Measurement of the Inclusive Charmless Semileptonic Branching Ratio of B Mesons and Determination of $\left|V_{u b}\right|$

B. Aubert,,1 R. Barate, ${ }^{1}$ D. Boutigny, ${ }^{1}$ J.-M. Gaillard, ${ }^{1}$ A. Hicheur, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ P. Robbe, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ A. Palano, ${ }^{2}$ A. Pompili, ${ }^{2}$ J. C. Chen, ${ }^{3}$ N. D. Qi, ${ }^{3}$ G. Rong, ${ }^{3}$ P. Wang, ${ }^{3}$ Y. S. Zhu, ${ }^{3}$ G. Eigen, ${ }^{4}$ I. Ofte, ${ }^{4}$ B. Stugu, ${ }^{4}$ G. S. Abrams, ${ }^{5}$ A. W. Borgland, ${ }^{5}$ A. B. Breon, ${ }^{5}$ D. N. Brown, ${ }^{5}$ J. Button-Shafer, ${ }^{5}$ R. N. Cahn, ${ }^{5}$ E. Charles, ${ }^{5}$ C. T. Day, ${ }^{5}$ M. S. Gill, ${ }^{5}$ A. V. Gritsan, ${ }^{5}$ Y. Groysman, ${ }^{5}$ R. G. Jacobsen, ${ }^{5}$ R. W. Kadel, ${ }^{5}$ J. Kadyk, ${ }^{5}$ L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ J. F. Kral, ${ }^{5}$ G. Kukartsev, ${ }^{5}$ C. LeClerc, ${ }^{5}$ M. E. Levi, ${ }^{5}$ G. Lynch, ${ }^{5}$ L. M. Mir, ${ }^{5}$ P. J. Oddone, ${ }^{5}$ T. J. Orimoto, ${ }^{5}$ M. Pripstein, ${ }^{5}$ N. A. Roe, ${ }^{5}$ A. Romosan, ${ }^{5}$ M. T. Ronan, ${ }^{5}$ V. G. Shelkov, ${ }^{5}$ A. V. Telnov, ${ }^{5}$ W. A. Wenzel, ${ }^{5}$ K. Ford, ${ }^{6}$ T. J. Harrison, ${ }^{6}$ C. M. Hawkes, ${ }^{6}$ D. J. Knowles, ${ }^{6}$ S. E. Morgan, ${ }^{6}$ R. C. Penny, ${ }^{6}$ A. T. Watson, ${ }^{6}$ N. K. Watson, ${ }^{6}$ T. Deppermann, ${ }^{7}$ K. Goetzen, ${ }^{7}$ H. Koch, ${ }^{7}$ B. Lewandowski, ${ }^{7}$ M. Pelizaeus, ${ }^{7}$ K. Peters, ${ }^{7}$ H. Schmuecker, ${ }^{7}$ M. Steinke, ${ }^{7}$ N. R. Barlow, ${ }^{8}$ J. T. Boyd, ${ }^{8}$ N. Chevalier, ${ }^{8}$ W. N. Cottingham, ${ }^{8}$ M. P. Kelly, ${ }^{8}$ T. E. Latham, ${ }^{8}$ C. Mackay, ${ }^{8}$ F. F. Wilson,,${ }^{8}$ K. Abe, ${ }^{9}$ T. Cuhadar-Donszelmann, ${ }^{9}$ C. Hearty, ${ }^{9}$ T. S. Mattison, ${ }^{9}$ J. A. McKenna, ${ }^{9}$ D. Thiessen, ${ }^{9}$ P. Kyberd, ${ }^{10}$ A. K. McKemey, ${ }^{10}$ V. E. Blinov, ${ }^{11}$ A. D. Bukin,,11 V. B. Golubev, ${ }^{11}$ V. N. Ivanchenko, ${ }^{11}$ E. A. Kravchenko, ${ }^{11}$ A. P. Onuchin, ${ }^{11}$ S. I. Serednyakov, ${ }^{11}$ Yu. I. Skovpen, ${ }^{11}$ E. P. Solodov, ${ }^{11}$ A. N. Yushkov, ${ }^{11}$ D. Best, ${ }^{12}$ M. Chao, ${ }^{12}$ D. Kirkby, ${ }^{12}$ A. J. Lankford, ${ }^{12}$ M. Mandelkern, ${ }^{12}$ S. McMahon, ${ }^{12}$ R. K. Mommsen, ${ }^{12}$ W. Roethel, ${ }^{12}$ D. P. Stoker, ${ }^{12}$ C. Buchanan, ${ }^{13}$ D. del Re, ${ }^{14}$ H. K. Hadavand, ${ }^{14}$ E. J. Hill, ${ }^{14}$ D. B. MacFarlane, ${ }^{14}$ H. P. Paar, ${ }^{14}$ Sh. Rahatlou, ${ }^{14}$ U. Schwanke, ${ }^{14}$ V. Sharma, ${ }^{14}$ J. W. Berryhill, ${ }^{15}$ C. Campagnari, ${ }^{15}$ B. Dahmes,,${ }^{15}$ N. Kuznetsova, ${ }^{15}$ S. L. Levy, ${ }^{15}$ O. Long, ${ }^{15}$ A. Lu, ${ }^{15}$ M. A. Mazur, ${ }^{15}$ J. D. Richman, ${ }^{15}$ W. Verkerke, ${ }^{15}$ T. W. Beck, ${ }^{16}$ J. Beringer, ${ }^{16}$ A. M. Eisner, ${ }^{16}$ C. A. Heusch, ${ }^{16}$ W. S. Lockman,,${ }^{16}$ T. Schalk, ${ }^{16}$ R. E. Schmitz, ${ }^{16}$ B. A. Schumm, ${ }^{16}$ A. Seiden, ${ }^{16}$ M. Turri, ${ }^{16}$ W. Walkowiak, ${ }^{16}$ D. C. Williams, ${ }^{16}$ M. G. Wilson, ${ }^{16}$ J. Albert, ${ }^{17}$ E. Chen, ${ }^{17}$ G. P. Dubois-Felsmann, ${ }^{17}$ A. Dvoretskii, ${ }^{17}$ D. G. Hitlin, ${ }^{17}$ I. Narsky, ${ }^{17}$ F. C. Porter, ${ }^{17}$ A. Ryd, ${ }^{17}$ A. Samuel, ${ }^{17}$ S. Yang, ${ }^{17}$ S. Jayatilleke, ${ }^{18}$ G. Mancinelli, ${ }^{18}$ B. T. Meadows, ${ }^{18}$ M. D. Sokoloff, ${ }^{18}$ T. Abe, ${ }^{19}$ T. Barillari, ${ }^{19}$ F. Blanc, ${ }^{19}$ P. Bloom, ${ }^{19}$ S. Chen, ${ }^{19}$ P. J. Clark, ${ }^{19}$ W. T. Ford, ${ }^{19}$ U. Nauenberg, ${ }^{19}$ A. Olivas, ${ }^{19}$ P. Rankin, ${ }^{19}$ J. Roy, ${ }^{19}$ J. G. Smith, ${ }^{19}$ W. C. van Hoek, ${ }^{19}$ L. Zhang, ${ }^{19}$ J. L. Harton, ${ }^{20}$ T. Hu, ${ }^{20}$ A. Soffer, ${ }^{20}$ W. H. Toki, ${ }^{20}$ R. J. Wilson, ${ }^{20}$ J. Zhang, ${ }^{20}$ D. Altenburg, ${ }^{21}$ T. Brandt, ${ }^{21}$ J. Brose,,21 T. Colberg, ${ }^{21}$ M. Dickopp, ${ }^{21}$ R. S. Dubitzky, ${ }^{21}$ A. Hauke, ${ }^{21}$ H. M. Lacker, ${ }^{21}$ E. Maly, ${ }^{21}$ R. Müller-Pfefferkorn, ${ }^{21}$ R. Nogowski, ${ }^{21}$ S. Otto, ${ }^{21}$ K. R. Schubert, ${ }^{21}$ R. Schwierz, ${ }^{21}$ B. Spaan, ${ }^{21}$ L. Wilden, ${ }^{21}$ D. Bernard, ${ }^{22}$ G. R. Bonneaud, ${ }^{22}$ F. Brochard, ${ }^{22}$ J. Cohen-Tanugi, ${ }^{22}$ Ch. Thiebaux, ${ }^{22}$ G. Vasileiadis, ${ }^{22}$ M. Verderi, ${ }^{22}$ A. Khan, ${ }^{23}$ D. Lavin, ${ }^{23}$ F. Muheim, ${ }^{23}$ S. Playfer, ${ }^{23}$ J. E. Swain, ${ }^{23}$ J. Tinslay, ${ }^{23}$ M. Andreotti, ${ }^{24}$ D. Bettoni, ${ }^{24}$ C. Bozzi, ${ }^{24}$ R. Calabrese,,24 G. Cibinetto, ${ }^{24}$ E. Luppi, ${ }^{24}$ M. Negrini, ${ }^{24}$ L. Piemontese, ${ }^{24}$ A. Sarti, ${ }^{24}$ E. Treadwell, ${ }^{25}$ F. Anulli, ${ }^{26, *}$ R. Baldini-Ferroli, ${ }^{26}$ A. Calcaterra, ${ }^{26}$ R. de Sangro, ${ }^{26}$ D. Falciai, ${ }^{26}$ G. Finocchiaro, ${ }^{26}$ P. Patteri, ${ }^{26}$ I. M. Peruzzi, ${ }^{26, *}$ M. Piccolo, ${ }^{26}$ A. Zallo, ${ }^{26}$ A. Buzzo, ${ }^{27}$ R. Contri, ${ }^{27}$ G. Crosetti, ${ }^{27}$ M. Lo Vetere,,${ }^{27}$ M. Macri, ${ }^{27}$
M. R. Monge, ${ }^{27}$ S. Passaggio, ${ }^{27}$ F. C. Pastore, ${ }^{27}$ C. Patrignani, ${ }^{27}$ E. Robutti, ${ }^{27}$ A. Santroni, ${ }^{27}$ S. Tosi, ${ }^{27}$ S. Bailey, ${ }^{28}$ M. Morii,,28 M. L. Aspinwall, ${ }^{29}$ W. Bhimji, ${ }^{29}$ D. A. Bowerman, ${ }^{29}$ P. D. Dauncey, ${ }^{29}$ U. Egede, ${ }^{29}$ I. Eschrich, ${ }^{29}$ G. W. Morton, ${ }^{29}$ J. A. Nash, ${ }^{29}$ P. Sanders, ${ }^{29}$ G. P. Taylor, ${ }^{29}$ G. J. Grenier, ${ }^{30}$ S.-J. Lee, ${ }^{30}$ U. Mallik, ${ }^{30}$ J. Cochran, ${ }^{31}$ H. B. Crawley, ${ }^{31}$ J. Lamsa, ${ }^{31}$ W. T. Meyer, ${ }^{31}$ S. Prell, ${ }^{31}$ E. I. Rosenberg, ${ }^{31}$ J. Yi, ${ }^{31}$ M. Davier, ${ }^{32}$ G. Grosdidier, ${ }^{32}$ A. Höcker, ${ }^{32}$ S. Laplace, ${ }^{32}$ F. Le Diberder, ${ }^{32}$ V. Lepeltier, ${ }^{32}$ A. M. Lutz, ${ }^{32}$ T. C. Petersen, ${ }^{32}$ S. Plaszczynski, ${ }^{32}$ M. H. Schune, ${ }^{32}$ L. Tantot, ${ }^{32}$ G. Wormser, ${ }^{32}$ V. Brigljević, ${ }^{33}$ C. H. Cheng, ${ }^{33}$ D. J. Lange, ${ }^{33}$ D. M. Wright, ${ }^{33}$ A. J. Bevan, ${ }^{34}$ J. P. Coleman, ${ }^{34}$ J. R. Fry, ${ }^{34}$ E. Gabathuler, ${ }^{34}$ R. Gamet, ${ }^{34}$ M. Kay, ${ }^{34}$ R. J. Parry, ${ }^{34}$ D. J. Payne, ${ }^{34}$ R. J. Sloane, ${ }^{34}$ C. Touramanis, ${ }^{34}$ J. J. Back, ${ }^{35}$ P. F. Harrison, ${ }^{35}$ H. W. Shorthouse, ${ }^{35}$ P. Strother, ${ }^{35}$ P. B. Vidal, ${ }^{35}$ C. L. Brown, ${ }^{36}$ G. Cowan, ${ }^{36}$ R. L. Flack, ${ }^{36}$ H. U. Flaecher, ${ }^{36}$ S. George, ${ }^{36}$ M. G. Green, ${ }^{36}$ A. Kurup, ${ }^{36}$ C. E. Marker, ${ }^{36}$ T. R. McMahon, ${ }^{36}$ S. Ricciardi, ${ }^{36}$ F. Salvatore, ${ }^{36}$ G. Vaitsas, ${ }^{36}$ M. A. Winter, ${ }^{36}$ D. Brown, ${ }^{37}$ C. L. Davis, ${ }^{37}$ J. Allison, ${ }^{38}$ R. J. Barlow, ${ }^{38}$ A. C. Forti, ${ }^{38}$ P. A. Hart, ${ }^{38}$ F. Jackson, ${ }^{38}$ G. D. Lafferty, ${ }^{38}$ A. J. Lyon, ${ }^{38}$ J. H. Weatherall, ${ }^{38}$ J. C. Williams, ${ }^{38}$ A. Farbin, ${ }^{39}$ A. Jawahery, ${ }^{39}$ D. Kovalskyi, ${ }^{39}$ C. K. Lae, ${ }^{39}$ V. Lillard, ${ }^{39}$ D. A. Roberts, ${ }^{39}$ G. Blaylock, ${ }^{40}$ C. Dallapiccola, ${ }^{40}$ K. T. Flood, ${ }^{40}$ S. S. Hertzbach, ${ }^{40}$ R. Kofler, ${ }^{40}$ V. B. Koptchev, ${ }^{40}$ T. B. Moore, ${ }^{40}$ S. Saremi, ${ }^{40}$ H. Staengle, ${ }^{40}$ S. Willocq, ${ }^{40}$ R. Cowan, ${ }^{41}$ G. Sciolla, ${ }^{41}$ F. Taylor, ${ }^{41}$ R. K. Yamamoto, ${ }^{41}$ D. J. J. Mangeol, ${ }^{42}$ M. Milek, ${ }^{42}$ P. M. Patel, ${ }^{42}$ A. Lazzaro, ${ }^{43}$ F. Palombo, ${ }^{43}$ J. M. Bauer, ${ }^{44}$ L. Cremaldi, ${ }^{44}$ V. Eschenburg, ${ }^{44}$ R. Godang, ${ }^{44}$ R. Kroeger, ${ }^{44}$ J. Reidy, ${ }^{44}$ D. A. Sanders, ${ }^{44}$ D. J. Summers, ${ }^{44}$ H. W. Zhao, ${ }^{44}$ C. Hast, ${ }^{45}$ P. Taras, ${ }^{45}$ H. Nicholson, ${ }^{46}$ C. Cartaro, ${ }^{47}$ N. Cavallo, ${ }^{47, \dagger}$ G. De Nardo, ${ }^{47}$ F. Fabozzi, ${ }^{47,} \dagger$ C. Gatto, ${ }^{47}$
L. Lista, ${ }^{47}$ P. Paolucci, ${ }^{47}$ D. Piccolo, ${ }^{47}$ C. Sciacca, ${ }^{47}$ M. A. Baak, ${ }^{48}$ G. Raven, ${ }^{48}$ J. M. LoSecco, ${ }^{49}$ T. A. Gabriel, ${ }^{50}$ B. Brau, ${ }^{51}$ T. Pulliam, ${ }^{51}$ J. Brau, ${ }^{52}$ R. Frey, ${ }^{52}$ C. T. Potter, ${ }^{52}$ N. B. Sinev, ${ }^{52}$ D. Strom, ${ }^{52}$ E. Torrence, ${ }^{52}$ F. Colecchia, ${ }^{53}$ A. Dorigo, ${ }^{53}$ F. Galeazzi, ${ }^{53}$ M. Margoni, ${ }^{53}$ M. Morandin, ${ }^{53}$ M. Posocco, ${ }^{53}$ M. Rotondo, ${ }^{53}$ F. Simonetto,,${ }^{53}$ R. Stroili, ${ }^{53}$ G. Tiozzo, ${ }^{53}$ C. Voci, ${ }^{53}$ M. Benayoun, ${ }^{54}$ H. Briand, ${ }^{54}$ J. Chauveau, ${ }^{54}$ P. David, ${ }^{54}$ Ch. de la Vaissière, ${ }^{54}$ L. Del Buono, ${ }^{54}$ O. Hamon, ${ }^{54}$ M. J. J. John, ${ }^{54}$ Ph. Leruste, ${ }^{54}$ J. Ocariz, ${ }^{54}$ M. Pivk, ${ }^{54}$ L. Roos, ${ }^{54}$ J. Stark, ${ }^{54}$ S. T'Jampens, ${ }^{54}$ P. F. Manfredi, ${ }^{55}$ V. Re, ${ }^{55}$ L. Gladney, ${ }^{56}$ Q. H. Guo, ${ }^{56}$ J. Panetta, ${ }^{56}$ C. Angelini, ${ }^{57}$ G. Batignani, ${ }^{57}$ S. Bettarini, ${ }^{57}$ M. Bondioli, ${ }^{57}$ F. Bucci, ${ }^{57}$ G. Calderini, ${ }^{57}$ M. Carpinelli, ${ }^{57}$ F. Forti, ${ }^{57}$ M. A. Giorgi, ${ }^{57}$ A. Lusiani, ${ }^{57}$ G. Marchiori, ${ }^{57}$ F. Martinez-Vidal, ${ }^{57, \sharp}$ M. Morganti, ${ }^{57}$ N. Neri, ${ }^{57}$ E. Paoloni, ${ }^{57}$ M. Rama, ${ }^{57}$ G. Rizzo, ${ }^{57}$ F. Sandrelli, ${ }^{57}$ J. Walsh, ${ }^{57}$ M. Haire, ${ }^{58}$ D. Judd, ${ }^{58}$ K. Paick, ${ }^{58}$ D. E. Wagoner, ${ }^{58}$ N. Danielson, ${ }^{59}$ P. Elmer, ${ }^{59}$ C. Lu, ${ }^{59}$ V. Miftakov, ${ }^{59}$ J. Olsen, ${ }^{59}$ A. J. S. Smith, ${ }^{59}$ E. W. Varnes, ${ }^{59}$ F. Bellini, ${ }^{60}$ G. Cavoto, ${ }^{59,}{ }^{60}$ R. Faccini, ${ }^{14,60}$ F. Ferrarotto, ${ }^{60}$ F. Ferroni, ${ }^{60}$ M. Gaspero, ${ }^{60}$ M. A. Mazzoni, ${ }^{60}$ S. Morganti, ${ }^{60}$ M. Pierini, ${ }^{60}$ G. Piredda, ${ }^{60}$ F. Safai Tehrani, ${ }^{60}$ C. Voena, ${ }^{60}$ S. Christ, ${ }^{61}$ G. Wagner, ${ }^{61}$ R. Waldi, ${ }^{61}$ T. Adye, ${ }^{62}$ N. De Groot, ${ }^{62}$ B. Franek, ${ }^{62}$ N. I. Geddes, ${ }^{62}$ G. P. Gopal, ${ }^{62}$ E. O. Olaiya, ${ }^{62}$ S. M. Xella, ${ }^{62}$ R. Aleksan, ${ }^{63}$ S. Emery, ${ }^{63}$ A. Gaidot, ${ }^{63}$ S. F. Ganzhur, ${ }^{63}$ P.-F. Giraud, ${ }^{63}$ G. Hamel de Monchenault, ${ }^{63}$ W. Kozanecki, ${ }^{63}$ M. Langer, ${ }^{63}$ G. W. London, ${ }^{63}$ B. Mayer, ${ }^{63}$ G. Schott, ${ }^{63}$ G. Vasseur, ${ }^{63}$ Ch. Yeche, ${ }^{63}$ M. Zito, ${ }^{63}$ M. V. Purohit, ${ }^{64}$ A. W. Weidemann, ${ }^{64}$ F. X. Yumiceva, ${ }^{64}$ D. Aston, ${ }^{65}$ R. Bartoldus, ${ }^{65}$ N. Berger, ${ }^{65}$ A. M. Boyarski, ${ }^{65}$ O. L. Buchmueller, ${ }^{65}$ M. R. Convery, ${ }^{65}$ D. P. Coupal, ${ }^{65}$ D. Dong, ${ }^{65}$ J. Dorfan, ${ }^{65}$ D. Dujmic, ${ }^{65}$ W. Dunwoodie, ${ }^{65}$ R. C. Field, ${ }^{65}$ T. Glanzman, ${ }^{65}$ S. J. Gowdy, ${ }^{65}$ E. Grauges-Pous, ${ }^{65}$ T. Hadig, ${ }^{65}$ V. Halyo, ${ }^{65}$ T. Hryn'ova, ${ }^{65}$ W. R. Innes, ${ }^{65}$ C. P. Jessop, ${ }^{65}$ M. H. Kelsey, ${ }^{65}$ P. Kim, ${ }^{65}$ M. L. Kocian, ${ }^{65}$ U. Langenegger, ${ }^{65}$ D. W. G. S. Leith, ${ }^{65}$ S. Luitz, ${ }^{65}$ V. Luth, ${ }^{65}$ H. L. Lynch, ${ }^{65}$ H. Marsiske, ${ }^{65}$ S. Menke, ${ }^{65}$ R. Messner, ${ }^{65}$ D. R. Muller, ${ }^{65}$ C. P. O’Grady, ${ }^{65}$ V. E. Ozcan, ${ }^{65}$ A. Perazzo, ${ }^{65}$ M. Perl, ${ }^{65}$ S. Petrak, ${ }^{65}$ B. N. Ratcliff, ${ }^{65}$ S. H. Robertson, ${ }^{65}$ A. Roodman, ${ }^{65}$ A. A. Salnikov, ${ }^{65}$ R. H. Schindler, ${ }^{65}$ J. Schwiening, ${ }^{65}$ G. Simi, ${ }^{65}$ A. Snyder, ${ }^{65}$ A. Soha, ${ }^{65}$ J. Stelzer, ${ }^{65}$ D. Su, ${ }^{65}$ M. K. Sullivan, ${ }^{65}$ H. A. Tanaka, ${ }^{65}$ J. Va'vra, ${ }^{65}$ S. R. Wagner, ${ }^{65}$ M. Weaver, ${ }^{65}$ A. J. R. Weinstein, ${ }^{65}$ W. J. Wisniewski, ${ }^{65}$ D. H. Wright, ${ }^{65}$ C. C. Young, ${ }^{65}$ P. R. Burchat, ${ }^{66}$ A. J. Edwards, ${ }^{66}$ T. I. Meyer, ${ }^{66}$ C. Roat, ${ }^{66}$ S. Ahmed, ${ }^{67}$ M. S. Alam, ${ }^{67}$ J. A. Ernst, ${ }^{67}$ M. Saleem, ${ }^{67}$ F. R. Wappler, ${ }^{67}$ W. Bugg, ${ }^{68}$ M. Krishnamurthy, ${ }^{68}$ S. M. Spanier, ${ }^{68}$ R. Eckmann, ${ }^{69}$ H. Kim, ${ }^{69}$ J. L. Ritchie, ${ }^{69}$ R. F. Schwitters, ${ }^{69}$ J. M. Izen, ${ }^{70}$ I. Kitayama, ${ }^{70}$ X. C. Lou, ${ }^{70}$ S. Ye, ${ }^{70}$ F. Bianchi, ${ }^{71}$ M. Bona, ${ }^{71}$ F. Gallo, ${ }^{71}$ D. Gamba, ${ }^{71}$ C. Borean, ${ }^{72}$ L. Bosisio, ${ }^{72}$ G. Della Ricca, ${ }^{72}$ S. Dittongo, ${ }^{72}$ S. Grancagnolo, ${ }^{72}$ L. Lanceri, ${ }^{72}$ P. Poropat, ${ }^{72,}$, L. Vitale, ${ }^{72}$ G. Vuagnin, ${ }^{72}$ R. S. Panvini, ${ }^{73}$ Sw. Banerjee, ${ }^{74}$ C. M. Brown, ${ }^{74}$ D. Fortin, ${ }^{74}$ P. D. Jackson, ${ }^{74}$ R. Kowalewski, ${ }^{74}$ J. M. Roney, ${ }^{74}$ H. R. Band, ${ }^{75}$ S. Dasu, ${ }^{75}$ M. Datta, ${ }^{75}$ A. M. Eichenbaum, ${ }^{75}$ H. Hu, ${ }^{75}$ J. R. Johnson, ${ }^{75}$ P. E. Kutter, ${ }^{75}$ H. Li, ${ }^{75}$ R. Liu, ${ }^{75}$ F. Di Lodovico, ${ }^{75}$ A. Mihalyi, ${ }^{75}$ A. K. Mohapatra, ${ }^{75}$ Y. Pan, ${ }^{75}$ R. Prepost, ${ }^{75}$ S. J. Sekula, ${ }^{75}$ J. H. von Wimmersperg-Toeller, ${ }^{75}$ J. Wu, ${ }^{75}$ S. L. Wu, ${ }^{75}$ Z. Yu, ${ }^{75}$ and H. Neal ${ }^{76}$ (The BABAR Collaboration)

${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
${ }^{2}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
${ }^{3}$ Institute of High Energy Physics, Beijing 100039, China ${ }^{4}$ University of Bergen, Inst. of Physics, N-5007 Bergen, Norway
${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA
${ }^{6}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
${ }^{7}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
${ }^{8}$ University of Bristol, Bristol BS8 1TL, United Kingdom
${ }^{9}$ University of British Columbia, Vancouver, BC, Canada V6T $1 Z 1$
${ }^{10}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{11}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
${ }^{12}$ University of California at Irvine, Irvine, CA 92697, USA
${ }^{13}$ University of California at Los Angeles, Los Angeles, CA 90024, USA
${ }^{14}$ University of California at San Diego, La Jolla, CA 92093, USA
${ }^{15}$ University of California at Santa Barbara, Santa Barbara, CA 93106, USA
${ }^{16}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, CA 95064, USA
${ }^{17}$ California Institute of Technology, Pasadena, CA 91125, USA
${ }^{18}$ University of Cincinnati, Cincinnati, OH 45221, USA
${ }^{19}$ University of Colorado, Boulder, CO 80309, USA
${ }^{20}$ Colorado State University, Fort Collins, CO 80523, USA
${ }^{21}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
${ }^{22}$ Ecole Polytechnique, LLR, F-91128 Palaiseau, France

${ }^{23}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
${ }^{24}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
${ }^{25}$ Florida AछMM University, Tallahassee, FL 32307, USA
${ }^{26}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
${ }^{27}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
${ }^{28}$ Harvard University, Cambridge, MA 02138, USA
${ }^{29}$ Imperial College London, London, SW7 2BW, United Kingdom
${ }^{30}$ University of Iowa, Iowa City, IA 52242, USA
${ }^{31}$ Iowa State University, Ames, IA 50011-3160, USA
${ }^{32}$ Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France
${ }^{33}$ Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
${ }^{34}$ University of Liverpool, Liverpool L69 3BX, United Kingdom
${ }^{35}$ Queen Mary, University of London, E1 4NS, United Kingdom
${ }^{36}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
${ }^{37}$ University of Louisville, Louisville, KY 40292, USA
${ }^{38}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{39}$ University of Maryland, College Park, MD 20742, USA
${ }^{40}$ University of Massachusetts, Amherst, MA 01003, USA
${ }^{41}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA 02139, USA ${ }^{42}$ McGill University, Montréal, QC, Canada H3A $2 T 8$
${ }^{43}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy ${ }^{44}$ University of Mississippi, University, MS 38677, USA
${ }^{45}$ Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, QC, Canada H3C 3J7
${ }^{46}$ Mount Holyoke College, South Hadley, MA 01075, USA
${ }^{47}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
${ }^{48}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
${ }^{49}$ University of Notre Dame, Notre Dame, IN 46556, USA
${ }^{50}$ Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
${ }^{51}$ Ohio State University, Columbus, OH 43210, USA
${ }^{52}$ University of Oregon, Eugene, OR 97403, USA
${ }^{53}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
${ }^{54}$ Universités Paris VI et VII, Lab de Physique Nucléaire H. E., F-75252 Paris, France
${ }^{55}$ Università di Pavia, Dipartimento di Elettronica and INFN, I- 27100 Pavia, Italy
${ }^{56}$ University of Pennsylvania, Philadelphia, PA 19104, USA
${ }^{57}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
${ }^{58}$ Prairie View A ξM University, Prairie View, TX 77446, USA
${ }^{59}$ Princeton University, Princeton, NJ 08544, USA
${ }^{60}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
${ }^{61}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{62}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
${ }^{63}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
${ }^{64}$ University of South Carolina, Columbia, SC 29208, USA
${ }^{65}$ Stanford Linear Accelerator Center, Stanford, CA 94309, USA
${ }^{66}$ Stanford University, Stanford, CA 94305-4060, USA
${ }^{67}$ State Univ. of New York, Albany, NY 12222, USA
${ }^{68}$ University of Tennessee, Knoxville, TN 37996, USA
${ }^{69}$ University of Texas at Austin, Austin, TX 78712, USA
${ }^{70}$ University of Texas at Dallas, Richardson, TX 75083, USA
${ }^{71}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
${ }^{72}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
${ }^{73}$ Vanderbilt University, Nashville, TN 37235, USA
${ }^{{ }^{4}}$ University of Victoria, Victoria, BC, Canada V8W 3P6
${ }^{75}$ University of Wisconsin, Madison, WI 53706, USA
${ }^{76}$ Yale University, New Haven, CT 06511, USA

(Dated: January 15, 2018)
We report a measurement of the inclusive charmless semileptonic branching fraction of B mesons in a sample of 89 million $B \bar{B}$ events recorded with the $B A B A R$ detector at the $\Upsilon(4 S)$ resonance. Events are selected by fully reconstructing the decay of one B meson and identifying a charged lepton from the decay of the other B meson. The number of signal events is extracted from the hadronic mass distribution and is used to determine the ratio of branching fractions $\mathcal{B}\left(\bar{B} \rightarrow X_{u} \ell \bar{\nu}\right) / \mathcal{B}(\bar{B} \rightarrow X \ell \bar{\nu})=(2.06 \pm 0.25($ stat $) \pm 0.23($ syst $) \pm 0.36($ theo $)) \times 10^{-2}$.

Using the measured branching fraction for inclusive semileptonic B decays, we find $\mathcal{B}(\bar{B} \rightarrow$ $\left.X_{u} \ell \bar{\nu}\right)=(2.24 \pm 0.27($ stat $) \pm 0.26($ syst $) \pm 0.39($ theo $)) \times 10^{-3}$ and derive the CKM matrix element $\left|V_{u b}\right|=(4.62 \pm 0.28($ stat $) \pm 0.27($ syst $) \pm 0.48($ theo $)) \times 10^{-3}$.

PACS numbers: $12.15 . \mathrm{Hh}, 11.30 . \mathrm{Er}, 13.25 . \mathrm{Hw}$

The element $\left|V_{u b}\right|$ of the Cabibbo-Kobayashi-Maskawa quark-mixing matrix 1] plays a critical role in testing the consistency of the Standard Model description of $C P$ violation. In this paper, we present a determination of $\left|V_{u b}\right|$ from a measurement of inclusive charmless semileptonic decays $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ [2]. The analysis uses $\Upsilon(4 S) \rightarrow B \bar{B}$ events in which one of the B meson decays hadronically and is fully reconstructed ($B_{\text {reco }}$) and the semileptonic decay of the recoiling \bar{B} meson is identified by the presence of an electron or muon. While this approach results in a low overall event selection efficiency, it allows for the determination of the momentum, charge, and flavor of the B mesons. We use the invariant mass m_{X} of the hadronic system to separate $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ decays from the dominant $\bar{B} \rightarrow X_{c} \ell \bar{\nu}$ background, which clusters above the D meson mass [3]. By ensuring a higher signal purity and acceptance than previously achieved [4], and by measuring the fraction of charmless semileptonic decays $R_{u}=\mathcal{B}\left(\bar{B} \rightarrow X_{u} \ell \bar{\nu}\right) / \mathcal{B}(\bar{B} \rightarrow X \ell \bar{\nu})$, this analysis leads to substantially smaller systematic uncertainties [5].

The measurement presented here is based on a sample of about 89 million $B \bar{B}$ pairs collected near the $\Upsilon(4 S)$ resonance by the BABAR detector [6] at the PEPII asymmetric-energy $e^{+} e^{-}$storage ring operating at SLAC.

We use Monte Carlo (MC) simulations of the BABAR detector based on GEANT [7] to optimize selection criteria and to determine signal efficiencies and background distributions. Charmless semileptonic $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ decays are simulated as a combination (see Fig. 1 onant three-body decays $\left(X_{u}=\pi, \eta, \rho, \omega, \ldots\right)$ 8] and decays to nonresonant hadronic final states X_{u} [9], for which the hadronization is performed by Jetset 10]. The motion of the b quark inside the B meson is implemented with the shape function parametrization given in Ref. [9]. The simulation of the $\bar{B} \rightarrow X_{c} \ell \bar{\nu}$ background uses an HQET parametrization of form factors for $\bar{B} \rightarrow D^{*} \ell \bar{\nu}$ 11], and models for $\bar{B} \rightarrow D \pi \ell \bar{\nu}, D^{*} \pi \ell \bar{\nu}$ 12], and $\bar{B} \rightarrow D \ell \bar{\nu}, D^{* *} \ell \bar{\nu}$ [$\overline{]}$].

To reconstruct a large sample of B mesons, hadronic decays $B_{\text {reco }} \rightarrow \bar{D} Y^{ \pm}, \bar{D}^{*} Y^{ \pm}$are selected. Here, the system $Y^{ \pm}$consists of hadrons with a total charge of ± 1, composed of $n_{1} \pi^{ \pm} n_{2} K^{ \pm} n_{3} K_{S}^{0} n_{4} \pi^{0}$, where $n_{1}+$ $n_{2} \leq 5, n_{3} \leq 2$, and $n_{4} \leq 2$. We reconstruct $D^{*-} \rightarrow \bar{D}^{0} \pi^{-} ; \bar{D}^{* 0} \rightarrow \bar{D}^{0} \pi^{0}, \bar{D}^{0} \gamma ; D^{-} \rightarrow K^{+} \pi^{-} \pi^{-}$, $K^{+} \pi^{-} \pi^{-} \pi^{0}, K_{S}^{0} \pi^{-}, K_{S}^{0} \pi^{-} \pi^{0}, K_{S}^{0} \pi^{-} \pi^{-} \pi^{+}$; and $\bar{D}^{0} \rightarrow$ $K^{+} \pi^{-}, K^{+} \pi^{-} \pi^{0}, K^{+} \pi^{-} \pi^{-} \pi^{+}, K_{S}^{0} \pi^{+} \pi^{-}$. The kinematic consistency of $B_{\text {reco }}$ candidates is checked with
two variables, the beam energy-substituted mass $m_{\mathrm{ES}}=$ $\sqrt{s / 4-\vec{p}_{B}^{2}}$ and the energy difference $\Delta E=E_{B}-\sqrt{s} / 2$. Here \sqrt{s} is the total energy in the $\Upsilon(4 S)$ center of mass frame, and \vec{p}_{B} and E_{B} denote the momentum and energy of the $B_{\text {reco }}$ candidate in the same frame. We require $\Delta E=0$ within three standard deviations as measured for each mode.

For each of the 1097 reconstructed B decay modes, the purity \mathcal{P} is estimated as the fraction of signal events with $m_{\mathrm{ES}}>5.27 \mathrm{GeV} / c^{2}$. We only use events for which \mathcal{P} exceeds a decay mode dependent threshold in the range of 9% to 24%. In events with more than one reconstructed B decay, we select the decay mode with the highest purity. On average, we reconstruct one B candidate in 0.3% (0.5%) of the $B^{0} \bar{B}^{0}\left(B^{+} B^{-}\right)$events. The purity for events with a high-momentum lepton is 67% (see Fig. 22).

Semileptonic decays $\bar{B} \rightarrow X \ell \bar{\nu}$ of the \bar{B} recoiling against the $B_{\text {reco }}$ candidate are identified by an electron or muon with a minimum momentum of $p^{*}>1 \mathrm{GeV} / c$ in the \bar{B} rest frame. For charged $B_{\text {reco }}$ candidates, we require the charge of the lepton to be consistent with a prompt semileptonic \bar{B} decay. For neutral $B_{\text {reco }}$ candidates, both charge-flavor combinations are retained and the known average $B^{0}-\bar{B}^{0}$ mixing rate is used to extract the prompt lepton yield. Electrons are identified 13] with 92% average efficiency and a hadron misidentification rate ranging between 0.05% and 0.1%. Muons are identified [6] with an efficiency ranging between 60% $\left(p^{*}>1 \mathrm{GeV} / c\right)$ and $75 \%\left(p^{*}>2 \mathrm{GeV} / c\right)$ and hadron misidentification rate between 1% and 3%. Efficiencies and misidentification rates are estimated from data control samples.

The hadronic system X in the decay $\bar{B} \rightarrow X \ell \bar{\nu}$ is reconstructed from charged tracks and energy depositions in the calorimeter that are not associated with the $B_{\text {reco }}$ candidate or the identified lepton. Care is taken to eliminate fake charged tracks, as well as low-energy beam-generated photons and energy depositions in the calorimeter from charged and neutral hadrons. The neutrino four-momentum p_{ν} is estimated from the missing momentum four-vector $p_{\text {miss }}=p_{Y(4 S)}-p_{B_{\text {reco }}}-p_{X}-p_{\ell}$, where all momenta are measured in the laboratory frame and $p_{Y(4 S)}$ refers to the $\Upsilon(4 S)$ meson. The mass of the hadronic system is determined by a kinematic fit that imposes four-momentum conservation, the equality of the masses of the two B mesons, and forces $p_{\nu}^{2}=0$. The resulting m_{X} resolution is $350 \mathrm{MeV} / c^{2}$ on average.

To select $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ candidates we require exactly

FIG. 1: Signal MC m_{X} distributions with the requirement of a lepton with $p^{*}>1 \mathrm{GeV} / c$: a) generated m_{X} distributions for the two components of the signal model, and b) measured m_{X} distribution before and after all other requirements.
one charged lepton with $p^{*}>1 \mathrm{GeV} / c$, charge conservation $\left(Q_{X}+Q_{\ell}+Q_{B_{\text {reco }}}=0\right)$, and a missing mass consistent with zero ($m_{\text {miss }}^{2}<0.5 \mathrm{GeV}^{2} / c^{4}$). These criteria suppress the dominant $\bar{B} \rightarrow X_{c} \ell \bar{\nu}$ decays, many of which contain additional neutrinos or an undetected K_{L}^{0} meson. We suppress the $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}$ background by reconstructing the π_{s}^{+}from the $D^{*+} \rightarrow D^{0} \pi_{s}^{+}$decay and the lepton: since the momentum of the π_{s}^{+}is almost collinear with the D^{*+} momentum in the laboratory frame, we can approximate the energy of the D^{*+} as $E_{D^{*+}} \simeq m_{D^{*+}} \cdot E_{\pi_{s}} / 145 \mathrm{MeV} / c^{2}$ and require for the neutrino $m_{\nu}^{2}=\left(p_{B}-p_{D^{*+}}-p_{\ell}\right)^{2}<-3 \mathrm{GeV}^{2} / c^{4}$. We veto events with charged or neutral kaons in the recoil \bar{B} to reduce the background from $\bar{B} \rightarrow X_{c} \ell \bar{\nu}$ decays. Charged kaons are identified [6] with an efficiency varying between 60% at the highest and almost 100% at the lowest momenta. The pion misidentification rate is about 2%. The $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$decays are reconstructed with an efficiency of 80% from pairs of oppositely charged tracks with an invariant mass between 486 and $510 \mathrm{MeV} / c^{2}$. The impact of the event selection on the m_{X} distribution is illustrated in Fig. 1p.

We determine R_{u} from N_{u}, the observed number of $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ candidates with $m_{X}<1.55 \mathrm{GeV} / c^{2}$, and $N_{s l}$, the number of events with at least one charged lepton:

$$
R_{u}=\frac{\mathcal{B}\left(\bar{B} \rightarrow X_{u} \ell \bar{\nu}\right)}{\mathcal{B}(\bar{B} \rightarrow X \ell \bar{\nu})}=\frac{N_{u} /\left(\varepsilon_{s e l}^{u} \varepsilon_{m_{X}}^{u}\right)}{N_{s l}} \times \frac{\varepsilon_{l}^{s l} \varepsilon_{r e c o}^{s l}}{\varepsilon_{l}^{u} \varepsilon_{r e c o}^{u}}
$$

Here $\varepsilon_{\text {sel }}^{u}=(34.2 \pm 0.6) \%$ is the efficiency for selecting $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ decays once a $\bar{B} \rightarrow X \ell \bar{\nu}$ candidate has been identified, $\varepsilon_{m_{X}}^{u}=(73.3 \pm 0.9) \%$ is the fraction of signal events with $m_{X}<1.55 \mathrm{GeV} / c^{2}, \varepsilon_{l}^{s l} / \varepsilon_{l}^{u}=0.887 \pm 0.008$ corrects for the difference in the efficiency of the lepton momentum cut for $\bar{B} \rightarrow X \ell \bar{\nu}$ and $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ decays, and $\varepsilon_{\text {reco }}^{s l} / \varepsilon_{\text {reco }}^{u}=1.00 \pm 0.03$ accounts for a possible efficiency difference in the $B_{\text {reco }}$ reconstruction in events with $\bar{B} \rightarrow$ $X \ell \bar{\nu}$ and $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ decays.

FIG. 2: Fit to the m_{ES} distributions for a) the sample with a $p^{*}>1 \mathrm{GeV} / c$ lepton and b) the sample after all requirements and with $m_{X}<1.55 \mathrm{GeV} / c^{2}$. The arrow indicates the lower limit of the signal region.

We derive $N_{s l}$ from a fit to the m_{ES} distribution shown in Fig. 2a. The fit uses an empirical description 14] of the combinatorial background from continuum and $B \bar{B}$ events, together with a narrow signal 15] peaked at the B meson mass. The small tail accounts for energy losses in the reconstruction of π^{0} mesons. The residual background in $N_{s l}$ from misidentified leptons and semileptonic charm decays amounts to 6.8% and is subtracted.

We extract N_{u} from the m_{X} distribution by a minimum χ^{2} fit to the sum of three contributions: the signal, the background N_{c} from $\bar{B} \rightarrow X_{c} \ell \bar{\nu}$, and a background of $<1 \%$ from other sources (misidentified leptons, secondary τ and charm decays). In each bin of the m_{X} distribution, the combinatorial $B_{\text {reco }}$ background for $m_{\mathrm{ES}}>5.27$ is subtracted on the basis of a fit to the m_{ES} distribution (Fig. 2b). Fig. [3a shows the fitted m_{X} distribution. To minimize the model dependence, the first bin is extended to $m_{X}<1.55 \mathrm{GeV} / c^{2}$. The fit reproduces the data well with $\chi^{2} / d o f=7.6 / 6$. Fig. 3b shows the m_{X} distribution after background subtraction with finer binning. Table \rrbracket summarizes the results of fits with different requirements on m_{X}, for electrons and muons, for neutral and charged $B_{\text {reco }}$ candidates, and for different ranges of the $B_{\text {reco }}$ purity \mathcal{P}. The results are all consistent within the uncorrelated statistical errors.

We have performed extensive studies to determine the systematic uncertainties on R_{u}. To establish that the background from $\bar{B} \rightarrow X_{c} \ell \bar{\nu}$ events is adequately simulated we use previously excluded events with charged or neutral kaons as a control sample. The relative systematic error due to uncertainties in the detection of photons is estimated to be 4.7% by varying the corrections applied to the MC simulation to match the data control samples. An additional error of 1.0% is ascribed to the uncertainty in the simulation of showers generated by K_{L}^{0} interactions; it is equal to the shift caused by the removal of the K_{L}^{0} energy depositions in the MC simulation.

FIG. 3: The m_{X} distribution for $\bar{B} \rightarrow X \ell \bar{\nu}$ candidates: a) data (points) and fit components, and b) data and signal MC after subtraction of the $b \rightarrow c \ell \nu$ and the "other" backgrounds.

TABLE I: Fit results for data subsamples.

Sample	$N_{s l}$	N_{u}	N_{c}	$R_{u}(\%)$
$m_{X}<1.55 \mathrm{GeV} / c^{2}$	29982 ± 233	175 ± 21	90 ± 5	2.06 ± 0.25
$m_{X}<1.40 \mathrm{GeV} / c^{2}$	29982 ± 233	143 ± 18	54 ± 3	1.89 ± 0.24
$m_{X}<1.70 \mathrm{GeV} / c^{2}$	29982 ± 233	214 ± 26	145 ± 9	2.35 ± 0.28
neutral $B_{\text {reco }}$	10862 ± 133	76 ± 15	22 ± 3	2.53 ± 0.50
charged $B_{\text {reco }}$	19080 ± 191	100 ± 16	67 ± 4	1.82 ± 0.30
Electrons	17320 ± 173	101 ± 15	46 ± 3	2.27 ± 0.34
Muons	12622 ± 157	73 ± 15	41 ± 4	1.83 ± 0.37
$\mathcal{P}>80 \%$	4187 ± 68	20 ± 7	12 ± 1	1.68 ± 0.57
$50 \%<\mathcal{P}<80 \%$	12373 ± 141	68 ± 13	41 ± 3	1.94 ± 0.37
$\mathcal{P}<50 \%$	13144 ± 170	86 ± 15	34 ± 3	2.31 ± 0.41

An error of 1.0% is attributed to the uncertainty in the track-finding efficiency. The error due to identification of electrons, muons, and kaons is estimated to be 1.0%, 1.0%, and 2.3%, respectively, by varying identification efficiency by $\pm 2 \%, \pm 3 \%$, and $\pm 2 \%$ for $e^{ \pm}, \mu^{ \pm}$, and $K^{ \pm}$, and the misidentification rates by $\pm 15 \%$ for all particle types.

The uncertainty in the $B_{\text {reco }}$ combinatorial background subtraction contributes 3.8%. It is estimated by changing the empirical m_{ES} signal function to a Gaussian distribution and by varying the parameters within one standard deviation of the default values. The limited statistics of the simulated event samples adds an uncertainty of 4.5%. The choice of bins for $m_{X}>1.55 \mathrm{GeV} / c^{2}$ impacts the fit result at a level of 1.2%. All the above mentioned experimental errors add up to 8.7%.

The uncertainties in the background modeling due to branching fraction measurements for $B \rightarrow D \ell \nu, D^{*} \ell \nu, \ldots$ and for inclusive and exclusive D meson decays 16] contribute 4.4%.

The error due to the hadronization in the $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ final state is estimated to be 3.0% by measuring R_{u} as a function of the charged and neutral particle multiplic-
ities and performing the fit with only the nonresonant part of the signal model. We assign an additional 2.8% error to account for the uncertainties in the inclusive and exclusive branching fractions for charmless semileptonic B decays [16], plus 3.7% for the veto on strange particles. Here, we assume a 100% uncertainty in the $s \bar{s}$ contents for the resonant and 30% for the nonresonant component 17]. These three uncertainties contribute a combined error of 5.5%.

The efficiencies $\varepsilon_{\text {sel }}^{u}$ and $\varepsilon_{m_{X}}^{u}$ are sensitive to the detailed modeling of the $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ decays. We assess these uncertainties by varying the nonperturbative parameters in the model [9] within their errors, $\bar{\Lambda}=0.48 \pm 0.12 \mathrm{GeV}$ and $\lambda_{1}=-0.30 \pm 0.11 \mathrm{GeV}^{2}$, obtained from the results in Ref. [18] by removing terms proportional to $1 / m_{b}^{3}$ and α_{s}^{2} from the relation between the measured observables and $\bar{\Lambda}$ and λ_{1}. Taking into account the correlation of -0.8 between $\bar{\Lambda}$ and λ_{1}, we arrive at a theoretical error of 17.5%.

In summary, we obtain

$$
R_{u}=(2.06 \pm 0.25 \pm 0.23 \pm 0.36) \times 10^{-2}
$$

where the errors are statistical, systematic (experimental plus signal and background modeling), and theoretical, respectively. Taking into account common errors we compute the double ratio $\frac{\mathcal{B}\left(\bar{B}^{0} \rightarrow X_{u} \ell \bar{\nu}\right)}{\mathcal{B}\left(\bar{B}^{0} \rightarrow X \ell \bar{\nu}\right)} \frac{\mathcal{B}\left(B^{-} \rightarrow X \ell \bar{\nu}\right)}{\mathcal{B}\left(B^{-} \rightarrow X_{u} \ell \bar{\nu}\right)}=0.72 \pm$ 0.18 (stat) ± 0.19 (syst). Combining the ratio R_{u} with the measured inclusive semileptonic branching fraction $\mathcal{B}(\bar{B} \rightarrow X \ell \bar{\nu})=(10.87 \pm 0.18($ stat $) \pm 0.30($ syst $)) \%$ 13], we have

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{u} \ell \bar{\nu}\right)=(2.24 \pm 0.27 \pm 0.26 \pm 0.39) \times 10^{-3}
$$

We combine this result with the average B lifetime of $\tau_{B}=1.608 \pm 0.012 \mathrm{ps}$ [16, 19] and obtain [20]

$$
\left|V_{u b}\right|=(4.62 \pm 0.28 \pm 0.27 \pm 0.40 \pm 0.26) \times 10^{-3}
$$

The first error is statistical, the second systematic, the third gives the theoretical uncertainty in the signal efficiency and the extrapolation of R_{u} to the full m_{X} range, and the fourth combines the perturbative and nonperturbative uncertainties in the extraction of $\left|V_{u b}\right|$ from the total decay rate.

This result is consistent with previous inclusive measurements [4], but has a smaller systematic error, primarily due to larger phase-space acceptance and much higher sample purity. In the future, improved understanding of the signal composition and charm background will significantly reduce the experimental errors, and this, together with independent measurements of $b \rightarrow s$ transitions and semileptonic B decays, is expected to constrain the theoretical uncertainties.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and
for the substantial dedicated effort from the computing organizations that support $B A B A R$. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

* Also with Università di Perugia, Perugia, Italy
${ }^{\dagger}$ Also with Università della Basilicata, Potenza, Italy
\ddagger Also with IFIC, Instituto de Física Corpuscular, CSICUniversidad de Valencia, Valencia, Spain
§ Deceased
[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Th. Phys. 49, 652 (1973).
[2] Charge-conjugation is implied throughout the Letter.
[3] V. D. Barger, C. S. Kim, and R. J. Phillips, Phys. Lett. B 251, 629 (1990); R. D. Dikeman and N. G. Uraltsev, Nucl. Phys. B 509, 378 (1998); I. I. Bigi, R. D. Dikeman, and N. Uraltsev, Eur. Phys. J. C 4, 453 (1998); A. F. Falk, Z. Ligeti, and M. B. Wise, Phys. Lett. B 406, 225 (1997).
[4] R. Barate et al. [ALEPH Collaboration], Eur. Phys. J. C 6, 555 (1999); M. Acciarri et al. [L3 Collaboration], Phys. Lett. B 436, 174 (1998); P. Abreu et al. [DELPHI Collaboration], Phys. Lett. B 478, 14 (2000); G. Abbiendi et al. [OPAL Collaboration], Eur. Phys. J. C 21, 399
(2001); A. Bornheim et al. [CLEO Collaboration], Phys. Rev. Lett. 88, 231803 (2002).
[5] The results of this analysis depend on the assumption of parton-hadron duality to which no error is assigned.
[6] B. Aubert et al. [BABAR Collaboration], Nucl. Instrum. Meth. A 479, 1 (2002).
[7] S. Agostinelli et al. [GEANT4 Collaboration], SLAC-PUB-9350, CERN-IT-2002-003 (2002).
[8] D. Scora and N. Isgur, Phys. Rev. D 52, 2783 (1995).
[9] F. De Fazio and M. Neubert, JHEP 9906, 017 (1999).
[10] T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994).
[11] J. E. Duboscq et al. [CLEO Collaboration], Phys. Rev. Lett. 76, 3898 (1996).
[12] J. L. Goity and W. Roberts, Phys. Rev. D 51, 3459 (1995).
[13] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 67, 031101 (2003).
[14] H. Albrecht et al. [ARGUS Collaboration], Z. Phys. C 48, 543 (1990).
[15] T. Skwarnicki [Crystal Ball Collaboration], DESY F31-86-02.
[16] K. Hagiwara et al. [Particle Data Group Collaboration], Phys. Rev. D 66, 010001 (2002).
[17] M. Althoff et al. [TASSO Collaboration], Z. Phys. C 27, 27 (1985).
[18] D. Cronin-Hennessy et al. [CLEO Collaboration], Phys. Rev. Lett. 87, 251808 (2001). We assume that the shape function parameters in Ref. [9] can be related to the HQET parameters $\bar{\Lambda}$ and λ_{1}.
[19] The impact of the uncertainty of the fraction of neutral and charged B mesons is negligible.
[20] We follow the prescription on page 708 of 16], based on N. Uraltsev, Int. J. Mod. Phys. A 14, 4641 (1999) and A. H. Hoang, Z. Ligeti, and A. V. Manohar, Phys. Rev. D 59, 074017 (1999).

