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Abstract The inclusive jet cross-section has been measured
in proton—proton collisions at /s = 2.76 TeV in a dataset
corresponding to an integrated luminosity of 0.20 pb~! col-
lected with the ATLAS detector at the Large Hadron Col-
lider in 2011. Jets are identified using the anti-k; algorithm
with two radius parameters of 0.4 and 0.6. The inclusive jet
double-differential cross-section is presented as a function
of the jet transverse momentum pr and jet rapidity y, cov-
ering a range of 20 < ptr < 430 GeV and |y| < 4.4. The
ratio of the cross-section to the inclusive jet cross-section
measurement at /s = 7 TeV, published by the ATLAS Col-
laboration, is calculated as a function of both transverse mo-
mentum and the dimensionless quantity xt = 2pt/+/s, in
bins of jet rapidity. The systematic uncertainties on the ra-
tios are significantly reduced due to the cancellation of cor-
related uncertainties in the two measurements. Results are
compared to the prediction from next-to-leading order per-
turbative QCD calculations corrected for non-perturbative
effects, and next-to-leading order Monte Carlo simulation.
Furthermore, the ATLAS jet cross-section measurements at
/s =2.76 TeV and /s =7 TeV are analysed within a
framework of next-to-leading order perturbative QCD calcu-
lations to determine parton distribution functions of the pro-
ton, taking into account the correlations between the mea-
surements.

1 Introduction

Collimated jets of hadrons are a dominant feature of high-
energy particle interactions. In Quantum Chromodynamics
(QCD) they can be interpreted in terms of the fragmentation
of quarks and gluons produced in a scattering process. The
inclusive jet production cross-section provides information
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on the strong coupling and the structure of the proton, and
tests the validity of perturbative QCD (pQCD) down to the
shortest accessible distances.

The inclusive jet cross-section has been measured at
high energy in proton—antiproton (pp) collisions with /s =
546 GeV and 630 GeV at the SPS [1-5], and with /s =
546 GeV, 630 GeV, 1.8 TeV and 1.96 TeV at the Tevatron
[6-22].

The Large Hadron Collider (LHC) [23] at CERN allows
the production of jets with transverse momenta in the TeV
regime, colliding protons on protons (pp) with a centre-of-
mass energy of currently up to /s = 8 TeV. The ATLAS
Collaboration has presented early measurements of the in-
clusive jet cross-section at /s = 7 TeV based on a dataset
with an integrated luminosity of 17 nb~! for jets with a
transverse momentum of 60 < pt < 600 GeV and a rapid-
ity! of |y| < 2.8 [24], as well as for the entire dataset of
37 pb~! taken in 2010 for jets with 20 < p < 1500 GeV
and |y| < 4.4 [25]. The CMS Collaboration has presented
results in the kinematic range of 18 < pt < 1100 GeV
and |y| < 3 in a dataset of 34 pb~! [26], in the range of
35 < pt < 150 GeV and 3.2 < |y| < 4.7 using 3.1 pb~!
[27], and for 0.1 < pt <2 TeV and |y| < 2.5 using 5.0 fb~!
[28]. These data are found to be generally well described by
next-to-leading order (NLO) pQCD calculations, corrected
for non-perturbative effects from hadronisation and the un-
derlying event.

At the start of the 2011 data taking period of the
LHC, the ATLAS experiment collected pp collision data
at /s =2.76 TeV corresponding to an integrated luminos-
ity of 0.20 pb~!. Having a centre-of-mass energy close to
the highest energies reached in pp collisions, the dataset

'Rapidity is defined as y = 0.5In[(E + p,)/(E — p,)] where E denotes
the energy and p, is the component of the momentum along the beam
direction.
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provides a connection from LHC measurements to previ-
ous measurements at the Tevatron. Moreover, measurements
with the same detector at different centre-of-mass energies
provide stringent tests of the theory, since the dominant sys-
tematic uncertainties are correlated. These correlations can
be explored in a common fit to the measurements at differ-
ent /s or in ratios of the inclusive jet double-differential
cross-sections. Hence, uncertainties can be significantly re-
duced. Such ratios were reported by previous experiments,
UA2 [2], UA1 [4], CDF [7, 9] and DO [12].

In this paper the inclusive jet double-differential cross-
section is measured for 20 < pt < 430 GeV and rapidities
of |y| < 4.4 at \/s =2.76 TeV. Moreover, the ratio to the
previously measured cross-section at /s = 7 TeV [25] is
determined as a function of pr and as a function of the di-
mensionless quantity xt = 2pt/+/s [29]. For the ratio mea-
sured as a function of pt, many experimental systematic un-
certainties cancel, while for the ratio measured as a function
of xt, theoretical uncertainties are reduced. This allows a
precise test of NLO pQCD calculations.

The outline of the paper is as follows. The definition of
the jet cross-section is given in the next section, followed by
a brief description of the ATLAS detector in Sect. 3 and the
data taking in Sect. 4. The Monte Carlo simulation, the the-
oretical predictions and the uncertainties on the predictions
are described in Sects. 5 and 6, followed by the event selec-
tion in Sect. 7 and the jet reconstruction and calibration in
Sect. 8. The unfolding of detector effects and the treatment
of systematic uncertainties are discussed in Sects. 9 and 10,
followed by the results of the inclusive jet cross-section at
/s =2.76 TeV in Sect. 11. The results of the ratio measure-
ment, including the discussion of its uncertainties, are pre-
sented in Sect. 12. In Sect. 13 the results of an NLO pQCD
fit to these data are discussed. The conclusion is given in
Sect. 14.

2 Definition of the measured variables
2.1 Inclusive single-jet cross-section

Jets are identified using the anti-k; algorithm [30] imple-
mented in the FASTJET [31, 32] software package. Two dif-
ferent values of the radius parameter, R = 0.4 and R = 0.6,
are used. Inputs to the jet algorithm can be partons in the
NLO pQCD calculation, stable particles after the hadroni-
sation process in the Monte Carlo simulation, or energy de-
posits in the calorimeter in data.

Throughout this paper, the jet cross-section refers to the
cross-section of jets built from stable particles, defined by
having a proper mean lifetime of ¢t > 10 mm. Muons and
neutrinos from decaying hadrons are included in this defini-
tion.
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The inclusive jet double-differential cross-section, d’c/
dptdy, is measured as a function of the jet transverse mo-
mentum pr in bins of rapidity y. The kinematic range of the
measurement is 20 < pt < 430 GeV and |y| < 4.4.

The jet cross-section is also measured as a function of the
dimensionless quantity xt. For a pure 2 — 2 central scatter-
ing of the partons, xT gives the momentum fraction of the
initial-state partons with respect to the parent proton.

2.2 Ratio of jet cross-sections
at different centre-of-mass energies

The inclusive jet double-differential cross-section can be re-
lated to the invariant cross-section according to

d*c 1 d*c

o _ 1 do 1
dp3 2mprdprdy )

where E and p denote the energy and momentum of the
jet, respectively. The dimensionless scale-invariant cross-
section F(y, xT) can be defined as [33]:

s 3 d*c
—x3

spdio _pp d’o
dp? 2mdprdy 8w

F(y,x1,/5) = p1E

dxtdy’
(2

In the simple quark—parton model [34, 35], F does not de-
pend on the centre-of-mass energy, as follows from dimen-
sional analysis. In QCD, however, several effects lead to a
violation of the scaling behaviour, introducing a pt (or 4/s)
dependence to F'. The main effects are the scale dependence
of the parton distribution functions (PDFs) and the strong
coupling constant os.

The cross-section ratio of the invariant jet cross-section
measured at /s = 2.76 TeV to the one measured at /s =
7 TeV is then denoted by:

F(y,xr,2.76 TeV)

p(y,xt) = Fly.xr.7Tev) " 3

The violation of the +/s scaling leads to a deviation of
p(y, xT) from one. p(y, xT) is calculated by measuring the
bin-averaged inclusive jet double-differential cross-sections
at the two centre-of-mass energies in the same x1 ranges:

2.76 TeV>3 o(y, xr,2.76 TeV) @

p(y’”):( 7 TeV o (y,x1,7 TeV)

where o (y, x1, +/s) corresponds to the measured averaged
cross-section d?o /dprdy inabin (y, pr = /s - x7/2), and
xT is chosen to be at the bin centre. Here, the pt binning for
the inclusive jet cross-section at /s = 2.76 TeV is chosen
such that it corresponds to the same x1 ranges obtained from
the pr bins of the jet cross-section measurement at /s =
7 TeV. The bin boundaries are listed in Appendix A.
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The ratio of inclusive double-differential cross-sections
is also measured as a function of prt, where the same pr
binning is used for both centre-of-mass energies. This ratio
is denoted by

o(y, pr,2.76 TeV)

p(y, p1) = oo prITeV) &)

where o (y, pr, +/5) is the measured averaged cross-section
d2o/de dy in a bin (y, pr) at a centre-of-mass energy of
/5. Since the uncertainty due to the jet energy scale is the
dominant experimental uncertainty at a given pr, the exper-
imental systematic uncertainty is significantly reduced by
taking the cross-section ratio in the same pr bins.

3 The ATLAS detector

The ATLAS detector consists of a tracking system (inner
detector) in a 2T axial magnetic field up to a pseudorapid-
ity?> of |n| = 2.5, sampling electromagnetic and hadronic
calorimeters up to || = 4.9, and muon chambers in an az-
imuthal magnetic field provided by a system of toroidal
magnets. A detailed description of the ATLAS detector can
be found elsewhere [36].

The inner detector consists of layers of silicon pixel de-
tectors, silicon microstrip detectors and transition radiation
tracking detectors. It is used in this analysis to identify can-
didate collision events by constructing vertices from tracks.
Jets are reconstructed using the energy deposits in the calo-
rimeter, whose granularity and material varies as a function
of n. The electromagnetic calorimeter uses lead as an ab-
sorber, liquid argon (LAr) as the active medium and has a
fine granularity. It consists of a barrel (|n| < 1.475) and an
endcap (1.375 < |n| < 3.2) region. The hadronic calorime-
ter is divided into three distinct regions: a barrel region
(In] < 0.8) and an extended barrel region (0.8 < |n| < 1.7)
instrumented with a steel/scintillating-tile modules, and an
endcap region (1.5 < |n| < 3.2) using copper/LAr modules.
Finally, the forward calorimeter (3.1 < |n| < 4.9) is instru-
mented with copper/LAr and tungsten/LAr modules to pro-
vide electromagnetic and hadronic energy measurements,
respectively.

The ATLAS trigger system is composed of three consec-
utive levels: level 1, level 2 and the event filter, with progres-
sively increasing computing time per event, finer granular-
ity and access to more detector systems. For jet triggering,

2ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-
axis along the beam pipe. The x-axis points from the IP to the centre
of the LHC ring, and the y-axis points upward. The pseudorapidity is
defined in terms of the polar angle 6 as n = —Intan(6/2).

the relevant systems are the minimum bias trigger scintilla-
tors (MBTS), located in front of the endcap cryostats cover-
ing 2.1 < |n| < 3.8, as well as calorimeter triggers for cen-
tral jets, covering |n| < 3.2, and for forward jets, covering
3.1 < |n| < 4.9, respectively.

4 Data taking

The proton—proton collision data at /s = 2.76 TeV were
collected at the start of the 2011 data taking period of the
LHC. The total integrated luminosity of the collected data is
0.20 pb~!. The proton bunches were grouped in nine bunch
trains. The time interval between two consecutive bunches
was 525ns. The average number of interactions per bunch
crossing is found to be p = 0.24. All events used in this
analysis were collected with good operational status of the
relevant detector components for jet measurements.

The data at /s = 7 TeV have a total integrated luminos-
ity of 37 pb~!. Further details are given in Ref. [25].

5 Monte Carlo simulation

Events used in the simulation of the detector response
are produced by the PYTHIA 6.423 generator [37], using
the MRST 2007 LO* PDFs [38]. The generator utilises
leading-order (LO) pQCD matrix elements for 2 — 2 pro-
cesses, along with a leading-logarithmic pr-ordered par-
ton shower [39], an underlying event simulation with multi-
ple parton interactions [40], and the Lund string model for
hadronisation [41]. The event generation uses the ATLAS
Minimum Bias Tune 1 (AMBT1) set of parameters [42].
Additional proton—proton collisions occurring in the same
bunch crossing have not been simulated because the average
number of interactions per beam crossing is so small.

The GEANT software toolkit [43] within the ATLAS sim-
ulation framework [44] simulates the propagation of the
generated particles through the ATLAS detector and their
interactions with the detector material.

The HERWIG++ 2.5.1 [45, 46] generator is used in addi-
tion to PYTHIA in the evaluation of non-perturbative effects
in the theory prediction. It is based on the 2 — 2 LO pQCD
matrix elements and a leading-logarithmic angular-ordered
parton shower [47]. The cluster model [48] is used for the
hadronisation, and an underlying event simulation is based
on the eikonal model [49].

6 Theoretical predictions
6.1 NLO pQCD prediction

The NLO pQCD predictions are calculated using the NLO-
JET++ 4.1.2 [50] program. For fast and flexible calcula-
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tions with various PDFs and factorisation and renormalisa-
tion scales, the APPLGRID software [51] is interfaced with
NLOJET++. The renormalisation scale, g, and the fac-
torisation scale, wr, are chosen for each event as ug =
wr = prX(y;), where pF**(y;) is the maximum jet trans-
verse momentum found in a rapidity bin y;. If jets are
present in different rapidity bins, several scales within the
event are used.

The default calculation uses the CT10 [52] PDF set. Pre-
dictions using the PDF sets MSTW 2008 [53], NNPDF
2.1 (100) [54, 55], HERAPDF 1.5 [56] and ABM 11 NLO
(ny =35) [57] are also made for comparison. The value for
ag is taken from the corresponding PDF set.

Three sources of uncertainty in the NLO pQCD calcu-
lation are considered, namely the uncertainty on the PDF
sets, the choice of factorisation and renormalisation scales,
and the uncertainty on the value of the strong coupling con-
stant, ag. The PDF uncertainty is defined at 68 % confidence
level (CL) and evaluated following the prescriptions given
for each PDF set and the PDF4LHC recommendations [58].
The uncertainty on the scale choice is evaluated by vary-
ing the renormalisation scale and the factorisation scale by
a factor of two with respect to the original choice in the cal-
culation. The considered variations are

(fug> fur) =1(0.5,0.5), (0.5,1), (1,0.5),
1.2), 2.1, 2,2), (6)

where f,, and f,,, are factors for the variation of renor-
malisation and factorisation scales, hence g = fi, - T
and ur = fu, - pr*. The envelope of the resulting varia-
tions is taken as the scale uncertainty. The uncertainty re-
flecting the os measurement precision is evaluated follow-
ing the recommendation of the CTEQ group [59], by cal-
culating the cross-section using a series of PDFs which are
derived with various fixed as values. Electroweak correc-
tions are not included in the theory predictions. The effect is
found to be O (10 %) at high pr, and negligible at small pt
for /s =7 TeV [60].

The theoretical predictions for the cross-section ratios at
the two different energies, p(y, xT) or p(y, pr), are also ob-
tained from the NLO pQCD calculations. The evaluation of
the prediction at /s = 7 TeV is given in Ref. [25], and the
procedure is identical to the one used for /s = 2.76 TeV
in the present analysis. Hence, the uncertainty on the ra-
tio is determined using the same variation in each compo-
nent of the considered uncertainties simultaneously for both
/s =2.76 TeV and /s =7 TeV cross-section predictions.

6.2 Non-perturbative corrections

The fixed-order NLO pQCD calculations, described in
Sect. 6.1, predict the parton-level cross-section, which
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should be corrected for non-perturbative effects before com-
parison with the measurement at particle level. The correc-
tions are derived using LO Monte Carlo event generators
complemented by the leading-logarithmic parton shower
by evaluating the bin-wise ratio of the cross-section with
and without hadronisation and the underlying event. Each
bin of the NLO pQCD cross-section is then multiplied by
the corresponding correction for non-perturbative effects.
The baseline correction factors are obtained from PYTHIA
6.425 [37] with the AUET2B CTEQOLI1 tune [61]. The un-
certainty is estimated as the envelope of the correction fac-
tors obtained from a series of different generators and tunes:
PYTHIA 6.425 using the tunes AUET2B LO** [61], AUET2
LO** [62], AMBT2B CTEQ6L1 [61], AMBT1 [42], Peru-
gia 2010 [63] and Perugia 2011 [63]; PYTHIA 8.150 [64]
with tune 4C [61]; and HERWIG++ 2.5.1 [45] with tune
UE7000-2 [61]. The AMBT2B CTEQ6L1 and AMBT1
tunes, which are based on observables sensitive to the mod-
elling of minimum bias interactions, are included to provide
a systematically different estimate of the underlying event
activity.

The NLO pQCD prediction for the cross-section ra-
tio also needs corrections for non-perturbative effects. The
same procedure is used to evaluate non-perturbative correc-
tions for the cross-section at /s = 7 TeV using the same
series of generator tunes. A ratio of corrections at /s =
2.76 TeV and /s = 7 TeV is calculated for each genera-
tor tune. As for the cross-section, PYTHIA 6.425 with the
AUET2B CTEQG6LI1 tune is used as the central value of the
correction factor for the cross-section ratio and the envelope
of the correction factors from the other tunes is taken as an
uncertainty.

6.3 Predictions from NLO matrix elements
with parton-shower Monte Carlo simulation

The measured jet cross-section is also compared to predic-
tions from POWHEG jet pair production, revision 2169 [65,
66]. POWHEG is an NLO generator that uses the POWHEG
Box 1.0 package [67-69], which can be interfaced to differ-
ent Monte Carlo programs to simulate the parton shower, the
hadronisation and the underlying event. This simulation us-
ing a matched parton shower is expected to produce a more
accurate theoretical prediction. However, ambiguities in the
matching procedure, non-optimal tuning of parton shower-
parameters, and the fact that it is a hybrid between an NLO
matrix element calculation and the currently available LO
parton-shower generators may introduce additional theoret-
ical uncertainties.

In the POWHEG algorithm, each event is built by first pro-
ducing a QCD 2 — 2 partonic scattering. The renormalisa-
tion and factorisation scales for the fixed-order NLO pre-
diction are set to be equal to the transverse momentum of
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Fig. 1 The uncertainty in the NLO pQCD prediction of the inclusive
jet cross-section at /s = 2.76 TeV, calculated using NLOJET++ with
the CT10 PDF set, for anti-k; jets with R = 0.6 shown in three repre-

the outgoing partons, p%om. In addition to the hard scat-
ter, POWHEG also generates the hardest partonic emission
in the event. The event is evolved to the particle level us-
ing a parton-shower event generator, where the radiative
emissions in the parton showers are limited by the match-
ing scale 1) provided by POWHEG. The simulation of par-
ton showers uses PYTHIA with the ATLAS underlying event
tunes, AUET2B [61] and Perugia 2011 [63]. The tunes are
derived from the standalone versions of these event genera-
tors, with no optimisation for the POWHEG predictions. The
CT10 PDF set is used in both POWHEG and PYTHIA.

To avoid fluctuations in the final observables after the
showering process, the POWHEG event generation is per-
formed using a new option’ that became available re-
cently [66]. For pt < 100 GeV, this new prediction differs
by O(10 %) from the POWHEG prediction at /s =7 TeV
from the previous analysis, which followed a different ap-
proach [25]. The uncertainty from the renormalisation and
factorisation scales for the POWHEG prediction is expected
to be similar to that obtained with NLOJET++. The match-
ing scale can potentially have a large impact on the cross-
section prediction at particle level, affecting the parton
shower, initial-state radiation and multiple interactions, but
a procedure to estimate this uncertainty is currently not
well defined. Therefore no uncertainties are shown for the
POWHEG curves.

3The origin of these fluctuations are rare event topologies in gluon
emissions ¢ — gg and gluon splittings g — ¢gq, related to the fact
that by default POWHEG B0X 1.0 does not consider the correspond-
ing configurations with opposite ordering of the pr for the final state
parton: ¢ — gq and g — gq. These processes can be activated in revi-
sion 2169 using the POWHEG option doublefsr = 1, which offers
an improved handling of the suppression of these events. More details
are given in Ref. [66].

sentative rapidity bins as a function of the jet pr. In addition to the
total uncertainty, the uncertainties from the scale choice, the PDF set
and the strong coupling constant, g, are shown separately

6.4 Prediction for the inclusive jet cross-section
at i/s =2.76 TeV

The evaluated relative uncertainties of the NLO pQCD cal-
culation for the inclusive jet cross-section at /s = 2.76 TeV
are shown in Fig. 1 as a function of the jet pr for repre-
sentative rapidity bins and R = 0.6. In the central rapidity
region, the uncertainties are about 5 % for pt < 100 GeV,
increasing to about 15 % in the highest jet prt bin. In the
most forward region, they are 10 % in the lowest pr bin and
up to 80 % in the highest pt bin. In the higher pt region,
the upper bound on the uncertainty is driven by the PDF un-
certainty, while the lower bound and the uncertainty at low
pt are dominated by the scale choice. The uncertainties for
R = 0.4 are similar.

The correction factors for non-perturbative effects and
their uncertainties are shown in Fig. 2 for the inclusive jet
cross-section at /s = 2.76 TeV in the central rapidity bin.
For jets with R = 0.4, the correction is about —10 % in the
lowest pr bin, while for jets with R = 0.6, it is about 420 %
as a result of the interplay of the hadronisation and the un-
derlying event for the different jet sizes. In the high-pt re-
gion, the corrections are almost unity for both jet radius pa-
rameters, and the uncertainty is at the level of 2 %.

6.5 Prediction for the cross-section ratio

Figures 3(a)—(c) show the uncertainty on the NLO pQCD
calculation of p(y,xT) in representative rapidity bins for
R = 0.6. They are significantly reduced to a level of a few
percent in the central rapidity region compared to the uncer-
tainties on the cross-sections shown in Fig. 1. The dominant
uncertainty at low pr is the uncertainty on the renormali-
sation and factorisation scale choice, while at high pr the
uncertainty due to the PDF contributes again significantly.
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Fig. 3 The uncertainty in the NLO pQCD prediction of the cross-
section ratio p(y, xt) ((a)—(c)) and p(y, pr) ((d)—(f)), calculated us-
ing NLOJET++ with the CT10 PDF set, for anti-k; jets with R = 0.6
shown in three representative rapidity bins as a function of the jet xt
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(e) py, pr), 2.1 <yl < 2.8

® p(y, pr), 3.6 <lyl < 4.4

and of the jet pr, respectively. In addition to the total uncertainty, the
uncertainties from the scale choice, the PDF set and the strong coupling
constant, as, are shown separately
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The NLO pQCD calculation of p(y, pr) has an uncertainty
of less than +5 % for pt up to 200 GeV in the central rapid-
ity region, as shown in Fig. 3(d). The uncertainty increases
for higher pr of the jet due mostly to the uncertainties on
the PDFs, which are below 10 % for central jets. In the for-
ward region, it reaches up to 80 % in the highest pT bins,
as shown in Figs. 3(e) and 3(f). The corresponding uncer-
tainties for jets with R = 0.4 are similar, except for a larger
contribution due to the scale choice in the uncertainty on
Py, pT)-

Non-perturbative corrections to p(y, xt) have a different
xT dependence for jets with R = 0.4 and R = 0.6, as shown
in Figs. 4(a) and 4(b). The behaviour of p(y, xT) is driven
by the corrections for the cross-section at /s = 2.76 TeV
since p% TV — (7/2.76) - p%'% TeV in the same xt bins (see
Appendix A) and since the non-perturbative correction is al-
most flat in the high- pt region. For jets with R = 0.4, the
correction is —10 % in the lowest xT bin. For R = 0.6, the
correction in this region is in the opposite direction, increas-
ing the prediction by 410 %. The uncertainty in the lowest
xT bin for both radius parameters is ~=£10 %. The non-
perturbative corrections to p(y, pr) are shown in Figs. 4(c)

P, [GeV] P, [GeV]

(d) p(y, p1), R=0.6

and 4(d), where a similar pt dependence for R = 0.4 and
R = 0.6 is found. They amount to —10 % for jets with
R =04 and —25 % for jets with R = 0.6 in the lowest
pr bins. This is due to the correction factors for the NLO
pQCD prediction at /s = 7 TeV [25] being larger than those
at /s =2.76 TeV. Corrections obtained from PYTHIA with
various tunes generally agree within 5 % for central jets,
while the non-perturbative corrections from HERWIG++ de-
viate from the ones of the PYTHIA tunes by more than 10 %
in the lowest pr bin.

7 Event selection

Events are selected online using various trigger definitions
according to the pr and the rapidity y of the jets [70]. In the
lowest pr region (pt < 35 GeV for |y| < 2.1, pr < 30 GeV
for 2.1 < |y| < 2.8, pt <28 GeV for 2.8 < |y| < 3.6, and
pr <26 GeV for 3.6 < |y| < 4.4), atrigger requiring at least
two hits in the MBTS is used. For the higher pt region, jet-
based triggers are used, which select events that contain a
jet with sufficient transverse energy at the electromagnetic

@ Springer
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scale.* The efficiency of the jet-based triggers is determined
using the MBTS, and the one for MBTS using the indepen-
dent trigger from the Zero Degree Calorimeter [71]. Only
triggers that are >99 % efficient for a given jet pr value
are used. In the region 2.8 < |y| < 3.6, both a central and a
forward jet trigger are used in combination to reach an effi-
ciency of >99 %. Events are required to have at least one
well-reconstructed event vertex, which must have at least
three associated tracks with a minimum pt of 150 MeV.

8 Jet reconstruction and calibration

The reconstruction procedure and the calibration factors
for the jet cross-section measurement at /s = 2.76 TeV
are nearly identical to those used for the measurement at
/s =7 TeV with 2010 data [25]; the few exceptions are
explicitly specified below.

Jets are reconstructed with the anti-k, algorithm using
as input objects topological clusters [72, 73] of energy de-
posits in the calorimeter, calibrated at the electromagnetic
scale. The four-momenta of the reconstructed jets are cor-
rected event-by-event using the actual vertex position. A jet
energy scale (JES) correction is then applied to correct for
detector effects such as energy loss in dead material in front
of the calorimeter or between calorimeter segments, and to
compensate for the lower calorimeter response to hadrons
than to electrons or photons [72, 73]. Due to the low num-
ber of interactions per bunch crossing, an offset correction
accounting for additional energy depositions from multiple
interactions in the same bunch crossing, so-called pile-up, is
not applied in this measurement.

The estimation of the uncertainty in the jet energy mea-
surement uses single-hadron calorimeter response measure-
ments [74] and systematic Monte Carlo simulation varia-
tions. An uncertainty of about 2.5 % in the central calorime-
ter region over a wide momentum range of 60 < pr <
800 GeV is obtained [73]. For jets with lower prt and for
forward jets the uncertainties are larger.

All reconstructed jets with pt > 20 GeV, |y| < 4.4 and
a positive decision from the trigger that is used in the cor-
responding jet kinematic region are considered in this anal-
ysis. Jets are furthermore required to pass jet quality selec-
tions to reject fake jets reconstructed from non-collision sig-
nals, such as beam-related background, cosmic rays or de-
tector noise. The applied selections were established with
the /s =7 TeV data in 2010 [25, 73] and are validated
in the /s = 2.76 TeV data by studying distributions of

4The electromagnetic scale is the basic calorimeter signal scale for the
ATLAS calorimeter. It has been established using test-beam measure-
ments for electrons and muons to give the correct response for the en-
ergy deposited in electromagnetic showers, but it does not correct for
the lower response of the calorimeter to hadrons.

@ Springer

the selection variables with techniques similar to those in
Ref. [73]. The rate of fake jets after the jet selection is neg-
ligible.

The efficiency of the jet quality selection is measured us-
ing a tag-and-probe method [73]. The largest inefficiency
is found to be below 4 % for jets with ptr = 20 GeV.
Within the statistical uncertainty, the measured efficiency is
in good agreement with the efficiency previously measured
for «/s =7 TeV data in 2010. Because of the larger number
of events in the 2010 data at /s = 7 TeV, the jet selection
efficiency from the 2010 data is taken.

Various types of validity and consistency checks have
been performed on the data, such as testing the expected in-
variance of the jet cross-section as a function of ¢, or the
stability of the jet yield over time. No statistically signifi-
cant variations are detected. The basic kinematic variables
are described by the Monte Carlo simulation within the sys-
tematic uncertainties.

9 Unfolding of detector effects

Corrections for the detector inefficiencies and resolutions
are performed to extract the particle-level cross-section,
based on a transfer matrix that relates the pt of the jet at
particle-level and the reconstruction-level.

For the unfolding, the Iterative, Dynamically Stabilised
(IDS) Bayesian unfolding method [75] is used. The method
takes into account the migrations of events across the bins
and uses data-driven regularisation. It is performed sepa-
rately for each rapidity bin, since migrations across pt bins
are significant. The migrations across rapidity bins, which
are much smaller, are taken into account using the bin-by-
bin unfolding.

The Monte Carlo simulation to derive the transfer ma-
trix is described in Sect. 5. The Monte Carlo samples are
reweighted on a jet-by-jet basis as a function of jet pt and
rapidity. The reweighting factors are obtained from the ra-
tio of calculated cross-sections using the MSTW 2008 NLO
PDF set [53] with respect to the MRST 2007 LO* PDF
set [38]. This improves the description of the jet pt distri-
bution in data. Additionally, a jet selection similar to the jet
quality criteria in data is applied to jets with low pr in the
Monte Carlo simulation at |n| ~ 1.

The transfer matrix for the jet pr is derived by matching
a particle-level jet to a reconstructed jet based on a geometri-
cal criterion, in which a particle-level jet and a reconstructed
jet should be closest to each other within a radius of R’ = 0.3
in the (17, ¢)-plane. The spectra of unmatched particle-level
and reconstructed jets are used to provide the matching ef-
ficiencies, obtained from the number of the matched jets di-
vided by the number of all jets including unmatched jets,

both for particle-level jets, €P*™, and for reconstructed jets,
GI‘CCO.
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The data are unfolded to particle level using a three-step
procedure, namely, correction for matching inefficiency at
reconstructed level, unfolding for detector effects and then
correction for matching inefficiency at particle level. The fi-
nal result is given by the equation:

Nipart _ Z erpco . G;eco Aij /Glpart’ (7
J

where i and j are the particle-level and reconstructed bin
indices, respectively, and N,fart and N;°°° are the number
of particle-level jets and the number of reconstructed jets in
bin k. A;; is an unfolding matrix, which gives the probabil-
ity for a reconstructed-level jet with a certain reconstructed-
level pt to have a given particle-level pr. It is determined
using the IDS method. The number of iterations is chosen
such that the bias in the closure test (see below) is small
and at most at the percent level. In this measurement, this is
achieved after one iteration.

The precision of the unfolding technique has been stud-
ied using a data-driven closure test [75]. In this study the
particle-level prt spectrum in the Monte Carlo simulation is
reweighted and convolved through the folding matrix, which
gives the probability for a particle-level jet with a certain
particle-level pr to have a given reconstructed-level pr. The
weights are chosen such that significantly improved agree-
ment between the resulting reconstructed spectrum and data
is attained. The reconstructed spectrum in this reweighted
Monte Carlo simulation is then unfolded using the same pro-
cedure as for the data. Comparison of the spectrum obtained
from the unfolding with the original reweighted particle-
level spectrum provides an estimate of the bias, which is
interpreted as the systematic uncertainty.

As an estimate of further systematic uncertainties, the un-
folding procedure is repeated using different transfer ma-
trices created with tighter and looser matching criteria of
R’ =0.2 and R’ = 0.4. The deviations of the results from
the nominal unfolding result are considered as an additional
uncertainty on the unfolding procedure.

The statistical uncertainties are propagated through the
unfolding by performing pseudo-experiments. An ensem-
ble of pseudo-experiments is created in which each bin of
the transfer matrix is varied according to its statistical un-
certainty from the Monte Carlo samples. A separate set of
pseudo-experiments is performed in which the data spec-
trum is fluctuated according to the statistical uncertainty tak-
ing the correlation between jets produced in the same event
into account. The unfolding is then applied to each pseudo-
experiment, and the resulting ensembles are used to calcu-
late the covariance matrix of the corrected spectrum, from
which the uncertainties are obtained.

The unfolding procedure is repeated for the propagation
of the uncertainties on the jet energy and angle measure-
ments, as described in the next section.

10 Systematic uncertainties
on the cross-section measurement

The following sources of systematic uncertainty are consid-
ered in this measurement: the trigger efficiency, jet recon-
struction and calibration, the unfolding procedure and the
luminosity measurement.

An uncertainty on the trigger efficiency of 1 % is conser-
vatively chosen for most of the kinematic region (]y| < 2.8;
pr > 45 GeV in 2.8 < |y| < 3.6; and pr > 30 GeV in
3.6 < |y| <4.4). A 2 % systematic uncertainty is assigned
for jets with pt < 45 GeV in the region 2.8 < |y| < 3.6 or
with pt < 30 GeV in the region 3.6 < |y| < 4.4, as the trig-
gers are used for pr close to the lowest pt point with 99 %
efficiency for these jets.

The uncertainty on the jet reconstruction efficiency is the
same as in the previous measurement at /s = 7 TeV [25]
and is 2 % for pt <30 GeV and 1 % for pt > 30 GeV. It
is evaluated using jets reconstructed from tracks [73]. The
uncertainty on the jet selection efficiency from the measure-
ment at /s =7 TeV is applied in this measurement, but
a minimal uncertainty of 0.5 % is retained. The latter ac-
counts for the level of agreement of the central value in the
comparison between the used jet selection efficiency and the
measured jet selection efficiency at /s =2.76 TeV.

The uncertainty due to the jet energy calibration is eval-
uated using the same uncertainties on the sources as in the
previous measurement at /s = 7 TeV [25]. Effects from the
systematic uncertainty sources are propagated through the
unfolding procedure to provide the uncertainties on the mea-
sured cross-sections. The JES uncertainty and its sources are
described in detail in Ref. [73], where the total JES uncer-
tainty is found to be less than 2.5 % in the central calorime-
ter region for jets with 60 < pt < 800 GeV, and maximally
14 % for pt < 30 GeV in the most forward region. The JES
applied to the reconstructed jets in the Monte Carlo simu-
lation is varied separately for each JES uncertainty source
both up and down by one standard deviation. The resulting
pr spectra are unfolded using the nominal unfolding ma-
trix. The relative shifts with respect to the nominal unfolded
spectrum are taken as uncertainties on the cross-section.

The uncertainty on the jet energy resolution (JER) is
assigned by considering the difference between data and
Monte Carlo simulation in the estimated JER using in situ
techniques [76]. The measured resolution uncertainty ranges
from 20 % to 10 % for jets within |y| < 2.8 and with trans-
verse momenta increasing from 30 GeV to 500 GeV. The
difference between data and MC is found to be within 10 %.
The effect of this uncertainty on the cross-section measure-
ment is evaluated by smearing the energy of reconstructed
jets in the Monte Carlo simulation such that the resolution is
worsened by the one-standard-deviation uncertainty. Then
a new transfer matrix is constructed and used to unfold
the data spectra. The relative difference between the cross-
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Fig. 5 The systematic uncertainty on the inclusive jet cross-section
measurement for anti-k; jets with R = 0.6 in three representative rapid-
ity bins, as a function of the jet pr. In addition to the total uncertainty,
the uncertainties from the jet energy scale (JES), the jet energy reso-

sections unfolded with the modified transfer matrix and with
the nominal one is taken as the uncertainty in the measure-
ment.

The jet angular resolution is estimated in Monte Carlo
simulation from the polar angle between the reconstructed
jet and its matched jet at particle level. A new transfer matrix
with angular resolution degraded by 10 % is used for the
data unfolding, and the relative difference from the nominal
unfolded result is assigned as the resulting uncertainty.

The uncertainties in the unfolding procedure are descri-
bed in Sect. 9. The closure test and the variation of the
matching criterion used to construct the transfer matrix are
examined. The impact of a possible mis-modelling of the jet
pr spectrum in the Monte Carlo simulation is assessed in
the closure test of the unfolding procedure.

The integrated luminosity is calculated by measuring pp
interaction rates with several ATLAS devices. The absolute
calibration is derived from van der Meer scans [77, 78]. In
total, four scan sessions were performed during the collec-
tion of the dataset used in the jet cross-section measure-
ments reported here. The uncertainty in the luminosity de-
termination arises from three main contributions: bunch-
population measurements, beam conditions during the lu-
minosity calibration scans, and long-term consistency of the
different algorithms used to measure the instantaneous lu-
minosity during data collection. The uncertainty on the lu-
minosity for the 2.76 TeV dataset is £2.7 %, dominated
by the irreproducibility of beam conditions during the cal-
ibration scans. The total systematic uncertainty for the 2010
dataset at \/s =7 TeV is £3.4 % [79], dominated by bunch-
population measurement uncertainties. Because of signifi-
cant improvements to the beam instrumentation implemen-
ted between the two running periods, and because the dom-
inant systematic uncertainties are of independent origins in
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lution (JER), the unfolding procedure and the other systematic sources
are shown separately. The 2.7 % uncertainty from the luminosity mea-
surement and the statistical uncertainty are not shown

the two datasets, these luminosity uncertainties are treated
as uncorrelated.

The evaluated systematic uncertainties on the measured
cross-section are added in quadrature and shown in Fig. 5
for representative rapidity bins and R = 0.6. Results for jets
with R = 0.4 are similar. The systematic uncertainty on this
measurement is driven by the uncertainties on the JES. The
very steeply falling jet pt spectrum, especially for large ra-
pidity, transforms even relatively modest uncertainties on
the transverse momentum into large changes in the mea-
sured differential cross-section. The uncertainty on the jet
energy resolution also has a sizable effect on the total sys-
tematic uncertainty of the measurement in the low pr bins.
Other sources of uncertainty are found to have a smaller im-
pact on the results.

A total of 22 independent sources of systematic uncer-
tainty have been considered. The correlations of the system-
atic uncertainties across prt and y are examined and sum-
marised in Table 1. In the table, 88 independent nuisance pa-
rameters describe the correlations of systematic uncertain-
ties over the whole phase space. The systematic effect on the
cross-section measurement associated with each nuisance
parameter is treated as completely correlated in pt and y.
The table also shows the correlation with respect to the pre-
vious /s = 7 TeV measurement using 2010 data, which is
used in the extraction of the cross-section ratio in Sect. 12.

11 Inclusive jet cross-section at /s =2.76 TeV

The inclusive jet double-differential cross-section is shown
in Figs. 6 and 7 for jets reconstructed with the anti-k; algo-
rithm with R = 0.4 and R = 0.6, respectively. The measure-
ment spans jet transverse momenta from 20 GeV to 430 GeV
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Table 1 Description of the bin-to-bin uncertainty correlation in the
measurement of the inclusive jet cross-section at /s = 2.76 TeV. Each
number corresponds to a nuisance parameter for which the correspond-
ing uncertainty is fully correlated in the pr of the jet. Bins with the
same nuisance parameter are treated as fully correlated, while bins with
different nuisance parameters are uncorrelated. Numbers are assigned
to be the same as in the previous publication [25]. The sources labelled
by u; are sources uncorrelated in pt and y of the jet. The correlation
with the previous cross-section measurement at /s = 7 TeV [25] is in-
dicated in the last column, where full correlation is indicated by a Y and

no correlation by a N. The description of the JES uncertainty sources
can be found in Refs. [73, 74]. JES14 is a source due to the pile-up cor-
rection and is not considered in this measurement. The sources JES6
and JES15 were merged together in the previous measurement and the
sum of the two uncertainties added in quadrature is fully correlated
with the JES6 in the previous measurement, indicated by the symbol
“*” in the table. The nuisance parameter label 31 is skipped in order
to be able to keep the same numbers for corresponding nuisance pa-
rameters in the two jet cross-section measurements. The values for the
nuisance parameters are given in Tables 4—45

Uncertainty source |y| bins Correlation
0-03  03-08 0812 1221 2128 2836 3644 7TV
Trigger efficiency uy uy uj Ui uj uj uy N
Jet reconstruction eff. 83 83 83 83 84 85 86 Y
Jet selection eff. up up Uy up U up up N
JES1: Noise thresholds 1 1 2 4 5 6 Y
JES2: Theory UE 7 7 8 9 10 11 12 Y
JES3: Theory showering 13 13 14 15 16 17 18 Y
JES4: Non-closure 19 19 20 21 22 23 24 Y
JESS: Dead material 25 25 26 27 28 29 30 Y
JES6: Forward JES generators 88 88 88 88 88 88 88 *
JES7: E/p response 32 32 33 34 35 36 37 Y
JESS: E/p selection 38 38 39 40 41 42 43 Y
JES9: EM + neutrals 44 44 45 46 47 48 49 Y
JES10: HAD E-scale 50 50 51 52 53 54 55 Y
JES11: High pr 56 56 57 58 59 60 61 Y
JES12: E/p bias 62 62 63 64 65 66 67 Y
JES13: Test-beam bias 68 68 69 70 71 72 73 Y
JES15: Forward JES detector 89 89 89 89 89 89 89 *
Jet energy resolution 76 76 77 78 79 80 81 Y
Jet angle resolution 82 82 82 82 82 82 82 Y
Unfolding: Closure test 74 74 74 74 74 74 74 N
Unfolding: Jet matching 75 75 75 75 75 75 75 N
Luminosity 87 87 87 87 87 87 87 N

in the rapidity region of |y| < 4.4, covering seven orders
of magnitude in cross-section. The results are compared to
NLO pQCD predictions calculated with NLOJET++ using
the CT10 PDF set. Corrections for non-perturbative effects
are applied.

The ratio of the measured cross-sections to the NLO
pQCD predictions using the CT10 PDF set is presented in
Figs. 8 and 9 for jets with R = 0.4 and R = 0.6, respec-
tively. The results are also compared to the predictions ob-
tained using the PDF sets MSTW 2008, NNPDF 2.1, HER-
APDF 1.5 and ABM 11. The measurement is consistent with
all the theory predictions using different PDF sets within
their systematic uncertainties for jets with both radius pa-
rameters. However, the data for jets with R = 0.4 have

a systematically lower cross-section than any of the the-
ory predictions, while such a tendency is seen only in the
forward rapidity regions in the measurement for jets with
R =0.6.

The comparison of the data with the POWHEG predic-
tion for anti-k; jets with R = 0.4 and R = 0.6 is shown in
Figs. 10 and 11 as a function of the jet pr in bins of ra-
pidity. In general, the POWHEG prediction is found to be
in good agreement with the data. Especially in the forward
region, the shape of the data is very well reproduced by the
POWHEG prediction, while small differences are observed in
the central region. As seen in the previous measurement at
/s =7 TeV [25], the Perugia 2011 tune gives a consistently
larger prediction than the default PYTHIA tune AUET2B,
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Fig. 6 Inclusive jet double-differential cross-section as a function of

the jet pr in bins of rapidity, for anti-k; jets with R = 0.4. For pre-
sentation, the cross-section is multiplied by the factors indicated in the
legend. The shaded area indicates the experimental systematic uncer-
tainties. The data are compared to NLO pQCD predictions calculated
using NLOJET++ with the CT10 PDF set, to which non-perturbative
corrections have been applied. The hashed area indicates the predic-
tions with their uncertainties. The 2.7 % uncertainty from the luminos-

ity measurements is not shown
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not shown
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which is generally in closer agreement with data. In contrast
to the NLO pQCD prediction with corrections for non-per-
turbative effects, the POWHEG prediction agrees well with

30 40

(CT10,u=p")

POWHEG® PYTHIA
tune Perugia 2011
(CT10, p=p2°")

2x10?
pT

102

()
)
=

PYTHIA for the simulation of the parton shower and hadronisation with
the AUET2B tune and the Perugia 2011 tune. Only the statistical uncer-
tainty is shown on the POWHEG predictions. Statistically insignificant
data points at large pt are omitted. The 2.7 % uncertainty from the
luminosity measurements is not shown

data for both radius parameters R = 0.4 and R = 0.6. This
might be attributed to the matched parton shower approach

from POWHEG (see Sect. 6.3).
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12 Cross-section ratio of /s =2.76 TeV to /s =7 TeV
12.1 Experimental systematic uncertainty

As indicated in Table 1, the systematic uncertainties on the
measurement due to jet reconstruction and calibration are
considered as fully correlated between the measurements
at /s =2.76 TeV and /s = 7 TeV. For each correlated
systematic source s;, the relative uncertainty Apy, /p on the
cross-section ratio is calculated as

Aps,- 1+ 832,-.76 TeV
o 1t+8lTV L,
Si

®)

where 83}:76 TeV and 537-,- TeV are relative uncertainties caused
by a source s; in the cross-section measurements at /s =
2.76 TeV and /s = 7 TeV, respectively. Systematic un-
certainties that are uncorrelated between the two centre-of-
mass energies are added in quadrature. The uncertainties on
the trigger efficiency and the jet selection efficiency, and the
ones from the unfolding procedure are conservatively con-
sidered as uncorrelated between the two measurements at
the different energies. The measurement at /s = 7 TeV has
an additional uncertainty due to pile-up effects in the jet en-
ergy calibration. It is added to the uncertainty in the cross-
section ratio. The uncertainties in the luminosity measure-
ments are also treated as uncorrelated (see Sect. 10), result-
ing in a luminosity uncertainty of 4.3 %. The uncertainty

@ Springer

PYTHIA for the simulation of the parton shower and hadronisation with
the AUET2B tune and the Perugia 2011 tune. Only the statistical uncer-
tainty is shown on the POWHEG predictions. Statistically insignificant
data points at large pt are omitted. The 2.7 % uncertainty from the
luminosity measurements is not shown

on the momentum of the proton beam, based on the LHC
magnetic model, is at the level of 0.1 % [80] and highly cor-
related between different centre-of-mass energies; hence, it
is negligible for the ratio.

The experimental systematic uncertainties on both
p(y,xt) and p(y, pr) are shown in Fig. 12 for represen-
tative rapidity bins for jets with R = 0.6. For p(y, xT) the
uncertainties are 5 %—20 % for the central jets and fégo%% for
the forward jets. For jets with R = 0.4, uncertainties are sim-
ilar, except for central jets with low pt where the uncertainty
is within £15 %. A significant reduction of the uncertainty
is obtained for p(y, pt), being well below 5 % in the central
region. In the forward region, the uncertainty is 70 % for

jets with R = 0.6, and i—%go%% for jets with R = 0.4.

12.2 Results

Figures 13 and 14 show the extracted cross-section ratio of
the inclusive jet cross-section measured at /s = 2.76 TeV
to the one measured at /s = 7 TeV, as a function of xr,
for jets with R = 0.4 and R = 0.6, respectively. The mea-
sured cross-section ratio is found tobe 1.1 < p(y, x1) < 1.5
for both radius parameters. This approximately constant be-
haviour reflects both the asymptotic freedom of QCD and
evolution of the gluon distribution in the proton as a func-
tion of the QCD scale. The measurement shows a slightly
different xT dependence for jets with R = 0.4 and R = 0.6,
which may be attributed to different xT dependencies of
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Fig. 12 The systematic uncertainty on the cross-section ratios,
p(y,xt) and p(y, pr), for anti-k; jets with R = 0.6 in three repre-
sentative rapidity bins, as a function of the jet xT and of the jet pr,
respectively. In addition to the total uncertainty, the uncertainties from

non-perturbative corrections for the two radius parameters,
already seen in Figs. 4(a) and 4(b). The measurement is then
compared to the NLO pQCD prediction, to which correc-
tions for non-perturbative effects are applied, obtained using
the CT10 PDF set. It is in good agreement with the predic-
tion.

Figures 15 and 16 show the same cross-section ratio com-
pared to predictions from POWHEG with the CT10 PDF set.
The tunes AUET2B and Perugia 2011 give very similar pre-
dictions in general, and also agree well with the pQCD pre-
diction with non-perturbative corrections applied.

Figures 17 and 18 show the cross-section ratio as a func-
tion of the jet pr, plotted as the double ratio with respect to
the NLO pQCD prediction using the CT10 PDF set with
non-perturbative corrections applied, for anti-k; jets with
R=04and R=0.6.

3 As written in Sect. 9, the measurement at /s = 2.76 TeV uses a qual-
ity selection for jets with low pt in Monte Carlo simulation at |n| ~ 1,

() p(y, p1),2.1 <yl < 2.8

) p(y, pr),3.6 < |yl < 4.4

the jet energy scale (JES), the jet energy resolution (JER), the unfold-
ing procedure and other systematic sources are shown separately. The
4.3 % uncertainty from the luminosity measurements and the statistical
uncertainty are not shown

The systematic uncertainty on the measurement is sig-
nificantly reduced and is generally smaller than the the-
ory uncertainties. The measurement is also compared to the
predictions using different PDF sets, namely MSTW?2008,
NNPDF 2.1, HERAPDF 1.5 and ABM 11. In general, the
measured points are slightly higher than the predictions in
the central rapidity regions and are lower in the forward
rapidity regions. The deviation is more pronounced for the
prediction using the ABM 11 PDF set in the barrel region,

which is a different treatment than was done for the published mea-
surement at /s = 7 TeV [25]. The ratio is extracted using the co-
herent treatment in the two measurements at the different beam en-
ergies, shifting the measured cross-section at /s = 7 TeV from the
published result within its uncertainty. The shifts are sizable in the
bin 0.8 < |y| < 1.2 only. For jets with R = 0.4 (R = 0.6), they are
13 % (10 %) in the 20 < pt < 30 GeV bin, and 1.5 % (2.6 %) in the
30 < pt <45 GeV bin. In the rapidity range 1.2 < |y| < 2.1, the shift
is 1.8 % (1.9 %) at 20 < pr < 30 GeV. These bins in the /s =7 TeV
measurement only enter in the extraction of p(y, pr) and not in that of
p(y, x1).
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perturbative effects. Statistically insignificant data points at large xT
are omitted. The 4.3 % uncertainty from the luminosity measurements
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tune. Only the statistical uncertainty is shown on the POWHEG predic-
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4.3 % uncertainty from the luminosity measurements is not shown
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Fig. 16 Ratio of the measured inclusive jet double-differential cross-
section at /s = 2.76 TeV to the one at /s = 7 TeV as a function of the
jet xr in bins of jet rapidity, for anti-k; jet with R = 0.6. The theoreti-
cal prediction from NLOJET++ is calculated using the CT10 PDF set
with corrections for non-perturbative effects applied. Also shown are

POWHEG predictions using PYTHIA for the simulation of the parton
shower and hadronisation with the AUET2B tune and the Perugia 2011
tune. Only the statistical uncertainty is shown on the POWHEG predic-
tions. Statistically insignificant data points at large xt are omitted. The
4.3 % uncertainty from the luminosity measurements is not shown

@ Springer



Page 18 of 56

Eur. Phys. J. C (2013) 73:2509

1.4
1.2
1
0.8

1.2

0.8F
0.6

T

1=

p (y, p.) ratio wrt NLO pQCD (CT10)

1.2

0.8
0.6

="

1.2
1
0.8F
0.6
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which yields a different shape with respect to the other PDF
sets.

The very small systematic uncertainty in the p(y, pt)
measurement suggests that the measured jet cross-section at
/s =2.76 TeV may contribute to constrain the PDF uncer-
tainties in a global PDF fit in the pQCD framework by cor-
rectly taking the correlation of systematic uncertainties to
the previous /s = 7 TeV measurement into account. Such
an NLO pQCD analysis is described in Sect. 13.

A comparison of the jet cross-section ratio as a function
of pr to the POWHEG prediction is made in Figs. 19 and 20.
Differences between the tunes used in PYTHIA for the par-
ton shower are very small, and deviations are seen only in
the forward region for large pt. Like the NLO pQCD pre-
diction with non-perturbative corrections, the POWHEG pre-
diction has a different trend in the central rapidity region
with respect to data, deviating by more than 10 %. However,
it follows the data very well in the forward region.

13 NLO pQCD analysis of HERA and ATLAS jet data

Knowledge of the PDFs of the proton comes mainly from
deep-inelastic lepton—proton scattering experiments cover-
ing a broad range of momentum-transfer squared Q2 and of
Bjorken x. The PDFs are determined from data using pQCD
in the DGLAP formalism [81-85]. The quark distributions
in the region x < 0.01 are in general well constrained by
the precise measurement of the proton structure function
F(x, Q2) at HERA [86]. However, the gluon momentum
distribution xg(x, Q%) at x values above 0.01 has not been
as precisely determined in deep-inelastic scattering. The in-
clusive jet pt spectrum at low and moderate pr is sensitive
to the gluon distribution function.

The systematic uncertainty on the jet cross-section at
/s =2.76 TeV is strongly correlated with the ATLAS jet
cross-section measured at /s = 7 TeV, as described in
Sect. 8. Therefore, increased sensitivity to the PDFs is ex-
pected when these two jet cross-section datasets are ana-
lysed together, with proper treatment of correlation between
the measurements.

A combined NLO pQCD analysis of the inclusive jet
cross-section in pp collisions at /s = 2.76 TeV together
with the ATLAS inclusive jet cross-section in pp collisions
at /s =7 TeV [25] and HERA 1 data [86] is presented
here. The analysis is performed using the HER AFitter pack-
age [86—88], which uses the light-quark coefficient func-
tions calculated to NLO as implemented in QCDNUM [89]
and the heavy-quark coefficient functions from the variable-
flavour number scheme (VFNS) [90, 91] for the PDF evolu-
tion, as well as MINUIT [92] for minimisation of x2. The
data are compared to the theory using the x2 function de-
fined in Refs. [93-95]. The heavy quark masses are cho-
sen to be m. = 1.4 GeV and mj, = 4.75 GeV [53]. The

strong coupling constant is fixed to as(Mz) = 0.1176, as
in Ref. [86]. A minimum Q2 cut of Q2. =3.5 GeV? is
imposed on the HERA data to avoid the non-perturbative re-
gion. The prediction for the ATLAS jet data is obtained from
the NLO pQCD calculation to which the non-perturbative
correction is applied as described in Sect. 6. Due to the
large values of the non-perturbative corrections and their
large uncertainties at low pr of the jet, all the bins with
pt <45 GeV are excluded from the analysis.

The DGLAP evolution equations yield the PDFs at any
value of Q2, given that they are parameterised as functions
of x at an initial scale Q(z). In the present analysis, this scale
is chosen to be Q% = 1.9 GeV? such that it is below m2.
PDFs are parameterised at the evolution starting scale Q(z)
using a HERAPDF-inspired ansatz as in Ref. [96]:

Xty (x) = Ay, x B (1 — )G (1 + E, x?),

xdy(x) = Ag, x4 (1 — x)%,

xU(x) = AgxBo(1 —x)‘o, 9)
xD(x)=ApxP(1 - x)%b,

xg(0) = AgxPe(1 — )G — ALxBe (1 — )%,

Here U = it whereas D = d + 5. The parameters A, and
Ay, are fixed using the quark counting rule and Ag us-
ing the momentum sum rule. The normalisation and slope
parameters, A and B, of i and d are set equal such that
xii = xd at x — 0. An extra term for the valence distribution
(Ey,)is observed to improve the fit quality significantly. The
strange-quark distribution is constrained to a certain frac-
tion of D as x5 = fyxD, where f; = 0.31 is chosen in this
analysis. The gluon distribution uses the so-called flexible
form, suggested by MSTW analyses, with Cé =25 [53].
This value of the C;, parameter ensures that the additional
term contributes at low x only. With all these additional con-
straints applied, the fit has 13 free parameters to describe the
parton densities.

To see the impact of the ATLAS jet data on the PDFs, a
fit only to the HERA dataset is performed first. Then, the fit
parameters are fixed and the x2 value between jet data and
the fit prediction is calculated using experimental uncertain-
ties only. The data are included taking into account bin-to-
bin correlations. Finally, fits to HERA + ATLAS jet data
are performed for R = 0.4 and R = 0.6 jet sizes indepen-
dently, since correlations of uncertainties between measure-
ments based on two different jet radius parameters have not
been determined. The correlations of systematic uncertain-
ties between the /s =7 TeV and /s = 2.76 TeV datasets
are treated as described in Sect. 12. The PDF uncertainties
are determined using the Hessian method [97, 98].
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Fig. 19 Ratio of the inclusive jet cross-section at /s = 2.76 TeV to
the one at /s =7 TeV, shown as a double ratio to the theoretical
prediction calculated with the CT10 PDFs as a function of pr in bins
of jet rapidity, for anti-k; jets with R = 0.4. Also shown are POWHEG
predictions using PYTHIA for the simulation of the parton shower and
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hadronisation with the AUET2B tune and the Perugia 2011 tune. Only
the statistical uncertainty is shown on the POWHEG predictions. Sta-
tistically insignificant data points at large pt are omitted. The 4.3 %
uncertainty from the luminosity measurements is not shown
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Fig. 20 Ratio of the inclusive jet cross-section at /s = 2.76 TeV to
the one at ﬁ =7 TeV, shown as a double ratio to the theoretical pre-
diction calculated with the CT10 PDFs as a function of pt in bins of
jet rapidity, for anti-k; jets with R = 0.6. Also shown are POWHEG
predictions using PYTHIA for the simulation of the parton shower and
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hadronisation with the AUET2B tune and the Perugia 2011 tune. Only
the statistical uncertainty is shown on the POWHEG predictions. Sta-
tistically insignificant data points at large pt are omitted. The 4.3 %
uncertainty from the luminosity measurements is not shown
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The consistency of the PDF fit with different datasets in
terms of the x 2 values is given in Appendix B. Very good fit
quality is found for both radius parameters. The x2 values
also show the pull of ATLAS jet data for both jet radius pa-
rameters, while the description of the HERA data is almost
unaffected.

The fits determine shifts for the correlated systematic
uncertainties in the data, which are applied to the theory
predictions. Typically these shifts are smaller than half a
standard deviation and comparable in size for the fits to
the two different jet radius parameters. Larger differences
are found for the normalisation parameters in the fit using
the \/s =2.76 TeV jet data, being 0.0 % for R = 0.4 and
—2.4 % for R = 0.6, respectively, in spite of the fact that the
integrated luminosity is the same in the two cases and thus
100 % correlated. Since this correlation is not implemented
in the fitting method, the differences between the data and
theory prediction for jets with R = 0.4 and R = 0.6 (see
Sect. 11) are compensated using shifts of the nuisance pa-
rameters. Interestingly, the gluon PDFs obtained from the
two fits are very similar. Additional studies where the nor-
malisation is fixed in the fit show that the impact of the dif-
ference in normalisation on the parton distributions is small.

In the fits using the HERA data and both of the AT-
LAS jet datasets at the different centre-of-mass energies,
the shifts of jet-related systematic uncertainties modelled
by 88 nuisance parameters contribute 19 (12) units in to-
tal to the correlated components of the x? for the fit using
R =04 (R =0.6). A few shifts of jet systematic uncer-
tainties are found to be different between the R = 0.4 and
R = 0.6 fits, e.g. the jet energy resolution in forward rapid-
ity bins differs by ~0.5¢0. In order to evaluate the impact
of the larger shifts on the fit parameters, a special fit is per-
formed in which several systematic uncertainties with the
largest shifts are treated as uncorrelated. In these special fits,
the PDF parameters in Eq. (9) are found to be compatible
with the results of the default fits.

In the following, the results for the fit using jet data with
R = 0.6 are presented. The results for R = 0.4 are compat-
ible. The results of the fits to HERA data and to the com-
bined data from HERA and ATLAS jet measurements are
presented in Fig. 21, which shows the momentum distribu-
tion of the gluon xg and sea quarks x§ = 2(xit + xd + x5)
at the scale 0% = 1.9 GeV?. The gluon momentum distribu-
tion tends to be harder after the inclusion of the jet data than
that obtained from HERA data alone. Furthermore, the un-
certainty in x g is reduced if the ATLAS jet data are included
in the fit. Being smaller in the high-x region, the sea quark
momentum distribution tends to be softer with the ATLAS
jet data used in the fit. This reduction of the central value
results in a larger relative uncertainty on x.S.

The fit is also performed for HERA data in combination
with the ATLAS jet data at \/s = 2.76 TeV and /s =7 TeV
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Fig. 21 Momentum distributions of the (a) gluon xg(x) and (b) sea
quarks xS(x) together with their relative experimental uncertainty as
a function of x for 0 = 1.9 GeV?. The filled area indicates a fit
to HERA data only. The bands show fits to HERA data in combina-
tion with both ATLAS jet datasets, and with the individual ATLAS jet
datasets separately, each for jets with R = 0.6. For each fit the uncer-
tainty in the PDF is centred on unity

separately (see Fig. 21). It is found that the impact on the
gluon momentum distribution is largely reduced. Hence, the
full potential of the ATLAS jet data for PDF fits can be ex-
ploited only when both datasets and the information about
the correlations are used.

The measured jet cross-section and the cross-section ra-
tio, p(y, pt), are compared to the predictions based on fitted
PDF sets in Figs. 22 and 23, respectively. The data are well
described by the prediction based on the refit PDFs after the
addition of the jet data. The description is particularly im-
proved in the forward region.
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section at /s = 2.76 TeV calculated with the CT10 PDF set, the fitted cross-section. The 2.7 % uncertainty from the luminosity measurement
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Fig. 23 Comparison of NLO pQCD predictions of the jet cross- dictions are normalised to the one using the CT10 PDF set. Also shown
section ratio of /s =2.76 TeV to /s =7 TeV calculated with the is the measured jet cross-section ratio. The 4.3 % uncertainty from the
CT10 PDF set, the fitted PDF set using the HERA data only and the luminosity measurements is not shown

one using HERA data and the ATLAS jet data with R = 0.6. The pre-
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14 Conclusion

The inclusive jet cross-section in pp collisions at /s =
2.76 TeV has been measured for jets reconstructed with the
anti-k; algorithm with two radius parameters of R = 0.4 and
R = 0.6, based on the data collected using the ATLAS de-
tector at the beginning of 2011 LHC operation, correspond-
ing to an integrated luminosity of 0.20 pb~!. The measure-
ment is performed as a function of the jet transverse momen-
tum, in bins of jet rapidity.

The ratio of the inclusive jet cross-sections at /s =
2.76 TeV and /s = 7 TeV is shown in this paper. The corre-
lation of the sources of uncertainty common to the two mea-
surements is fully taken into account, resulting in a reduction
of systematic uncertainties in the ratio measurement.

The measurements are compared to fixed-order NLO per-
turbative QCD calculations, to which corrections for non-
perturbative effects are applied. The comparison is per-
formed with five different PDF sets. The predictions are
in good agreement with the data in general, in both the jet
cross-section and the cross-section ratio. This confirms that
perturbative QCD can describe jet production at high jet
transverse momentum. Due to the reduced systematic uncer-
tainties, the ratio measurement starts to show preferences for
certain PDF sets. The measurement is also compared to pre-
dictions from NLO matrix elements with matched parton-
shower Monte Carlo simulation. In particular in the forward
region, the central value of the prediction describes the data
well.

An NLO pQCD analysis in the DGLAP formalism has
been performed using the ATLAS inclusive jet cross-section
data at /s = 2.76 TeV and /s = 7 TeV, together with
HERA 1 data. By including the ATLAS jet data, a harder
gluon distribution and a softer sea-quark distribution in the
high Bjorken-x region are obtained with respect to the fit of
HERA data only. Furthermore, it is shown that the full po-
tential of the ATLAS jet data for PDF fits can be exploited
further when the information about the correlations between
the measurements at /s = 2.76 TeV and /s =7 TeV is
used.
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Appendix A: Bin boundaries
of the measured cross-section

The bin boundaries of the cross-section measurement are
given in Table 2 for the xt binning, and for the prt bin-
ning at both centre-of-mass energies, /s =7 TeV and /s =
2.76 TeV.

Table 2 Bin boundaries in the variable xt used in the extraction of
p(y, xT), the cross-section ratio as a function of xt at different centre-
of-mass energies. Also shown are the corresponding jet pr values at
each centre-of-mass energy

XT pt [GeV] at pt [GeV] at
5 =7TeV /5 =2.76 TeV

0.0171 60 23.65
0.0229 80 31.54
0.0314 110 43.37
0.0457 160 63.08
0.0600 210 82.80
0.0743 260 102.5
0.0886 310 122.2
0.1143 400 157.7
0.1429 500 197.1
0.1714 600 236.5
0.2286 800 315.4
0.2857 1000 394.2
0.3429 1200 473.1
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Appendix B: Tables of x? values for the PDF fit

Table 3 shows the x2 values for the PDF fits with various
combinations of HERA and ATLAS jet data for different
radius parameters R of the anti-k; algorithm.

Table 3 Agreement of the PDF fit with different datasets in terms of
the x2 values, using various combinations of input datasets for the fit.
HERA is used as baseline and in combination with ATLAS jet data
from the single-jet double-differential cross-section measurements at
/s =2.76 TeV and /s =7 TeV for anti-k, jets with two radius pa-
rameters, R = 0.4 and R = 0.6. When both ATLAS jet datasets at
/s =276 TeV and /s =7 TeV are used, all correlations between
the measurements are taken into account. The x2 value of the fit with
respect to the individual datasets tested is given separately for the un-
correlated and the correlated components as x 2., and xZ,, where the

shifts of the systematic uncertainties are summed in quadrature for
each category. In general, a very good fit quality is found. Compari-
son of x? values of the fit using HERA data only with fits including
both HERA and ATLAS jet data shows the pull of ATLAS jet data for
both jet radius parameters, while the description of the HERA data is
almost unaffected. For example, x2..,, of the HERA dataset worsens
only slightly by 8 units from 556 to 564 when the ATLAS jet data for
R = 0.6 is included in the fit, while x2,.,, improved from 33 (50) to
29 (40) for the 2.76 TeV (7 TeV) jet data. There is also an improvement
from 22 to 12 in x 2, for jets

Input datasets Test dataset XKcor %2, Npoints
HERA HERA 556 3.0 592
ATLAS jets 2.76 TeV, R = 0.4 29 ) 40
ATLAS jets 7 TeV, R = 0.4 44 76
ATLAS jets 2.76 TeV, R = 0.6 33 " 40
ATLAS jets 7 TeV, R = 0.6 50 76
HERA HERA 562 36 592
ATLAS jets 2.76 TeV, R = 0.4 ATLAS jets 2.76 TeV, R = 0.4 27 40
ATLAS jets 7 TeV, R = 0.4 . 19
ATLAS jets 7 TeV, R = 0.4 33 76
ATLAS jets 2.76 TeV, R = 0.6 29 " 40
ATLAS jets 7 TeV, R = 0.6 41 76
HERA HERA 557 3.1 592
ATLAS jets 2.76 TeV, R = 0.4 ATLAS jets 2.76 TeV, R = 0.4 20 74 40
HERA HERA 559 34 592
ATLAS jets 7TeV, R =0.4 ATLAS jets 7 TeV, R = 0.4 28 14 76
HERA HERA 564 40 592
ATLAS jets 2.76 TeV, R = 0.6 ATLAS jets 2.76 TeV, R = 0.6 jets 29 40
ATLAS jets 7 TeV, R = 0.6 , 12
ATLAS jets 7 TeV, R =0.6 40 76
ATLAS jets 2.76 TeV, R = 0.4 26 8 40
ATLAS jets 7 TeV, R=0.4 32 76
HERA HERA 558 32 592
ATLAS jets 2.76 TeV, R = 0.6 ATLAS jets 2.76 TeV, R = 0.6 21 4.9 40
HERA HERA 560 36 592
ATLAS jets 7TeV, R = 0.6 ATLAS jets 7 TeV, R = 0.6 34 9.4 76

Appendix C: Tables of the measured jet cross-sections
and cross-section ratios

The measured inclusive single-jet cross-sections are shown
in Tables 4-10 and Tables 11-17 for jets with R = 0.4 and
R = 0.6, respectively. Tables 18-24 and 25-31 show the
measured cross-section ratio, p(y, xt), for R=0.4 and R =

@ Springer

0.6, and Tables 32-38 and Tables 39-45 show the measured
cross-section ratio, p(y, pt), for R = 0.4 and R = 0.6, re-
spectively.
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