that lose most of their energy in the Earth before
decaying due to their much longer lifetimes, can quickly
decay to a lower-energy ντ. Neutral-current interactions
have a similar effect, and these effects are taken into
account [13,29]. Furthermore, the dip in the ν̄e flux
ratio due to the Glashow resonance is again visible. This
effect, taken over the full two-dimensional energy-zenith
distribution, allows us to place constraints on the cross
section itself.
In this paper, we report the neutrino DIS cross section

as a function of energy under a single-power-law astro-
physical flux assumption. Four scaling parameters,
x ¼ ðx0; x1; x2; x3Þ, are applied to the cross section given
by CSMS [2] across four energy bins with edges fixed at
60 TeV, 100 TeV, 200 TeV, 500 TeV, and 10 PeV, where
the indices correspond to the ordering of the energy bins
from lowest to highest energies. Each parameter linearly
scales the neutrino and antineutrino DIS cross section in
each bin, while keeping the ratio of CC-to-NC contribu-
tions fixed. More specifically, for each x, neutrino events
in MC are reweighted by xiΦðEν; θν; xÞ=ΦðEν; θν; 1Þ,
where Φ is the arrival flux as calculated by nuSQuIDS,
Eν is the true neutrino energy, θν the true neutrino zenith
angle, and xi the cross section scaling factor at Eν. The
fixed CC-to-NC ratio implies that this analysis should not
be interpreted as a direct test of the large extra dimensions
model [5], which only applies to NC interactions. At
energies above 1 TeV, the neutrino-nucleon cross sections
for all three neutrino flavors converge. The cross section is
therefore assumed to not depend on flavor in this
measurement, but any differences in the arrival flux of
νe, νμ, ντ are taken into account. As the cross section is not

flat in each bin, the effect of these four parameters is to
convert it into a piecewise function where each piece is
independently rescaled. Such an approach introduces
discontinuities due to binning but allows for a measure-
ment of the total neutrino-nucleon cross section as a
function of energy. It also relaxes constraints based on
the overall shape of the CSMS cross section and results in
a more model-independent measurement. As the fit
proceeds over all four bins simultaneously, bin-to-
bin correlations can be examined, though no regulariza-
tion is applied.
The CSMS cross section is computed for free nucleon

targets and does not correct for nuclear shadowing. The
shadowing effect modifies nuclear parton densities and is
stronger for heavier nuclei. At energies below 100 TeV,
antishadowing can increase the cross section by 1%–2%,
while above 100 TeV, shadowing can decrease the cross
section by 3%–4% [38]. As this is a subdominant effect, we
do not include it in this analysis. We do, however, consider
the Glashow resonance in which an incident ν̄e creates an
on-shell W− by scattering off an electron in the detector.
The effect on the expected arrival flux at the detector due

to a modified cross section is calculated with nuSQuIDS, a

neutrino propagation framework that properly takes into
account destructive CC interactions, cascading NC inter-
actions, and tau-regeneration effects [39]. A forward-folded
fit is then performed, relying on MC to map each neutrino
flavor to the experimental PID of tracks, cascades and
double cascades [36], in the reconstructed zenith vs
reconstructed energy distribution for tracks and cascades
and in the reconstructed energy vs cascade length separa-
tion distribution for double cascades [28]. The fit uses the
Poisson-like likelihood, LEff , which accounts for statistical
uncertainties in the MC and is constructed by comparing
the binned MC to data [34]. The ternary PID of tracks,
cascades, and double cascades is an additional constraint to
the fit, which allows this measurement to incorporate
interaction characteristics of all three neutrino flavors
[36]. Using MC simulations, we can account for deviations
between the true flavor and the PID and also estimate its
accuracy. Under best-fit expectations, true νe are classified
as cascades approximately 57% of the time, true νμ as

tracks approximately 73% of the time, and true ντ as double
cascades approximately 65% of the time [28].
Systematic uncertainties are incorporated via the param-

eters listed in Table I. The parameter Φconv (Φprompt)
linearly scales the atmospheric neutrino flux normalization
for neutrinos produced by π or K (charm meson) decay
[40,41]. The parameters γ and Φastro modify the spectral
index and normalization of the astrophysical neutrino flux,
respectively. The parameter Φμ linearly scales the atmos-

pheric muon flux normalization. The ratio of atmospheric
neutrinos produced in pion vs kaon decay is governed by
the π=K parameter. The parameter ν=ν̄ governs the ratio of
atmospheric neutrinos to antineutrinos. Finally, the param-
eterΔγCR modifies the spectral index of the cosmic-ray flux
[42]. Detector systematic studies were performed using
Asimov data but had a negligible impact on the result.
Priors on the nuisance parameters are given in Table I. The

TABLE I. Central values and uncertainties on the nuisance

parameters included in the fit. Truncated Gaussians are set to zero
outside the range. These modify the likelihood used in both the
Bayesian and frequentist constructions. Their best-fit values over
the likelihood space are also given.

Parameter Constraint/prior Range Shape Best fit

Astrophysical ν:
Φastro � � � ½0;∞Þ Uniform 6.94
γastro 2.0� 1.0 ð−∞;∞Þ Gaussian 3.15

Atmospheric ν:
Φconv 1.0� 0.4 ½0;∞Þ Truncated 0.96
Φprompt 1.0� 3.0 ½0;∞Þ Truncated 0.00

π=K 1.0� 0.1 ½0;∞Þ Truncated 1.00
2ν=ðνþ ν̄Þatmo 1.0� 0.1 [0, 2] Truncated 1.00

Cosmic ray:
ΔγCR −0.05� 0.05 ð−∞;∞Þ Gaussian −0.05
Φμ 1.0� 0.5 ½0;∞Þ Truncated 1.22
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prior on γastro is driven by the usual Fermi acceleration
mechanism, allowing for a large uncertainty that covers
those reported in a previous and independent IceCube
measurement of the diffuse neutrino flux [43]. Such a large
uncertainty minimizes the impact of changing the central
value on the measured cross section. None of the xi
parameters shifted by more than 1% in postunblinding
checks where γastro ¼ 3.0� 1.0.
Out of all the nuisance parameters, γastro and Φastro

exhibited the largest correlation with the cross section
parameters. They are most strongly correlated with x0, the
cross section in the lowest-energy bin. This is believed to be
related to the fact that lower-energy neutrinos are subject to
less Earth absorption so the main effect of varying the low-
energy cross section is a near-linear scaling at the detector.
This makes x0 essentially inversely proportional to the
astrophysical flux. By allowing the cross section to float,
the data seem to prefer the softer index, as given in Table I.
The interaction rate of high-energy neutrinos traveling

through the Earth is also dependent on the Earth density.
Here, we fix the density to the preliminary reference
Earth model [44]. This is a parametric description of the
density as a function of radial distance from the center of
the Earth, evaluated using several sources of surface and
body seismic wave data. Since the density uncertainty is at
the few percent level, it is negligible in comparison to the
flux uncertainty and is fixed for the purposes of this
measurement [45].

Note that the Glashow resonance occurs for an incident

ν̄e with an energy around 6.3 PeVand is not varied in the fit

as it is calculable from first principles, using the known

decay width of the W boson. However, unlike high-energy

neutrino-nucleon scattering, the expected number of events

due to the Glashow resonance is strongly dependent on the

ratio of neutrinos and antineutrinos in the incident flux. We

therefore performed a test that varied the astrophysical flux

from a pure neutrino flux to a pure antineutrino flux. It was

found only to have a minimal effect in the highest-energy

bin, where the measurement uncertainty is largest. This is

due in part to the steeply falling spectrum, which causes the

flux at 6.3 PeV to be much smaller than that at lower

energies. As the effect on the cross section is minimal, we

keep the ratio of the flux of astrophysical neutrinos and

antineutrinos fixed to unity.
We report both Bayesian highest posterior density

(HPD) credible intervals and frequentist confidence inter-
vals (CI). In the Bayesian construction, the posterior on
the four scaling parameters is obtained with a Markov
chain Monte Carlo (MCMC) sampler, emcee, marginal-
izing over nuisance parameters [46]. A uniform prior from
0 to 50 is assumed for all four cross section scaling
parameters. Such a prior gives more weight to parameter
values greater than 1. To test its effect, the MCMC was
also run assuming a log-uniform prior, which gives results
consistent with those assuming a uniform prior. The

MCMC is sampled with 60 walkers over 5000 total steps,
the first 1000 of which are treated as part of the initia-
lization stage and discarded.
The frequentist confidence regions are obtained from a

grid scan of the likelihood across four dimensions, profiling
over the nuisance parameters and assuming Wilks theorem.
For x0, x1, and x2, 15 equal-distant points are used from 0.1
to 5. For x3, 29 equal-distant points are used from 0.1 to
9.9. For each x on the mesh of these points, the likelihood is
minimized over all other nuisance parameters. Confidence
regions in two or one dimension are then evaluated by
profiling across the other cross section parameters followed
by application of Wilks theorem. Though the best-fit
Φprompt ¼ 0, the prompt component is expected to be a

small contribution to the overall distribution. Thus, we
expect Wilks theorem to hold asymptotically in the high
statistics limit.
The zenith-dependent effect of the cross section on the

event rate is shown in Fig. 3, assuming the best-fit, single-
power-law flux reported in Ref. [28], which is obtained
using the CSMS cross section σ ¼ σCSMS [2]. The degen-
eracy in the measurements of flux and cross section is
broken by the different amounts of matter traversed by
neutrinos arriving from different directions. To illustrate the
effect of a modified cross section, two alternative expect-
ations are shown for σ ¼ 0.2σCSMS and σ ¼ 5σCSMS under

FIG. 3. The zenith distribution of data and the best-fit, single-
power-law flux expectation assuming σCSMS (orange) [2]. Pre-
dictions from two alternative cross sections are shown as well,

assuming the same flux. In the Southern sky, cos θ > 0, the Earth
absorption is negligible, so the effect of rescaling the cross
section is linear. In the Northern sky, cos θ < 0, the strength of
Earth absorption is dependent on the cross section as well as the
neutrino energy and zenith angle.
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the same best-fit flux assumption. In the Southern sky
(cos θ > 0), the Earth absorption is negligible, and the
event rate is simply proportional to the cross section. In the
Northern sky (cos θ < 0), the strength of Earth absorption
is dependent on the zenith angle, Eν, and the cross section.
Absorption alters the shape of the event-rate zenith dis-
tribution in the Northern sky. For example, with σ ¼
5σCSMS and near cos θ ¼ −0.5, the attenuation of the
arriving flux counteracts the increased neutrino interaction
probability so that the event rate falls back to that expected
from the CSMS cross section. Modifications of the neutrino
cross section are thus constrained by the nonobservation
of energy-dependent distortions in the zenith angle
distribution.

IV. RESULTS

The CC cross section, averaged over ν and ν̄, is shown in
black in Figs. 4 and 5 for the Bayesian 68.3% HPD and
frequentist one sigma intervals assuming Wilks theorem,
respectively. As the scale factor is applied across the entire
interval within an energy bin on the CSMS calculations, the
shape is preserved within each bin. The central point in
each energy bin corresponds to the expected, most probable
energy in dNMC=d logE, the distribution of events in the
MC along the x axis. This is chosen in lieu of the linear or
logarithmic bin center to better represent where most of the
statistical power lies in each bin. Since we assume a fixed
CC-NC cross section ratio, the NC cross section is the same

result relative to the CSMS prediction and so is not
shown here.
In addition, the measurement based on HESE showers

with 6 years of data is shown as orange crosses [30] in

FIG. 4. The charged-current, high-energy neutrino cross section
as a function of energy, averaged over ν and ν̄. The Bayesian
68.3% HPD credible interval is shown along with two cross
section calculations [2,4]. The credible intervals from a previous
analysis [30] are also shown for comparison.

FIG. 5. The charged-current, high-energy neutrino cross section
as a function of energy, averaged over ν and ν̄. The Wilks 1-sigma

CI is shown along with two cross section calculations [2,4]. The
confidence intervals fromRef. [29] are also shown for comparison.

FIG. 6. The full posterior distribution of x as evaluated with
emcee [46]. In the two-dimensional distributions, the 68.3% and
95.4% HPD regions are shown. In the one-dimensional distri-
bution, the 68.3% HPD interval is indicated by the dashed lines.
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Fig. 4, and the previously published IceCube measurement,
using up-going muon-neutrinos, is shown as the shaded
gray region [29] in Fig. 5. Since credible intervals and
confidence intervals have different interpretations, we do
not plot them on the same figure. Note that both previous
measurements extend below 60 TeV and are truncated in
this comparison. Predictions from Refs. [2] and [4] are
shown as the dashed and solid lines, respectively.
A corner plot of the posterior density, marginalized over

all except two or one of the cross section parameters, is
shown in Fig. 6. Similarly, two-dimensional profile like-
lihoods are shown in Fig. 7. Both exhibit little correlation
between the various cross section parameters. The largest
uncertainty arises for x3, which has the widest posterior
distribution and flattest profile likelihood.
The Bayesian and frequentist results are consistent with

each other, though again we caution that their intervals
cannot be interpreted in the same manner. The results are

compatible with the Standard Model and are summarized in
Table II.

V. CONCLUSIONS

We have described a measurement of the neutrino DIS
cross section using the IceCube detector. Variations in the
neutrino cross section from Standard Model predictions
modify the expected flux and event rate at our detector, and
a sample of high-energy events starting within the fiducial
volume of IceCube has been utilized to thus measure the
neutrino cross section. Previous TeV–PeV scale neutrino
cross sections have been measured by IceCube [29] using a
sample of through-going muons and with cascades in the
HESE sample [30]. This result, however, is the first
measurement of the neutrino DIS cross section to combine
information from all three neutrino flavors.
Our results are compatible with Standard Model pre-

dictions, though the data seem to prefer smaller values at
the lowest-energy bin and higher values at the highest-
energy bin. There do not seem to be strong correlations
between the cross section bins, though large uncertainties
due to a dearth of data statistics make it difficult to draw
strong conclusions. With additional data, or with a com-
bined fit across multiple samples, more precise measure-
ments are foreseen in the near future [47].
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