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Measurement of the neutron lifetime by counting trapped protons in a cold neutron beam

J. S. Nico, M. S. Dewey, and D. M. Gilliam
National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA

F. E. Wietfeldt
Tulane University, New Orleans, Louisiana 70118, USA

X. Fei and W. M. Snow
Indiana University and Indiana University Cyclotron Facility, Bloomington, Indiana 47408, USA

G. L. Greene
University of Tennessee/Oak Ridge National Laboratory, Knoxville, Tennessee 37996, USA

J. Pauwels, R. Eykens, A. Lamberty, and J. Van Gestel
European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, B-2440 Geel, Belgium

R. D. Scott
Scottish Universities Research and Reactor Centre, East Kilbride G75 0QU, United Kingdom

(Received 16 November 2004; published 25 May 2005)

A measurement of the neutron lifetime τn performed by the absolute counting of in-beam neutrons and their
decay protons has been completed. Protons confined in a quasi-Penning trap were accelerated onto a silicon
detector held at a high potential and counted with nearly unit efficiency. The neutrons were counted by a device
with an efficiency inversely proportional to neutron velocity, which cancels the dwell time of the neutron beam
in the trap. The result is τn = (886.3 ± 1.2[stat] ± 3.2[sys]) s, which is the most precise measurement of the
lifetime using an in-beam method. The systematic uncertainty is dominated by neutron counting, in particular,
the mass of the deposit and the 6Li(n,t) cross section. The measurement technique and apparatus, data analysis,
and investigation of systematic uncertainties are discussed in detail.
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I. INTRODUCTION

Precision measurements of the β decay of a free neutron
address fundamental questions in particle physics, astro-
physics, and cosmology. The decay can be described by
the transformation of a d quark into a u quark through the
emission of a virtual W boson that decays into an electron
and an antineutrino. Because the neutron has the simplest
semileptonic decay, the study of neutron decay tests the
charged-current sector of the standard model. Improving the
precision of the neutron lifetime is fundamental to testing
the validity of the theory.

There are three distinct experimental strategies for mea-
suring the neutron lifetime. One method confines neutrons in
material “bottles” or magnetic fields and measure the number
of neutrons remaining as a function of time [1–4]. The number
of neutrons in the bottle N (t) is measured and fit to the
exponential decay function N (t) = N (0)e−t/τn to extract τn.
The second approach measures simultaneously both the rate
of neutron decay dN/dt and the average number of neutrons
N in a well-defined volume of a neutron beam [5]. The
neutron lifetime is determined from the differential form of
the radioactive decay law dN/dt = −N/τn. A third approach
proposes to measure lifetime using ultracold neutrons that
are magnetically confined in superfluid 4He [6]. The decay

electrons are registered via scintillations in the helium, thus
allowing one to directly fit for the exponential decay of
the trapped neutrons. Accurate measurements using each of
these independent methods are important for establishing the
reliability of the results for τn.

Figure 1 shows a summary of recent measurements. Seven
of the experiments [1–3,5,7–9] contribute to a current neutron
lifetime world average of τn = (885.7 ± 0.8) s [10]. While
the agreement among the results is very good, the four
experiments that utilized ultracold neutrons confined to a bottle
or gravitational trap gave more precise measurements. The
two experiments using a beam of cold neutrons did not have
much statistical influence. Given the different set of systematic
problems that the two classes of experiments encounter, a
precision measurement of the lifetime using a cold neutron
beam not only reduces the overall uncertainty of τn, but also
serves as an important independent check on the robustness of
the central value.

Accurate determination of the parameters that describe
neutron decay can provide important information regarding
the completeness of the three-family picture of the standard
model through a test of the unitarity of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix. Neutron decay can be used to
determine the CKM matrix element |Vud| with high precision
in a fashion that is free of some of the theoretical uncertainties
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FIG. 1. A comparison of recent neutron lifetime measurements.
Shaded band is ±1 standard deviation of the weighted average
including this result.

present in 0+ → 0+ nuclear decays, which are still used
for the most precise determination of |Vud|. Neutron decay
is the system that offers the best prospect of a significant
improvement in the direct determination of |Vud|. Such a
measurement can be used to test whether the weak interaction
in the charged-current sector is purely V-A (as in the standard
model) or has right-handed components. Neutron decay also
dictates the time scale for big-bang nucleosynthesis, and its
lifetime remains the most uncertain nuclear parameter in
cosmological models that predict the cosmic 4He abundance.

This paper describes a measurement of the neutron lifetime
by counting beam neutrons and trapped protons [9]. It presents
a refined analysis of the data and treatment of the system-
atic effects. The remainder of this section gives additional
motivation and background for this measurement. Section II
discusses the principles behind the experimental technique as
well as details of the apparatus. The method of analysis is
presented in Sec. III. In Sec. IV, we consider the treatment of
the systematic effects in detail. They are divided into two main
classes: systematics that affect the neutron counting efficiency
and those that affect the proton counting efficiency. Lastly, the
new result is given in Sec. V.

A. Neutron lifetime and the standard model

Most of the constraints on physics beyond the standard
model come from high-energy collider experiments. However,
precision measurements in neutron and nuclear β decay can
test certain standard model extensions in the charged-current
sector with comparable or superior sensitivity to that of
collider-based experiments [11]. Having the simplest nuclear
β decay, the free neutron provides a particularly attractive
laboratory for the study of the charged-current sector of the
weak interaction. Because free neutron decay is unencumbered
by the many nucleon effects present in all other nuclear decays,
measurements of the parameters that describe neutron decay
can be related to the fundamental weak couplings in a more
straightforward fashion.

In the standard model, β decay of the free neutron is a
mixed vector/axial-vector current process characterized to a

good approximation by two coupling strengths: gv and ga , the
vector and axial-vector coupling coefficients. The probability
distribution for neutron β decay can be written as [12]:

dW ∝ (
g2

v + 3g2
a

)
F (Ee)

×
[

1 + a
�pe · �pν

EeEν

+ �σn ·
(

A
�pe

Ee

+ B
�pν

Eν

)]
, (1)

where F (Ee) is the β electron energy spectrum; �pe, �pν and
Ee,Eν are the momenta and kinetic energies of the decay
electron and antineutrino; a,A, and B are angular correlation
coefficients; and �σn is the initial spin of the decaying neutron.
In addition, one obtains an expression for the neutron lifetime

τn = 2π3h̄7

m5
ec

4

1

f (1 + δR)
(
g2

v + 3g2
a

) (2)

and can define the coupling constant ratio λ = ga/gv . Here
f (1 + δR) = 1.71489 ± 0.00002 is a theoretically calculated
phase space factor including radiative corrections [13]. The
parameter λ can be extracted from measurement of either a,A,
or B; and thus, with a measurement of neutron lifetime τn, gv

and ga can be determined uniquely.
A strong motivation for more accurate measurements of

neutron decay parameters arises from the results of nuclear
β-decay experiments. The most precise way of determining
gv to date has been from superallowed 0+ → 0+ nuclear β

decays between isobaric analog states. The current result, gv =
(1.41517 ± 0.00046) × 10−62 J m3, can be related to the |Vud|
matrix element of the CKM matrix via g2

v ∝ V 2
udG

2
F , where GF

is known precisely from muon decay. This yields a value of
|Vud| = 0.9740 ± 0.0005, with the uncertainty dominated by
theoretical corrections. This value can be used to test the uni-
tarity condition of the CKM matrix (|Vud|2 + |Vus|2 + |Vub|2 =
1), with the values of |Vus| and |Vub| taken from the current
recommendations of the Particle Data Group [10]. With these
values, the unitarity sum is

∑
i |Vui|2 = 0.9969 ± 0.0015, a

value that differs from unitarity by 2.1 standard deviations.
Compared with nuclear β decay, neutron β decay offers a

theoretically cleaner environment for extracting gv because
of the absence of other nucleons, although some radiative
corrections are common to both systems. Combining the
world-average values of τn (including the value reported in
this paper) and λ, one can extract a value for gv , yielding
gv = (1.4153 ± 0.0027) × 10−62 J m3. Using this value of
gv , one can apply the same unitarity test, giving a sum
value of

∑
i |Vui|2 = 0.9971 ± 0.0039, which is 0.75 standard

deviations below unity. This result agrees with both the nuclear
result and unity. If neutron measurements are to address
definitively a possible incompatibility with the standard model,
as suggested by the nuclear β-decay results, both the neutron
lifetime and λ must be determined with higher precision.

A precision determination of |Vud| should be seen in the
context of the overall effort in high-energy physics at beauty
and charm factories to determine with high precision all the
parameters of the CKM matrix. With the recently approved
CLEO-c project, for example, it should be possible in the next
few years to measure the CKM matrix element Vcd to 1%
accuracy if lattice gauge theory calculations of the required
form factors can improve sufficiently to match the expected
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precision of the data [14]. If successful, this would make
possible another independent check of CKM unitarity using the
first column: |Vud|2 + |Vcd|2 + |Vtd|2 = 1. Thus, a precision
measurement of |Vud| can be used for two separate checks of
CKM unitarity.

Furthermore, assuming unitarity of the upper row of the
CKM matrix and the Wolfenstein parametrization, a precision
determination of |Vud| can be used to infer the Wolfenstein
parameter λW = Vud, which is needed for the tests of the
unitarity triangles at B factories. The phenomena considered as
possible causes for violation of CKM unitarity include right-
handed currents [15], supersymmetry [16], exotic fermions
[17,18], and additional Z bosons [19,20] among others. One
notes that while the sum above is dominated by |Vud|, the
contribution of |Vus| is significant, and there remains a question
of the reliability of the currently accepted value and its
uncertainty. There has been recent discussion regarding the
value of |Vus| from kaon decay based on new results and
evaluations of kaon semileptonic decay rates. If one were to
use the value of |Vus| from some recent evaluations [21], the
discrepancy with unitarity disappears. Efforts are now under
way to clarify this situation using kaon decay data from several
collaborations [22]. There are also renewed theoretical efforts
to attempt to extract |Vus| from hyperon decay [23].

B. Neutron lifetime and nucleosynthesis

The neutron lifetime also influences the predictions of the
theory of big-bang nucleosynthesis (BBN) for the primordial
helium abundance in the universe and the number of different
types of light neutrinos Nν . Since a large fraction of the
uncertainty in the BBN prediction for the primordial 4He/H
abundance ratio comes from the uncertainty of the neutron
lifetime [24,25], improved neutron lifetime measurements
are useful for sharpening the BBN prediction. With the
recent high-precision determination of the cosmic baryon
density reported by the Wilkinson Microwave Anisotropy
Probe (WMAP) measurement of the microwave background
[26], the BBN prediction for the 4He abundance is higher
than the value inferred from observation [27]. However,
systematic uncertainties in the astronomical determinations
of the 4He/H ratio are still believed to dominate the difference
between theory and observation. Furthermore, comparisons of
BBN helium abundance calculations to observation using the
number of known light neutrinos (Nν = 3) are consistent with
the value derived from Z decay [10].

II. EXPERIMENTAL METHOD AND APPARATUS

A. The in-beam technique

The measurement presented here requires accurate counting
of neutrons and neutron decay products (protons) from a cold
neutron beam. Such an in-beam lifetime measurement must
overcome the technical challenges of accurately measuring
(i) the relatively low number of neutron decay events in the
presence of background, (ii) the decay detection volume, and
(iii) the mean number of neutrons within the decay detection
volume. Each of these difficulties is directly addressed in this

FIG. 2. Experimental method for measuring lifetime by counting
neutrons and trapped protons.

experiment in a manner similar to that of previous experiments
utilizing the in-beam technique [8,28–30].

An illustration of the experimental method is shown in
Fig. 2. The technique of trapping protons to increase the
signal-to-background was first proposed by Byrne et al. and
is described in detail elsewhere [28,31]. A trapping region
of length L intercepts the entire neutron beam. Within the
volume of this region, neutron decay is observed by detecting
decay protons with an efficiency εp. The neutron beam is
characterized by a velocity-dependent fluence rate I (v). The
mean number of neutrons in the trap at any time is given by

Nn = L

∫
A

∫
daI (v)

1

v
dv, (3)

where A is the trap cross-sectional area having nonzero fluence.
Thus, the rate at which decay events are detected Ṅp is

Ṅp = τ−1εpL

∫
A

∫
daI (v)

1

v
dv. (4)

After leaving the trap, the neutron beam passes through
a thin detector whose efficiency for detecting a low-energy
neutron is proportional to 1/v. Following the usual convention
used in thermal neutron physics, we define the efficiency for
the neutron detector εo as the ratio of the detected reaction-
product rate to the neutron rate incident on a 6LiF deposit for
neutrons with a velocity vo = 2200 m/s. The corresponding
efficiency for neutrons of other velocities is εovo/v. Therefore,
the total charged-particle count rate, denoted Ṅα+t to indicate
the neutron capture reaction products, is

Ṅα+t = εovo

∫
A

∫
daI (v)

1

v
dv. (5)

The integrals in Eqs. (4) and (5) are identical. The velocity
dependence of the neutron detector efficiency compensates
for the fact that the faster neutrons in the beam spend less
time in the decay volume. This cancellation is exact given
two assumptions: (i) the deposit is thin (0.4% of the neutrons
are absorbed) and the neutron absorption cross section in the
6LiF target is exactly proportional to 1/v and (ii) the neutron
beam intensity and its velocity dependence do not change
between the trap and the target. The deviation from the 1/v

law in the 6Li(n,t)4He cross section has been shown to be
less than 0.01% [32], and changes in the neutron beam due
to decay-in-flight and residual gas interaction are less than
0.001%. The cancellation allows this technique to make full
use of the broad neutron energy spectrum from the reactor cold
source. Thus, we obtain an expression for the neutron lifetime
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τn in terms of measurable quantities

τn = L

Ṅp

Ṅα+t

εo

εp

vo

. (6)

The challenge of the in-beam technique is to accurately
measure the quantities Ṅα+t , Ṅp, L, εp, and εo.

B. Neutron beamline

The experiment was performed using cold neutrons at the
National Institute of Standards and Technology Center for
Neutron Research (NCNR). The NCNR operates a 20 MW,
heavy-water-moderated research reactor that provides fission
neutrons moderated to thermal energies by the D2O primary
reactor coolant. Cold neutrons were produced by a cold neutron
moderator situated adjacent to the reactor core. It consisted of a
spherical shell of liquid hydrogen maintained at a temperature
of 20 K. Neutrons emerged from the cold source in a pseudo-
Maxwellian distribution with an effective temperature of 40 K.
The slower average velocity of cold neutrons increases the
number of neutrons that decay in the fiducial volume of the
proton trap.

Neutron guides coated with 58Ni efficiently transported the
cold neutrons approximately 68 m from the cold source to the
experimental area at the end of neutron guide 6 (NG-6) [33]
in the NCNR Guide Hall. The average thermal-equivalent
neutron fluence rate was measured to be 1.4 × 109 cm−2 s−1

at the local guide shutter at the NG-6 end station. Immediately
after exiting the guide shutter, the neutron beam passed through
a beam filter of single-crystal bismuth cooled to liquid nitrogen
temperature. The filter attenuated fast neutrons and γ rays
originating from the reactor core that would have contributed to
the background signal. Cooling the filter elements to 77 K sig-
nificantly increased the transmission of cold neutrons through
the filter by reducing the scattering from phonons in the solid.

After the neutron beam exited the filter, it was collimated
by two 6LiF apertures, which are almost totally absorbing
for low-energy neutrons. The diameter of the first aperture
(C1) was varied as a systematic check on the effect of the
beam diameter on the measured lifetime. The second one (C2)
had a diameter of 8.4 mm and was not changed during the
measurement. In between these two beam-defining apertures
were several 6LiF beam scrapers, which removed scattered and
highly divergent neutrons. The scrapers were mounted inside
a 4.9 m He-filled flight tube wrapped with 10B-loaded rubber.
After passing through C2, the beam entered a 1 m section
of preguide and then entered the vacuum system through
the silicon window of a 7 mm diameter quartz guide tube.
After passing through the trap, the beam traveled 83 cm to the
neutron counter. It exited the vacuum system through a silicon
window and was stopped in a 6LiF beam dump.

The vacuum system consisted of three main sections: the
proton detector, the bore of the superconducting solenoid
(where the proton trap resided), and the neutron detector.
Rough vacuum was achieved by an oil-free turbo pump,
and ultra high vacuum (UHV) was maintained by two ion
pumps. All parts of the system that could withstand typical
UHV bake-out temperatures were routinely baked after every

exposure of the vacuum system to air. The solenoid bore is
the most notable exception to that procedure. The bore could
be isolated from both the proton detector end and neutron
detector end by gate valves, thus allowing access to either end
without the necessity of warming up and venting the inner
bore. The pressure in the system measured at the ion pumps
was typically 10−9 mbar. It was reasonably assumed that the
pressure at the trap was significantly below that value because
of the cryopumping of the solenoid bore.

C. Proton counting

The detection of protons was accomplished through the use
of a silicon detector and a proton trap, which consists of a 4.6 T
magnetic field along the beam axis and an annular electrostatic
trap composed of sixteen electrodes segmented along the beam
direction. In trapping mode, these electrodes impose a potential
well over a volume of the neutron beam of depth approximately
+800 eV, which is well above the maximum proton kinetic
energy of 751 eV, and confine the protons axially. Since the
protons from neutron decay have a maximum cyclotron radius
of less than 1 mm in the 4.6 T field, the decay protons are
radially confined as well. The protons from neutron decay
are therefore trapped with unit efficiency except at the ends
of the trap, where potential gradients affect the efficiency.
After a trapping time of order 10 ms, the trapped protons are
ejected from the trap, guided adiabatically along the magnetic
field lines that bend protons out of the neutron beam, and
accelerated onto a detector held at a high negative potential.

1. Proton trap

The ideal proton trap for this experiment would consist of a
perfectly uniform axial magnetic field and an axial electrostatic
square well potential whose height on both ends exceeds the
maximum kinetic energy of neutron decay protons (751 eV).
In this case, the length L of the trap would be well defined, and
all protons created within this length would be trapped with
100% efficiency. One could determine τn by applying Eq. (6)
to the data from a single trap length. However, an exact square
well potential cannot be realized in this experiment. There is a
region near each end of the trap, which we refer to collectively
as the end region, where the electrostatic potential is above
ground but less than the maximum applied voltage. Protons
created in the central, grounded region are always trapped,
but those created in the end region are trapped with less than
100% efficiency. For this reason, the trap is segmented into 16
electrodes, and we vary the trap length. The electrode structure
is assembled in a manner that allows accurate determination
of the segment repeat distance. The lengths of the individual
electrodes, and therefore the changes in the length of the trap,
must be accurately known.

The electrodes for the trap were fabricated from fused
quartz to optical tolerances and coated with a thin conducting
layer of gold. Adjacent segments were separated by 2 mm
thick insulating spacers also made of fused quartz. The
trap is shown in Fig. 3. The length of each electrode and
spacer was measured at room temperature using a coordinate
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FIG. 3. (Color online) Proton trap.

measuring machine in the NIST Fabrication Technology
Division. Relevant dimensions of the trap are given in Table I;
the precision is known to better than ±5 µm. Changes in the
dimension due to thermal contraction are at the 0.01% level for
quartz [34]. Electrodes 1–3 are referred to as the “door,” and
their voltages do not change. Following the door are a variable
number (3–10) of grounded electrodes that comprise the
central trap (Fig. 2). This number determines the trap length.
The three electrodes after the trap are called the “mirror.”
The position of the mirror determines the trap length.

The shape of the electrostatic potential near the door and
mirror is the same for all traps with 3–10 grounded electrodes
in the trapping region; so the effective length of the end region,
while unknown, is in principle constant. The length of the trap
can then be written

L = nl + Lend, (7)

TABLE I. The measured lengths of trap elements (spacers
and electrodes), beginning with electrode 1 (upstream end). The
uncertainty in these measurements is ±5 µm.

Trap element Length (mm) Trap element Length (mm)

Electrode 1 18.600 Electrode 9 18.600
Spacer 1 3.000 Spacer 9 3.019
Electrode 2 18.479 Electrode 10 18.599
Spacer 2 3.005 Spacer 10 3.002
Electrode 3 18.646 Electrode 11 18.576
Spacer 3 2.951 Spacer 11 3.001
Electrode 4 18.591 Electrode 12 18.562
Spacer 4 3.014 Spacer 12 2.998
Electrode 5 18.759 Electrode 13 18.593
Spacer 5 2.997 Spacer 13 3.005
Electrode 6 18.573 Electrode 14 18.558
Spacer 6 3.002 Spacer 14 2.929
Electrode 7 18.481 Electrode 15 18.586
Spacer 7 3.008 Spacer 15 3.002
Electrode 8 18.550 Electrode 16 18.600
Spacer 8 3.003

where n is the number of grounded electrodes and l is the
physical length of one electrode plus an adjacent spacer
(21.6 mm). Lend is an effective length of the two end regions;
it is proportional to the physical length of the end regions and
the probability that protons created there will be trapped. From
Eqs. (4) and (5), one sees that the ratio of proton counting rate
to α counting rate is

Ṅp

Ṅα+t

= τ−1
n

(
εp

ε0vo

)
(nl + Lend). (8)

We fit Ṅp/Ṅα+t as a function of n to a straight line and
determine τn from the slope; so there is no need to know
the value of Lend, provided that it is the same for all trap
lengths. Because of the symmetry in the trap’s design, Lend is
approximately equal for all trap lengths used.

The electrodes and spacers were mounted in a stainless steel
frame attached rigidly inside the bore of the superconducting
solenoid. Alignment jigs were constructed to allow the precise
alignment of the trap axis with the neutron beam. For UHV
compatibility and low thermal conductivity, stainless steel wire
was used to connect each electrode to an electrical feedthrough
at the vacuum interface. Outside the vacuum system, three
high-voltage pulsers controlled by the data acquisition system
provide dc voltage to the door; mirror, and central electrodes
at the appropriate time in the trapping cycle.

2. Trapping cycle

The electrodes on the proton trap operate in three distinct
modes: trapping protons, counting protons, or clearing the
trap. The typical proton trapping period is 10 ms in duration.
The period was selected primarily to avoid the intermittent
instability sometimes observed in the behavior of the trap.
Given our neutron fluence rate, this range of trapping times
makes it unlikely that multiple protons will be trapped, thus
reducing the magnitude of the dead-time corrections.

The first mode of operation during the measurement is the
trapping mode. The door and mirror electrodes are held at
+800 V, and the central electrodes are at ground. The depth of
the well is sufficient to axially confine protons that are created
in the fiducial volume of the trap. The magnetic field confines
them radially.

After approximately 10 ms, a signal is sent from the data
acquisition system (DAQ) to acquire data from the proton
detector. Since the detector needs to be enabled only during
extraction, the background is significantly reduced by the ratio
of the extraction time to the trapping time (typically a factor
of about 125 in our experiment). After the detector is enabled
for 21 µs, the door electrodes are grounded and a graduated
potential is imposed on the central electrodes to flush out
protons that may have only a small amount of axial momentum.
This is the counting mode and is also referred to as the “ramp”
configuration. The previously trapped protons now exit the
trap and adiabatically follow the magnetic field lines. These
field lines bend by 9.5◦ in the region beyond the trap and pass
through the silicon detector, where protons are accelerated and
detected.
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The counting mode remains active for 76 µs, a time that
is sufficient to permit all protons to exit the trap. The next
signal establishes a clearing mode, where the ramp voltages
are maintained and all other electrodes of the trap are held
at ground. This procedure prevents charged particles, which
may contribute to instability, from being trapped in any portion
of the trap. After 33 µs, both the door and mirror are raised,
the trapping mode is reestablished, and another trapping cycle
begins. The acquisition is disabled, and no additional events are
recorded until the cycle repeats. Information on both energy
and timing is recorded for the proton events. Data from the
timing spectra are used to determine the proton rate since both
the background and dead-time correction are less complicated
than in the energy spectra. A detailed discussion of the analysis
method employed to extract the proton rate from the timing
spectrum is given in Sec. III A.

3. Proton detector

To detect the protons ejected from the trap, we used
silicon surface barrier detectors and passivated ion-implanted
planar detectors. They have good energy resolution and high
detection efficiency for protons with incident energies greater
than approximately 20 keV. To minimize detector capacitance,
one wants to use a detector with a large depletion depth
and the smallest area that completely encompasses all the
protons originating from the trap. Therefore, we used detectors
with a depletion depth of 300 µm and a 300 mm2 active
area. The detector and preamplifier were radiatively cooled to
approximately 150 K to minimize the detector leakage current
and the noise contribution from the preamplifier.

One must be certain that all the protons originating from
the trap will be seen by the detector. The neutron beam
diameter was established in two ways: (i) using Monte Carlo
calculations and modeling of the NG-6 beamline and the
collimation of the lifetime apparatus (taking into account
the finite divergence of the neutron beam and the maximum
radius of the orbits of the trapped protons) and (ii) making
detailed measurements of the neutron beam profile (discussed
in Sec. IV B). Great care was taken to align the detector
precisely with the proton beam to ensure that protons would
not be lost beyond the active area of the silicon.

One must accelerate the low-energy protons to a high
negative potential in order to register the event in the detector.
All silicon detectors have a thin layer on the surface that is
inactive, commonly referred to as a dead layer. This layer
consists of gold and/or silicon dioxide, depending on the
type of silicon detector. The recoil energy of protons from
neutron decay is so low (751 eV maximum) that they cannot
penetrate the dead layer without additional acceleration.
Typical acceleration voltages for this experiment ranged from
−25 to −35 kV. We chose to place the proton detector at high
voltage rather than the trap at a high positive potential to avoid
trapping electrons in the decay region.

4. Proton detector alignment

Given the importance of the correct positioning of the
proton detector, three distinct approaches were used to verify

that the detector was centered precisely on the center of
the proton beam originating from the trap: surveying with a
theodolite, measuring the centroid with source electrons, and
measuring the centroid using protons from neutron decay.

(a) Survey. Initially, the proton trap was aligned to the
neutron beam and rigidly secured to the inside bore of
the magnet. Crosshairs were inserted into the upstream and
downstream ends of the trap to perform the alignment. A
survey target centered on the detector was mounted on its
linear motion feedthrough with 1 m of travel and moved into
its operating position in the bore of the magnet. The alignment
axis at 9.5◦ with respect to the beam was defined using a mirror
inserted into the magnet bore.

(b) Electron scan. For the second approach, we used an
electron source inserted into the downstream electrode of
the trap. The source was 210Pb-210Bi-210Po in equilibrium,
which produces a β-decay electron with a 1.16 MeV endpoint
energy. The energy is such that when the magnet is at its
nominal 4.6 T field strength, the highest-energy β particle has
a cyclotron radius comparable to that of protons from neutron
decay. Thus, the trajectory of the electron is similar to that
of a proton, and one can use the electron source to scan the
distribution of particles originating from the center of the trap.
By comparison, the cyclotron radius of the 5.3 MeV α particles
from the 210Po decay is much larger, making their contribution
negligible.

A plastic mask with a 3 mm diameter hole in the center
was placed over the face of a typical surface barrier detector.
The detector is mounted on a three-axis manipulator, and its
position can be rastered in the two directions perpendicular to
the direction of the electron beam (x,y) as well as along the
beam axis (z). The scans give the beam profile in the transverse
directions as well as along the beam axis. The x and y data
were fit to a Gaussian function to obtain the centroid of the
electron distribution, which coincided well with the geometric
axis determined by the survey.

(c) Proton scan. Finally, the most accurate check on
the positioning of the detector comes from decay protons
themselves. Although it is clearly the relevant measure of the
alignment, the significantly lower event rate (in comparison
with the electron source) makes it a more time-consuming
test. The principle of the measurement is the same as with the
electron source although no mask is used because of the lower
count rate. One obtains the centroid by fitting the data to the
convolution of a square distribution and a Gaussian function.
Figure 4 shows a scan for one direction of detector motion. To
avoid proton rate drifts due to reactor power fluctuations, the
relevant quantity to plot is the ratio of proton rate to neutron
rate versus the position of the detector.

For both the electron and proton scans, the position of the
centroids in the two directions of the detector plane agreed
with those obtained through alignment done by the theodolite
to better than 1 mm. Scans done in the z direction demonstrated
the insensitivity in the rate as a function of the detector position
along the magnet field axis. Additional measurements that
were done to quantify the fraction of protons that still might
miss the active area detector are discussed in Sec. IV B.
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FIG. 4. (Color online) Proton rate normalized to the neutron
detector counting rate as a function of the horizontal position of
the detector. The solid line is a fit to the data points.

D. Neutron counting

The absolute number of neutrons passing through the
proton trap is determined by measuring the products from
the 6Li(n,t)4He reaction and relating that rate to the incident
neutron fluence rate. The total rate at which these reaction
products are detected depends on the neutron fluence rate,
the total detector solid angle, the neutron absorption cross
section, and the deposit areal density. The detector consists
of a target surrounded by four silicon semiconductor detectors
with a solid angle defined by precision-machined apertures and
operates by counting the tritons and α particles produced by
neutron capture on the 6Li. It is shown schematically in Fig. 2.
The geometry is chosen to make the solid angle subtended by
the α detectors insensitive to first order in the source position.
Two of these devices exist; the second device has been used
in efforts to determine absolute neutron fluence at the level of
0.1% [35]. Additional details of the construction and operation
may be found in Refs. [36,37]

The target in the neutron monitor consists of a thin
(≈0.4 mm) 50 mm diameter single-crystal wafer of silicon
with an evaporated deposit of 6LiF. This deposit is thin enough
that the neutron fluence rate is only slightly attenuated, and the
products from the 6Li(n,t)4He reaction suffer negligible scat-
tering or energy loss in passing through it. The α particles and
tritons produced by the neutron absorption reactions in 6Li are
detected by four surface barrier detectors, each of which has a
solid angle defined by a diamond-turned precision aperture, as
shown in Fig. 2.

6Li has a thermal (n,t) cross section that is large and known
to 0.14% [39]. Note that we use the evaluated nuclear data
files (ENDF/B-VI) combined-analysis uncertainty from the
R-matrix evaluation and not the expanded uncertainty. The
energy dependence of the 6Li cross section is well known for
cold and thermal neutrons and corresponds very closely to a
strict 1/v dependence. The deviation from pure 1/v behavior
is less than 0.03% at thermal and subthermal energies [32].
Figure 5 shows a typical pulse-height spectrum from one of
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FIG. 5. Typical pulse-height spectrum from 6Li reaction products
incident on a silicon detector in the neutron monitor.

the silicon detectors. Both the triton and α particle peaks are
well resolved from the electronic noise.

1. Neutron counting efficiency

The neutron monitor is characterized by a parameter ε0 that
denotes the ratio of detected α’s/tritons to incident neutrons.
It is defined as

ε0 = 2NAσ0

4πA

∫∫
�(x, y)ρ(x, y, )φ(x, y)dxdy, (9)

where NA is the Avogadro constant, σ0 is the cross section
at thermal (v0 = 2200 m/s) velocity, A is the atomic weight
of 6Li, �(x, y) is the detector solid angle, ρ(x,y) is the
areal mass density distribution of the 6Li in the deposit, and
φ(x, y) is the areal distribution of the neutron intensity on the
target. Coordinates (x,y) are normal to the beam axis. The
6Li thermal cross section is (941.0 ± 1.3) b [39]. The neutron
detector solid angle has been measured in two independent
ways: mechanical contact metrology and calibration with a
239Pu α source of known absolute activity. The metrology was
performed using a coordinate measuring machine to measure
precisely the diameter of each aperture and the distance of
each aperture center to the center of the target. In the second
method, we placed an α source in the location of the deposit
and measured the α rate in the detectors. The ratio of the
measured α counts to the total α activity determines the
solid angle. The absolute source activity can be traced back
to an interlaboratory comparison of the absolute activity of
actinide targets by low solid-angle α particle counting [40].
The results of the two solid angle measurements, conducted
several years apart, agree to better than 0.1%. The value of
�/4π = 0.004196 ± 0.1%.

The 6LiF (and 10B) targets were fabricated at the In-
stitute for Reference Materials and Measurements (IRMM)
in Geel, Belgium, in two separate efforts. The manufacture
of deposits and characterization of the 6LiF areal density
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were exhaustively detailed in measurements performed over
several years [41–46]. Target materials were deposited by
evaporation in batches onto silicon wafers in mounts that
simultaneously revolved around the source to improve spatial
uniformity. The areal densities were determined by measuring
the thermal-neutron-induced charged-particle reaction rates in
a thermal-neutron beam at the BR1 reactor in Mol, Belgium.
The masses of six of the deposits were measured at IRMM by
isotope dilution mass spectrometry and correlated with their
reaction rates so that the masses, and hence the areal densities,
of the remaining deposits could be deduced. The result of
these measurements gives ρ = (39.30 ± 0.10) µg/cm2 for the
6Li content.

One should note that ρ is an average density of the deposit.
The density distribution of 6LiF is not a constant but is a
function of the radius. This is an inevitable consequence of
the fabrication process. Thus, for a given neutron density, the
absorption is not constant over the deposit. This necessitates
a small correction for the detector efficiency that involves
integrating the neutron beam profile φ(x, y) over the deposit
areal density distribution, as indicated by Eq. (9).

In addition, several other small corrections must be
considered for the detector efficiency, such as the neutron
absorption in lithium and the silicon substrate, and incoherent
neutron scattering in the silicon. These topics are addressed in
Sec. IV A.

E. Data acquisition system

The data acquisition system was managed by a personal
computer running National Instruments Lab-Windows/CVI
5.5 under Microsoft Windows.1 The computer-controlled
modules generated periodic pulses for the trap and acquisition
timing, accumulated time-to-digital converter (TDC) and
analog-to-digital converter (ADC) proton spectra, counted
single-channel analyzer (SCA) pulses from neutron capture,
and operated a local beam shutter. The computer also operated
the high-voltage supply for the proton detection electronics,
read a digital voltmeter to monitor the trap temperature via a
resistor, and read the current being drawn by one of the two
ion pumps. Analog signals were generated from the proton
detector, 16 SCA pulses from the neutron detector, and an
SCA signal from a fission-based neutron fluence monitor
positioned at C1. Finally, home-built transistor-transistor logic
(TTL)-based units converted the periodic timing pulses into
TTL levels that controlled the trap voltages and gated the data
acquisition.

Prior to the beginning of a run, the superconducting magnet
coils were energized to 110 A, producing a 4.6 T field along
the trap. The high-voltage detector potential was applied using
a separate program to slowly raise the voltage from zero.

1Certain trade names and company products are mentioned in the
text or identified in illustrations in order to adequately specify the
experimental procedure and equipment used. In no case does such
identification imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply that the
products are necessarily the best available for the purpose.

The high-voltage supply was attached to the proton detection
subsystem, which was in turn attached to ground via a 9 G�

resistor. Thus, 3.3 µA of current was drawn with dc voltage
of 30 kV. During the voltage ramp, this current was monitored
for signs of instability. An isolation transformer provided ac
power to the proton electronics which, like the proton detector,
were maintained at high voltage.

In a normal data sequence, a particular trap length was
configured manually and the following acquisition sequence
was executed: 30 min of acquisition with the local shutter
closed followed by either 4 or 8 h of acquisition with the local
shutter open. This cycle was repeated until the trap length
was changed. Typically one day (8 h) or one night (16 h) was
devoted to each trap length. For most of our precision runs, all
eight different trap lengths were sampled. The beam-off runs
were very important. The local LiF shutter stops cold neutrons
while allowing those fast neutrons and γ rays not attenuated
in the beam filters to pass through the apparatus. In most of the
beam-off data sets, the above background rate was essentially
zero. In a few sets, however, there was a measurable trap-
length-dependent rate that was subtracted from the beam-on
data set. This phenomenon is discussed in detail in Sec. III A.

1. Timing signals

Two crystal oscillators generated all the signals necessary
for controlling the trap voltages and gating the data acquisition.
One oscillator controlled the trap time while the other
generated signals necessary for managing trap voltages and
gate signals at the end of each trapping cycle. The precision
lifetime data were taken with trapping times of 5 and 10 ms.
For those times and a typical observed proton rate of 4 s−1,
the probability of observing one proton in a single trapping
cycle was 0.02 and 0.04, respectively. The analysis algorithm,
which corrects for the dead time of the TDC, takes into account
those instances when more than one proton arrives during
a single trapping cycle. Since the correction necessary for
multiple hits increases with rate, it was important to minimize
this correction by operating with short trapping times (see
Sec. III A).

The data were acquired in 1-min intervals. During this time,
neutrons were counted continuously and the proton trap was
cycled continuously. At the end of the interval, data acquisition
was disabled and the data were read out. The readout period
was brief, and a new interval began immediately following its
conclusion.

At the end of each trapping cycle, the following sequence
of events occurs:

t = 0 µs: The proton detector ADC is gated on, and a pulse
is sent to the start input of a single channel TDC.

t = 21 µs: A signal is sent to open (i.e., ground) the door
electrodes; simultaneously the ramp is turned on. The
ramp voltages, which range from approximately +20 V
downstream to 0 V upstream in the longest trap, force
protons to leave the trap very quickly. A delay of 21 µs
between detector-on and trap-open allows one to sample
the background proton rate. The sampling is done at the
end of this sequence.
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t = 97 µs: The ramp is maintained but the mirror electrodes
are grounded to flush out any electrons that may have
accumulated in the positive potential of mirror elec-
trodes. Between t = 21 µs and t = 97 µs, any proton
that may have been trapped will arrive at the detector.
Any pulse above threshold stops the TDC and causes an
ADC conversion in the proton signal channel.

t = 127 µs: The mirror and door electrodes are raised, and
the ramp is turned off.

t = 159 µs: The proton detection channel is gated off.
t = 999 µs: A second dc level-sensing ADC is requested to

read a voltage. Typically, this voltage is proportional to
the door voltage. It is done as a check on the stability of
the trap voltages.

2. Trap voltages

It is extremely important that the trap be operated with sta-
ble, reproducible voltages because the observed proton count
rate is a strong function of the applied voltages. Changing the
height of the door or mirror causes the end effects to change,
thereby changing the observed rate. We used a single, stable
dc power supply to generate the mirror and door voltages.
Two TTL-controlled, two-state switches fed this voltage onto
the trap electrodes at the appropriate times. This ensured that
the mirror and door voltages were identical. The switches
were fast (rise time ≈2 µs) and applied essentially all of the
input voltage to the electrodes. As these switches operated
by toggling their output between two user-supplied voltages,
a second dc supply was employed to precisely set the zero
level. we found that operating with a slightly negative voltage
(≈−1 V) rather than ground caused the trap to be more stable.

A home-built, TTL-controllable operational amplifier pro-
vided voltages to the central electrodes. Its two-state output
(40 V maximum, 0 V minimum) was stepped down using a
resistive divider before being supplied to each of the electrodes
in the central region of the trap. For example, in the case of
the 10-electrode-long trap, the ramp voltages were typically
20, 18, 16, 13, 11, 9, 7, 4, 2, and 0 V; while in the case of the
3-electrode-long trap, the ramp voltages were 4, 2, and 0 V.

Setting the trap length was the only manual step in the
acquisition process. It involved removing and reattaching
coaxial cables from the switches to the appropriate electrodes.
Electrodes outside of the door/central/mirror system [0 (7)
electrodes in the case of the 10 (3)-electrode-long trap] were
grounded.

3. Data inflow

This section briefly describes the different sources of data
that were recorded.

(a) Proton signal. As described in Sec. II C3, the proton
detector was a silicon semiconductor detector. Its output was
attached to an Amptek A250 preamplifier. Both the detector
and preamp were radiatively cooled by a graphite-coated
beryllia insulator thermally connected to the liquid nitrogen
reservoir of the cryostat. The typical operating temperature was
approximately 150 K, sufficient to minimize the detector leak-
age current and field effect transistor noise in the preamplifier.

The preamp signal was amplified and shaped with an Ortec
472A spectroscopy amplifier with a shaping time of 1 µs. The
resultant proton energy signal was transmitted to ordinary
ground by means of a LeCroy 5612 analog fiber optics
transmitter and LeCroy 5613 receiver/controller. The threshold
for acquiring an event was fixed in the discriminator level of a
LeCroy 3512 ADC. The busy-out of the ADC was directed to
the stop-input of a LeCroy 4204 TDC.

(b) Fission chamber. A fission chamber placed just up-
stream of the C1 collimator sampled a small fraction of the
entire neutron beam. Each output pulse was fed into an SCA
whose windows were carefully set to generate countable pulses
proportional to capture fluence. This signal, which was counted
in a scaler, was frequently useful as a diagnostic.

(c) Neutron monitor. The output of each of the four silicon
detectors from the neutron monitor was amplified, shaped,
and fed into two SCAs that provided rates for four regions on
the 6Li decay-product spectrum (see Fig. 5). Each region was
based on a threshold above which everything was counted,
producing a total of 16 channels that were input into scalers.
The neutron monitor is discussed in detail in Sec. II D.

(d) Pressure parameters. As discussed in Sec. II B, the
vacuum system consisted of three main sections: the proton
detector, the bore of the superconducting solenoid, and the
neutron detector. Ion pumps were employed on the proton
and neutron ends of the apparatus. All of the precision data
were acquired with the gate valve at the neutron (proton) end
ion pump closed (open). The current drawn by one of the
two ion pumps was logged by the computer and related to
the pressure in a straightforward manner. This quantity was
frequently used as a diagnostic, especially when the apparatus
was cooled down or warmed up.

(e) High voltage. An acceleration voltage was applied to
the high-voltage components of the apparatus by a Bertan
Associates Series 225 power supply. That section of the
apparatus was connected to ground through a 9 G� resistor.
With a voltage of 30 kV, one observed a constant current of
3.3 µA. At the end of each minute-long counting cycle, the
supply voltage, current, and operating status were read. The
voltage and current were included in the data stream, while
the status was monitored to check for an anomalous situation
requiring an emergency shutdown of the apparatus.

4. Data file contents

Data files were written to disk every minute to allow
analysis of trends that occur on a time scale that is short in
comparison to the overall run time. It was convenient to store
the information in three files.

The first file contains parameters relevant to the run. The
data input by the operator include the trap length, beam on/off
status, thickness of gold layer on the proton detector, accel-
eration potential, trapping time, beam collimation parameters,
door/ramp/mirror electrode voltages, and thickness of bismuth
in the filter cryostat.

The second file records scaler counts accumulated during
1-min intervals from the 16 SCA channels from the neutron
detector, one SCA channel from the fission chamber, two
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(two) windowed integrals from the TDC (ADC) histograms,
the number of TDC and ADC values written, the number of
trap openings, and the number of “bad” events. Bad events are
those where either three or more ADC events are registered in
a trap cycle or the ADC value is above a high threshold (both
are exceedingly unlikely events). The file also contains once
per minute acquisitions of the high voltage and current, clock
time, and the trap-closed voltage.

The third file contains a list of all ADC and TDC values
written in each 1-min interval. With these values for each
conversion, it is possible to generate different TDC/ADC cuts
to focus on specific regions of interest in the time-energy
domain. This is very useful in the beam-off runs where one
can extract an accurate estimate of the beam-off trapped rate
by placing precise cuts around the region where decay protons
arrive. For the lifetime data, no cuts are used because they
complicate the correction for dead-time losses.

During acquisition, the computer monitored the number of
TDC and ADC entries that accumulated every 50 ms. That
rate increased dramatically when there were problems in the
system. If the rate exceeded an operator-set limit, the computer
lowered the high voltage to zero and closed a beam shutter,
thereby putting the apparatus in a safe mode.

Prior to evaluating the neutron and proton rates, a determi-
nation is made of which minute intervals to use. This is done
by plotting all the running sums and looking for nonstatistical
anomalies. In most cases the entire file is usable. The most
common reasons for choosing to exclude parts of a file are
severe reactor power fluctuations or a loss of neutron flux due
to a loss of helium gas flow in the neutron flight path. Once a
range has been selected, mean α and proton rates are evaluated
as discussed below.

III. DATA REDUCTION

A. Method of analysis

Extracting the neutron lifetime requires the accurate deter-
mination of all the parameters from Eq. (6). In this section, we
address the method of determining Ṅα+t and Ṅp from the data
stream.

1. Determination of Ṅα+t

As mentioned, there are 16 counts associated with the neu-
tron monitor Nij , where i = (1, 2, 3, 4) denotes the physical
silicon detector (up, down, east, west relative to the beam
direction) and j = (a, b, c, d) denotes an SCA window of the
Li decay-product spectrum. For the purpose of determining the
lifetime, the two relevant regions are (a) α particles, tritons, and
high-energy events and (d) high-energy events. The other two
regions are used for systematic checks. Thus, the expression
for the total number of α plus triton particles is

Ntot =
4∑

i=1

(Nia − Nid ). (10)

The relative size of the background is typically less than 0.05%.
One obtains the α plus triton particle rate by dividing the total

number of particles by the live time

Ṅα+t = Ntot

ttrapNopen
, (11)

where the live time is determined by the product of the trap
time ttrap and the number of trap openings Nopen.

Average counting rates of α and triton particles in one of
the four detectors for all of the runs are given later in Table III.
The statistical uncertainty from neutron counting is much less
than from proton counting and amounts to 0.01%, or 0.1 s
on the measurement of the neutron lifetime. There is a small
but nonnegligible correction that must be applied for the dead
time of the neutron counting. Using the nonparalyzable model
of dead time and a value of 0.5 µs, the correction for the
counting rate is +0.01%, and we take the uncertainty to be
equal to that value.

2. Determination of Ṅp

For a particular run within a series, the trapped proton rate
is obtained by subtracting the beam-off proton rate for that trap
length from the beam-on proton rate. Series-averaged beam-off
rates are determined for each trap length for which there are
data. Where there are no data, the beam-off rate is set to zero.

(a) Beam-on rate. Although the proton rates in this
experiment are very low, it is essential that all trapped
protons be counted. The beam-on proton rate is determined
from the timing spectrum since the dead-time correction and
background subtraction, while containing important subtleties,
are much simpler than for the energy spectrum (compare
Figs. 6 and 18). Some protons will not appear in the timing
spectrum because of the intrinsic dead time of the TDC. This
dead time arises because the TDC cannot accept multiple stop
events. Thus, one must correct for instances where more than
one event could have stopped the TDC. This correction can be
done analytically.

The experimentally measured time spectrum N
exp
i is cor-

rected for the dead time of the TDC using the expression

Ni = N
exp
i

1 −
∑i−1

j=1 N
exp
j

Nopen

. (12)

In this equation, the indices i and j refer to timing channel
numbers. For purposes of analysis, the timing spectrum is
divided into three regions (Fig. 6); regions I and III correspond
to background while region II contains the proton peak.
Region I occurs before any trapped protons have reached the
detector, and region III occurs after the trapped protons have
all reached the detector but while the trap is still open.

The backgrounds in the two regions are not equal because a
small but nonnegligible number of neutrons decay in the trap
while the trap is open. We call this the in-flight contribution.
Protons seen from these decays cause the background in region
III to exceed that in region I by a small amount. A correction
is made for this in a two-step process. Initially, one assumes
that the backgrounds are equal on both sides and the mean
background per channel multiplied by the number of channels
in region II is subtracted from the sum over region II. The
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FIG. 6. Measured timing spectrum showing trap changes of state (arrows), and three regions of interest (dashed vertical lines) used to
extract proton and background rates. As a first step in the analysis, this spectrum must be corrected for intrinsic dead time of the TDC.

remaining sum in region II divided by the live time gives an
estimate of the trapped proton rate rone

p for the second step. The
number of decays in-flight per channel Ninflt coming from the
trapping region is given by rone

p Nopentpc where tpc is the time per
TDC channel (either 0.08 or 0.16 µs). Ninflt is subtracted from
each count in region III, and the mean background per channel
is again multiplied by the number of channels in region II and
subtracted from the sum over region II to yield a new estimate
r two
p . This value must be adjusted up to take into account the

fact that the trap is not trapping for approximately 100 µs out
of each cycle. The number of counts missed as a consequence
Nmissed is (t2 − t1)rone

p Nopen, where the trap door is opened
(closed) at time t1 (t2), less those that are already included
in the region II sum. Those already counted in region II are
NinfltC, where C is the number of channels in region II minus
10. The 10 left-most channels in region II occur before any
protons from the trap have reached the detector. Finally, the

trapped proton rate is given by

Ṅp = r two
p + Nmissed

ttrapNopen
. (13)

The uncertainty on this quantity is obtained by combining
the uncertainty on the number of counts in region II and the
uncertainty of the background subtraction in quadrature.

(b) Beam-off rate. From the beam-on data, it is possible to
determine tight timing and energy windows that can be used
to place cuts on beam-off data. This allows one to count the
number of protons that come during the beam-off time with a
very high signal-to-noise ratio. At the conclusion of a series
there are frequently several beam-off runs for each trap length.
The total number of protons divided by the total live time gives
an estimate of the beam-off rate. Table II summarizes all of
the observed beam-off rates.

TABLE II. Series-averaged beam-off rates (protons per second). The beam-on rate for a 3-electrode-long trap is given for comparison.

Series 3 (beam-on rate) Trap length (number of electrodes)

3 4 5 6 7 8 9 10

121 0.93 0.0000 0.0000 0.0001 0.0001 0.0001 0.0000 0.0001 0.0003
125 0.93 0.0000 0.0001
130 0.74 0.0000 0.0006
134 1.09 0.0006
140 1.09 0.0000 0.0000 0.0000 0.0000 0.0000 0.0006 0.0007
142 2.30 0.0000 0.0000 0.0000 0.0002 0.0003 0.0003 0.0006
143 1.97 0.0002 0.0003 0.0006 0.0003 0.0000 0.0006 0.0017 0.0004
149 1.84 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0003 0.0000
151 1.88 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000 0.0011
154 1.98 0.0069 0.0008 0.0017 0.0004 0.0011 0.0061 0.0109
155 2.01 0.0050 0.0006 0.0011 0.0011 0.0008 0.0015 0.0028 0.0296
166 1.92 0.0003 0.0003
170 1.86 0.0031 0.0033 0.0057 0.0071 0.0065 0.0049 0.0040 0.0051
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TABLE III. Some of the relevant run parameters for the series used in the determination of the neutron lifetime. A discussion of the
parameters is in the text.

Series Date Number of runs Number of Timing (ms) Bi thickness C1 diam. 〈Ṅα+t 〉 (/s) Vdetector (kV) Vdoor (V) Vramp (V)
trap lengths (cm) (cm)

121 06/27/00 38 8 10 25.4 3.17 156 27.5 825 45
125 08/25/00 7 2 10 25.4 3.17 153 27.5 950 45
130 09/09/00 7 2 10 20.3 3.17 123 30.0 850 45
134 09/15/00 3 2 10 20.3 3.17 179 30.0 950 20
140 09/28/00 15 8 10 20.3 3.17 181 32.5 850 20
142 10/04/00 18 8 10 20.3 5.08 383 32.5 800 20
143 10/10/00 18 8 5 20.3 4.45 323 32.5 800 20
149 10/26/00 17 8 10 20.3 4.45 317 27.5 800 20
151 11/01/00 11 7 10 20.3 4.45 318 32.5 800 20
154 11/13/00 21 8 10 20.3 4.45 326 30.0 800 20
155 11/19/00 29 8 10 20.3 4.45 329 32.5 800 20
166 12/14/00 13 3 10 20.3 4.45 322 27.5 800 20
170 02/22/01 21 8 10 20.3 4.45 314 27.5 800 20

The correction for the beam-off background is small but
not negligible. If the measured beam-off rates are simply set to
zero, the final neutron lifetime changes by −0.72 s, or roughly
half of the statistical uncertainty of our result.

3. Experimental validation of proton counting

Given the complexity of the analysis procedure and the
necessity of counting all the protons at the 0.1% level, we
devised an experimental test of the proton counting electronics.
We generated random events electronically to verify that the
number of events determined through the analysis agreed with
a straightforward tally of the events in a scaler. The DAQ
was modified to simulate a Poisson distribution of pulses by
triggering on “random” noise from two amplifiers in series.
The door triggered a delayed gate of about 30 µs in width.
A logical AND was made using the random pulses and gate.
That output was counted in a scaler channel in the DAQ and
combined with the usual background noise from the surface
barrier detector using a logical OR. The OR output was sent
to the TDC stop. The data were analyzed using the standard
procedure with two minor exceptions: the in-flight correction
(Sec. III A) was removed and the event window was increased
to accommodate the gate. The agreement between the total
scaler counts and number of events produced by the analysis
was better than 0.1%, indicating the reliability of the proton
counting electronics and analysis method at the desired level
of precision.

B. Data summary

The data files were written in groups labeled by a series
and run number. A series number was incremented when
the experimental conditions changed significantly. Within a
series, a run number changed when either the trap length was
changed or the beam was turned off or on. The number of
runs varied among series. Many series were devoted to the
study of systematic effects. Some of these included raster
scans of the detector using protons (for alignment), tests of the

trapping efficiency as a function of the door/mirror voltage, and
validation of the Monte Carlo results. In addition, some series
were used for calibrations, cool-down periods, detector testing,
and other routine measurements. In the 8-month period from
June 2000 through February 2001, we acquired the data used
in determining the value of the neutron lifetime reported here.

1. Experimental parameters

Table III gives a listing of the 13 series used in lifetime
analysis and some of the relevant experimental parameters.
Although the trap is comprised of 16 separate electrodes, only
8 different lengths were used. The door and mirror electrodes
were consistently fixed at a length of 3 electrodes, and a
3-electrode trap was the shortest used. That leaves 8 possible
trapping schemes of lengths of 3 to 10 electrodes. A typical run
consisted of 7 or 8 lengths, but we were able to obtain some
measures of the lifetime from runs whose purpose was for
systematic measurements; these runs may have only needed 2
or 3 lengths. The trap timing was typically operated at 10 ms,
although it was changed on occasion to search for systematic
differences.

During all of the runs, the cold neutron beam had either
25.4 or 20.3 cm of single-crystal bismuth in the beam path.
C1 gives the diameter of the first collimator in the beam; it
was varied to study possible proton losses due to beam halo.
The apertures were made out of either 6Li-loaded glass or
plastic. The counting rate of the α particles and tritons, which
is directly proportional to the neutron fluence rate, is given by
〈Ṅα+t 〉. The value indicates the rate in one of the four detectors
averaged over all the detectors and the entire series. The final
three columns of the table give the voltage on the detector, the
door/mirror combination, and the maximum voltage on the
ramp of the central electrodes.

2. Lifetime fit results

To obtain the neutron lifetime from Eq. (8), one performs a
least-squares linear fit of Ṅp/Ṅα+t versus trap length L for the
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FIG. 7. (Color online) Linear fit of typical raw proton count rate
Ṅp versus trap length data. These data have not yet been corrected
for nonlinearities discussed in Sec. IV C.

beam-on runs within a given series. The trap length is taken
to be 21.6 × n mm where n is the number of electrodes and
21.6 mm is the average length of an electrode/spacer combi-
nation. However, subtle corrections to the trapping efficiency
affect the value of the fit. Section IV C discusses corrections
that arise from the dimensions of each the electrode/spacer
combinations differing slightly from the average value, as well
as effects from nonuniformity of the magnetic field and beam
divergence. Figure 7 shows an example of a typical fit before
the corrections are applied.

Table IV gives a summary of the fit parameters for each
series used in determining the neutron lifetime. The value in
the second column is the slope of the linear fit to the proton-
to-neutron ratio for each trap length. τLost is the value of the
lifetime after the correction for lost protons, which is discussed
in Sec. IV D. στ is the statistical uncertainty on the slope. The

y intercept of the fit and its uncertainty are given. Note that
the intercepts are not zero, as one might expect, because of
the end effects of the trap. The intercepts, however, should be
constant irrespective of the series, but they differ by as much as
13%. This is attributed to rates of background events that are
constant throughout a series but may differ among the series.
The final two columns are the χ2 per degree-of-freedom, (dof)
of the linear fit and the statistical probability for obtaining a
worse fit.

IV. SYSTEMATIC CORRECTIONS AND UNCERTAINTIES

This section describes the systematic corrections that
modify the measured neutron lifetime. The corrections are
organized into four subsections that discuss the systematics
related to neutron counting, the beam halo, the proton trap, and
proton counting. Table V summarizes all the systematic cor-
rections and their associated uncertainty and directs the reader
to the specific section where the correction is determined.

A. Determination of neutron detector losses

To first order the observed α and triton particle rate Ṅα+t is
given by

Ṅα+t = 2
�(0, 0)

4π

NAρ̄σ0

A
Ṅn, (14)

where Ṅn = ∫
A

da
∫
v
dv vo

v
I (v)φ(x, y) is the 2200 m/s equiv-

alent neutron rate, I (v) is the fluence rate per unit velocity,
φ(x, y) is the areal distribution of the neutron intensity on
the target, A = 6.01512 g/mol is the atomic weight of 6Li,
ρ̄ = (39.30 ± 0.10) µg/cm2 is the average areal density of 6Li
in the deposit, σ0 = (941.0 ± 1.3) b is the 6Li absorption cross
section at 2200 m/s, and �(0, 0)/4π = 0.004196 ± 0.1% is
the fractional solid angle subtended at the center of the deposit
by the detector. The factor of 2 is required because both α‘s
and tritons are detected.

TABLE IV. Results from the fit of proton-to-neutron counts versus trap length for the series used in the determination of the neutron
lifetime. Column 2 contains the measured lifetime; in column 3 a small correction has been made for lost protons (see Sec. IV D); column 4
contains the 1-σ statistical uncertainty; column 5 contains the proton-neutron ratio at zero trap length (the intercept); column 6 contains its
uncertainty; column 7 gives the reduced χ 2 for the fit; and column 8 gives the probability of getting a larger reduced χ2.

Series τ (s) τLost (s) στ (s) y intercept ×108 σy-intercept ×108 χ 2/dof Probability

121, 122, 124 892.4 892.3 3.1 1.348 0.027 1.061 0.370
125 884.1 884.1 4.0 1.397 0.031 0.425 0.832
130 885.9 885.8 4.8 1.362 0.034 2.235 0.048
134 889.1 889.0 5.0 1.464 0.043 0.269 0.604
140 889.3 889.3 3.0 1.387 0.025 0.651 0.812
142 891.8 891.8 2.4 1.375 0.022 0.928 0.536
143 892.3 892.2 2.3 1.375 0.018 1.604 0.059
149 909.9 902.7 2.6 1.285 0.020 1.155 0.300
150, 151 901.1 897.4 2.6 1.326 0.021 0.763 0.651
154 888.0 886.2 2.2 1.402 0.018 0.913 0.566
155 890.7 889.4 2.5 1.426 0.019 0.940 0.553
165, 166 899.0 897.7 4.4 1.376 0.024 1.375 0.177
170 888.5 886.2 3.5 1.267 0.030 1.304 0.168
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TABLE V. Summary of the systematic corrections and uncertainties for the measured
neutron lifetime. Several of these terms also appear in Table VII where it is seen that their
magnitude depends weakly on the running configuration. In those cases, the values given
in this table are the configuration average. The origin of each quantity is discussed in the
section noted in the table.

Source of correction Correction (s) Uncertainty (s) Section

6LiF deposit areal density 2.2 IV A
6Li cross section 1.2 II D
Neutron detector solid angle 1.0 II D 1
Absorption of neutrons by 6Li +5.2 0.8 IV A 2
Neutron beam profile and detector solid angle +1.3 0.1 IV A 2
Neutron beam profile and 6Li deposit shape −1.7 0.1 IV A 2
Neutron beam halo −1.0 1.0 IV B 2
Absorption of neutrons by Si substrate +1.2 0.1 IV A 2
Scattering of neutrons by Si substrate −0.2 0.5 IV A 3
Trap nonlinearity −5.3 0.8 IV C
Proton backscatter calculation 0.4 IV D 3
Neutron counting dead time +0.1 0.1 II D

Proton counting statistics 1.2 IV D 2
Neutron counting statistics 0.1 II D

Total −0.4 3.4

Building on Eqs. (5) and (9) and taking into account neutron
attenuation in the deposit, a more accurate expression for
Ṅα+t is

Ṅα+t =
∫

A

da

∫
v

dv
(
1 − e

−ρ(x,y)σ0
vo
v

NA
A

)
× I (v)φ(x, y)

�(x, y)

2π
, (15)

where �(x, y) is the detector solid angle and ρ(x, y) is the
areal density of the 6Li deposit. By design, �(x, y) is nearly
constant over the beam distribution and ρ(x, y) is both small
and nearly constant, making the ratio of Eqs. (15) and (14)
nearly 1. Nevertheless, the precise ratio is a correction that
must be included in each of our 13 series-based lifetime
values (Table IV). The solid angle �(x, y) is easily calculated
given the positions of the deposit and the apertures; ρ(x, y)
was measured during the manufacture of the deposits; and
φ(x, y) was measured using the dysprosium image method
(Sec. IV B1).

Rather than calculate the ratio of Eqs. (15) and (14)
directly, we decompose the calculation into three terms
with corresponding numerical corrections c1, c2, and c3 (see
Table VII), each of which leads to an additive correction
to the lifetime. The first takes into account the exponential
attenuation of neutrons in the 6Li deposit (c1). The second
accounts for the neutron beam profile and position-dependent
detector solid angle (c2), and finally, the third accounts for
the neutron beam profile and the position-dependent 6Li areal
density (c3). Because each of these effects is small, nothing of
consequence is lost by separately calculating them. In addition
to these effects, two additional neutron loss mechanisms are
included in this section (c4 and c5). Before the neutrons pass
through the 6Li deposit, they pass through two perfect crystal

Si wafers: one serves as the backing that holds the 6Li deposit
and the other is situated between the neutron detector and
the proton trap to prevent charged particles from streaming
into the trapping region. There will be neutron absorption (c4)
and scattering (c5) from these wafers. A final correction (c6)
accounting for a neutron beam halo is discussed in Sec. IV B.

Table VI lists the four configurations of beam collimation
and thickness of Bi filter material, and Table VII provides
values and uncertainties (in seconds) for the six corrections dis-
cussed in this section for each of these configurations. Multiple
configurations were employed to check for unknown system-
atic effects. At our level of accuracy, none were seen. The sum
of the configuration-appropriate column in Table VII has been
added to each of the 13 values of τn that appear in Table VII.
The uncertainties are provided in the last column of Table VII.
These uncertainties are added in quadrature to those associated
with other systematic effects in order to obtain a final sys-
tematic uncertainty. The remainder of this section discusses
corrections 1 through 5 and their uncertainties in detail.

1. A model of I(v)

Corrections c1 and c4 in Table VII depend on I (v)
which in turn depends upon the chosen running configuration
(Table VI). To address these corrections, a detailed model for
the detected neutron fluence was developed. Conceptually, the
model consists of three factors:

1. A function for the cold source brightness (neutrons per
second per square centimeter per steradian per angstrom).
This function was constructed by starting from an accurate
wavelength distribution measurement made at the end of
one of the cold-neutron guide tubes and dividing it by the
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TABLE VI. The 13 runs enumerated in Table IV were carried out under four different configurations of
beam collimation and thickness of Bi filter material. These configurations are enumerated here along with
the number of runs belonging to each, the average measured neutron equivalent rate, and the estimated mean
beam wavelength. The resulting differences in beam size and wavelength distribution lead to four different
sets of systematic adjustments for the 13 lifetimes.

Configuration Label Number of runs Measured neutron equivalent Estimated mean
rate (×107 s−1) wavelength (nm)

C1 (cm) Bi thickness (cm)

4.4 20.3 A 7 4.14 0.440
3.2 20.3 B 3 2.30 0.411
3.2 25.4 C 2 1.99 0.427
5.1 20.3 D 1 4.93 0.455

material and guide transmission functions. After making
minor adjustments to guide tube reflectivities, the final
function reproduces the total flux measured at the ends
of each guide quite well [47].

2. Transmission functions for each of the materials through
which the beam passes, including Al (1.1 cm), CO2

(68.9 cm), Mg (0.15 cm), He gas (127 cm), air (113 cm),
pyrolytic graphite (0.4 cm), and Bi at liquid nitrogen
temperature (20.3 or 25.4 cm as shown in Table VI).
Cross-section evaluations are included for each of these
materials. In the case of Bi and pyrolytic graphite, these
calculations are problematic because these are perfect or
nearly perfect crystals and the scattering through them will
be dependent upon their imperfectly known state.

3. A transmission function for the 58Ni-coated neutron guide
tubes and experimental collimation. A Monte Carlo pro-
gram using a simple elastic collision model was used for
this purpose. The reflectivity of the guide tubes is a critical
parameter in this calculation. In the course of matching the
cold source brightness to neutron fluence rates measured
at the end of each guide, a reflectivity for each guide was
obtained. The value for our guide is 0.963.

Terms 1 and 2 involve analytic functions, whereas the third
calculation results in transmission versus wavelength pairs at
a specified set of wavelengths. Fortunately, these points fit very
well to the equation

T (x) = a erf(bx + c) + d, (16)

where “erf” stands for the error function and a, b, c, and d are
fit parameters. I (v) is proportional to the product of the source
brightness function, the filter transmission function, and T (x).

The average neutron equivalent rate measured in each of
the four configurations is given in column 5 of Table VI. This
same quantity can be predicted by numerically integrating∫

v

dv
vo

v
I (v). (17)

When this is done, the observed neutron equivalent rate is
roughly 70% of the predicted value for all four configurations.
Another issue is the rate ratio of rows 2 and 3, which differ
from 1 by roughly twice as much as the predicted value and
where the only difference is the amount of Bi present. Chilled,
perfect crystal Bi was used to absorb unwanted photons
coming from the core because it weakly scatters those neutrons
whose wavelengths are between 0.2 and 0.7 nm, the Bragg
cutoff. This band encompasses the bulk of the neutrons. To
account for the ratio and absolute value discrepancies, we
include in our transmission function one additional term that
corresponds to additional neutron scattering between 0.2 and
0.7 nm. An essentially wavelength-independent transmission
factor is tuned so as to obtain the best possible agreement with
observed rates and the row 2 and 3 rate ratio. When this is
done, the all-around agreement is excellent. This additional
term changes the implied shape of the neutron wavelength
spectrum and, consequently, the correction factor c1.

2. Neutron absorption corrections

The relative correction accounting for absorption of neu-
trons by the Li deposit is given by

c1 = ρ̄σ0
NA

A
vo

∫
v
dv 1

v
I (v)∫

v
dv

(
1 − e

−ρ̄σ0
vo
v

NA
A

)
I (v)

, (18)

TABLE VII. Systematic effects and uncertainties associated with neutron counting.

Configuration Variable name Adjustment to lifetime (s) Uncertainty (s)

A B C D

Absorption of neutrons by 6Li c1 5.2 4.9 5.1 5.4 0.8
Neutron beam profile and detector solid angle c2 1.5 1.0 1.0 1.7 0.1
Neutron beam profile and 6Li deposit shape c3 −1.7 −1.9 −1.9 −1.6 0.1
Absorption of neutrons by Si substrates c4 1.3 1.2 1.2 1.3 0.1
Scattering of neutrons by Si substrates c5 −0.2 −0.2 −0.2 −0.2 0.5
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FIG. 8. Measured neutron beam intensity as a function of radius

on the deposit (dashed line) as well as data and fit for the Li deposit
areal density versus radius (solid circles and line).

where the integration over x and y cancels in this estimate.
This correction is sensitive to the wavelength distribution. The
uncertainty of this calculation is taken to be 100% of the
difference between the lifetime resulting from analysis that
includes the additional neutron scattering term in the filter
transmission function and the lifetime resulting from analysis
without it, or 0.8 s.

Corrections c2 and c3 in Table VII require knowledge of
the neutron beam profile at the Li deposit. This was measured
for configuration A using the dysprosium image method (see
Table VI). The radial distribution is shown as the dashed curve
in Fig. 8. The curve fits well to the function

φ(x, y) = φ(r) = a e
− rb

2c2 , (19)

where parameters a, b, and c are determined from the fit.
Typical values of b and c are 2.59 and 9.73 when radius r
is measured in millimeters. The dysprosium image provides
a picture of the neutron beam intensity distribution, but since
the neutron absorption probability in the deposit is neither
unity nor small, the neutron velocity weighting of the intensity
distribution necessarily lies between these two limits. Monte
Carlo calculations reveal that the difference is negligible for
the lifetime experiment. c2 and c3 will, of course, depend on the
values in column 1 of Table VI. To estimate the corrections for
configurations B, C, and D, Eq. (19) was used with the radius
multiplicatively scaled by the ratio of the predicted beam hard
radii at the deposit

φj (r) = φA

(
r
rA

rj

)
, (20)

where r is the calculated hard radii for configuration j ∈
{A,B,C,D}. The straightforward formula for the hard
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FIG. 9. Relative solid angle efficiency of the neutron detector as
a function of position on the Li deposit. The value is normalized to
unity at the center of the deposit. The deviation from circular contour
lines reflects the existence of the four symmetrically placed detectors.

radius is

r = rqtz + rc1 + rc2

z12
zdep-qtz, (21)

where rqtz = 3.7 mm is the radius of the quartz tube, zdep-qtz =
1447 mm is the distance from the end of the quartz tube to
the Li deposit, rc1 and rc2 = 4.2 mm are the radii of the two
defining beam apertures, and z12 = 4880 mm is the distance
between the two apertures. For the three values of rc1 appearing
in Table VI, the three hard radii at the Li deposit are 9.7 mm,
11.6 mm, and 12.5 mm giving scaling factors of 1.19, 1.00,
and 0.92, respectively. The uncertainties for c2 and c3 (0.1 s)
are taken to be 100% of the lifetime difference between scaling
and not scaling r.

The solid angle subtended by the four surface barrier
detectors as a function of position on the deposit �(x, y)
can be calculated from the known geometry. This function
is shown graphically in Fig. 9. The relative correction for the
position-dependent detector solid angle is given by

c2 = �(0, 0)
∫ 19
−19 dy

∫ √
192−y2

−
√

192−y2 dx φ
(√

x2 + y2
)

∫ 19
−19 dy

∫ √
192−y2

−
√

192−y2 dx �(x, y)φ
(√

x2 + y2
) , (22)

where φ(r) is given by Eq. (19) and 19 mm is the radius of
the deposit.

The radial thickness profile of the deposit was measured to
be

ρ(r) = ρ̄
1 − (1 − 0.995)

(
r

19

)2

1 − 0.005
2

, (23)
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where r is measured in millimeters. Measured relative thick-
nesses are shown in Fig. 8. The thickness falls off by 0.5%
at the edge of the deposit (r = 19 mm). The denominator
ensures that the average areal density is ρ̄.

The relative correction for the position-dependent 6Li areal
density is given by

c3 = ρ̄
∫ 19

0 φ(r) dr∫ 19
0 ρ(r)φ(r) dr

, (24)

where φ(r) is given by Eq. (19) and 19 mm is the radius of
the deposit.

To an excellent approximation, the relative correction for
neutron absorption in Si is given by

c4 = 2σSi
λ̄

λ0
ρSitSi, (25)

where the factor of 2 is included because the beam passes
through two wafers, σSi = 0.171 b is the Si absorption cross
section at 2200 m/s, λ̄ appears in column 6 of Table VI,
λ0 = 0.1798 nm is the neutron wavelength corresponding to
2200 m/s, ρSi = 4.996 × 1022/cm3 is the atom density of
Si, and tSi = 0.34 mm is the thickness of one wafer. The
uncertainty is taken to be the spread in the four values of
c4 given in Table VII.

3. Neutron scattering

To investigate the correction for neutron loss due to
scattering in the Si wafers, a separate experiment was carried
out wherein the neutron detector was placed in a thermal
neutron beam of average wavelength 0.17 nm and the output
rate was measured as identical Si wafers were stacked one after
another behind the neutron-absorbing deposit. The measured
count rate as a function of number of additional wafers can
be seen in Fig. 10. In the geometry that was used, the neutron
absorber faced the incoming neutron beam while the blank
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FIG. 10. (Color online) Measured count rate and scattering-
induced enhancement factor f versus the number of Si blanks placed
behind the detection deposit.

wafers were added downstream. When neutrons scatter in the
Si, some are returned back through the neutron absorber (10B
in this measurement) where they will again contribute to the
observed signal. If they come back at an angle relative to
their incoming directions, they can see a greater thickness of
absorber and thus contribute more to the signal. There are two
quantities of interest: the probability of scattering in a single
wafer εSi and the enhancement f (i) experienced as a result of
the neutrons passing through the absorber at varying angles.
The expression that gives the observed rate is

R(i) = a

(
1 + f (i)

2
i εSi

)
, (26)

where a is an overall constant and the index i is the number
of Si wafers behind the absorbing deposit starting with i = 1.
The factor of 2 appears because half of the neutrons scatter
into the forward direction thereby escaping detection.

The function f (i) was calculated in a simple Monte Carlo
program. It turns out that εSi is much larger than the incoherent
scattering cross-section prediction for perfect crystal Si wafers.
We conclude that this scattering above the perfect crystal
prediction is occurring at the damaged surfaces of the wafers.
In the Monte Carlo program, a 50% probability is given to the
neutron for scattering at either face. Using this model, values
of f (i) were tabulated and shown in Fig. 10. Finally, with
these values and the measured rates, a value of εSi = 0.00105
is obtained. This value agrees reasonably well with a previous
result obtained through a different procedure, suggesting that
our assumption of isotropic scattering is correct.

In the lifetime experiment, there are two Si wafers. The one
that holds the absorbing 6LiF deposit is oriented with the Si
facing upstream. A second wafer is located further upstream
to prevent charged particles from streaming between the two
regions. The expression that accounts for neutron scattering is

c5 = εSi

[(
1 − f

2

)
+

(
1 − �dep

4π

)]
, (27)

where �dep = 7.85 × 10−3 sr is the solid angle subtended by
the absorbing deposit at the location of the upstream Si wafer.
The second term in Eq. (27), accounts for the neutrons lost due
to scattering in the distant wafer, while the first term accounts
for scattering from the wafer holding the absorbing Li. The
occurrence of 1 − f

2 rather than f

2 , which appears in Eq. (26),
accounts for the opposite orientation of the absorbing deposit
relative to the neutron beam. Again, the Monte Carlo program
provides a value for the enhancement f = 4.46. Combined
with εSi from the independent experiment, Eq. (27) can be
evaluated. The two terms in Eq. (27) each contribute about 1
s to the lifetime, in the opposite sense. The uncertainty on this
quantity is taken as 0.5 s. This allows for the possibility that the
scattering occurs throughout the Si wafer or at either surface.

B. Neutron beam halo

The neutron beam was tightly collimated to ensure that less
than 0.1% of the neutrons would lie in the halo of the beam.
In other words, greater than 99.9% of the neutrons exiting
the final guide tube and passing through the proton trap are
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incident upon the 38 mm diameter LiF deposit. Similarly for
protons, the largest extent of the neutron beam in the trap must
be such that greater than 99.9% of the protons created in the
trap will follow magnetic field lines that terminate on the active
area of the silicon detector. One must include the cyclotron
motion of the protons as they travel toward the detector.

1. Dysprosium image method

A neutron imaging technique was employed to profile the
beam at three locations along the beamline. Neutrons are
incident on an absorbing foil with a high thermal neutron
absorption cross section, a decay branch into β particles,
and few competing decay modes. After irradiation, the decay
electrons from the foil expose a film that can be read out
by an image reader. The intrinsic pixel resolution of the
image is 100 µm, but the actual resolution is worse because
of the electron range and other systematic effects related
to obtaining the image and performing the irradiation. The
estimated resolution is less than 0.5 mm. Although there is a
number of suitable metals for use as the transfer foil, we used
natural dysprosium, the relevant isotope being 164Dy with its
large neutron absorption cross section, convenient half-life,
and lack of competing decays. Other applications of Dy foil
activation for neutron imaging are found in Refs. [37,48,49].

The film is read out as a logarithmic scale and covers almost
five decades of dynamic range, making it ideal for sensitive
neutron intensity profile measurements. The logarithmic scale
can be converted to a linear scale through a function supplied
by the manufacturer of the film reader. The linear scale is
referred to as a photostimulable luminescence. Although the
capture of neutrons is not strictly proportional to 1/v because
of the nonnegligible thickness of the dysprosium foil, the linear
scale is a good indicator of the beam intensity.

Beam images were obtained at three positions along the
neutron beamline: just upstream of the trap, just downstream
of the trap, and at the position of the neutron detector. The
images at the trap determine the envelope of protons that will
be incident on the active area of the silicon detector; the image
at the neutron detector gives the fraction of the neutron beam
covered by the detector deposit.

To obtain the fraction of the beam inside a given beam
radius, one must first subtract the background from the film
that is unrelated to the beam image. The outline of the Dy foil
on the film is clear and has a known area, so the background
value is obtained by averaging a large number of pixel values
outside that area of the foil. This value, which was typically
three orders of magnitude smaller than the maximum intensity
in the peak, is subtracted from the area of the Dy foil. One
obtains the fraction at a given radius by taking the ratio of the
sum of all pixels outside a radius to the total sum of all the
pixels over the area of the Dy foil. Figure 11 gives an example
of a beam fraction displayed as a function of radius.

2. Uncertainty in the neutron beam halo

Several systematic effects can affect the value of the beam
halo fraction: background subtraction, alignment of the image
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FIG. 11. Measured fraction of neutrons outside a given radius
from the centroid of the beam. The image was taken at the downstream
end of the trap.

with the beam axis, technique of exposing the film, and
blooming of the image. We determined the magnitude of
these effects to be small at the 0.1% level with the exception
of image blooming. We found that high values of the beam
halo fraction are correlated with high values of the maximum
intensity in the image. This was shown by comparing the
fraction for an exposure with a large maximum intensity value
and subsequently remeasuring in two distinct circumstances:
letting the activity of the foil decay away and reducing the film
exposure time. Both cases have the same effect of lowering
the fraction even though nothing has changed from the initial
beam irradiation.

To measure the beam halo fraction in the presence of
intensity-dependent image blooming, we varied the intensity
and performed an extrapolation. We made two intensity
measurements at the same position and exposed them for 6,
180, and 600 s, thus varying the maximum intensity. The six
fractions at the effective detector radius were plotted versus the
maximum intensity value and a linear extrapolation performed
to obtain the fraction at zero intensity. The intercept value is
1.1 × 10−3. We take it to be the correction for lost protons
and use the value itself as the uncertainty in the correction.
We consider it to be a conservative estimate since most of
the systematics cause the fraction to increase. In addition, the
trap images could not be taken at the true position of the trap
electrodes because of practical considerations. Instead, they
were done approximately 10 cm beyond the ends of the
trap, which means that the beam expanded significantly from
the trap volume where the lifetime was measured. Trying to
interpolate a beam shape between two images taken at the
trap ends and then correcting each trap length used in the
experiment is feasible, but the small size of the effect does not
justify the effort. Instead, we assigned a larger uncertainty.

To measure the extent of the neutron beam at the position of
the neutron detector, we put a Dy foil in the same mount that
holds the LiF deposit. The fraction at 19 mm was consistently
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FIG. 12. Calculated electrostatic potential of the trap corresponding to 10 grounded electrodes in the center region in (a) and (b), and 3
grounded electrodes in the center region in (c) and (d).

around 0.03%, which is a small enough value that we did not
perform a similar series of measurements to improve on the
accuracy of that number.

C. Trap corrections

If the proton trap and magnetic field are perfectly uniform,
the effective length of the end region Lend will be the same for
all trap lengths, and Eq. (8) will yield a straight line. In reality,
there are some effects that introduce nonlinearities that must
be corrected for. These corrections are discussed in detail in
this section.

1. Determination of trap corrections

The electrostatic potential produced by the trap electrodes
can be described to an accuracy of better than 0.02% by
an approximate solution to the Laplace equation for a set
of axially symmetric lenses, as discussed in Ref. [50]. This
calculated potential is shown in Fig. 12 as a function of the

axial trap coordinate z for the 10- and 3-electrode traps, i.e., the
configuration with a 3-electrode mirror and 3-electrode door,
each at a potential of +800 V, and 10 or 3 grounded electrodes
in the central trapping region. The radial dependence of the
potential is evident in Figs. 12(b) and 12(d). Near the trap
axis, the maximum end potential is slightly lower than the
mirror/door electrode potential of +800 V.

In the regions near the door and mirror (the “end regions”),
a neutron decay proton can be created at an elevated potential
and still be trapped. In this case, a proton is trapped if its
initial (at birth) sum of electrostatic potential energy and axial
kinetic energy is less than the maximum end potential. Some
protons created in the end regions are trapped and some are
not. This complication makes the effective length L of the trap
difficult to determine precisely. Because of the symmetry in the
trap’s design, Lend is approximately equal for all trap lengths
that were used. There are three small but important effects,
however, that spoil this equality.

(a) Nonuniformity of the magnetic field. The motion of
a charged particle in a Penning trap has been discussed
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elsewhere [51–53]. The trap in this experiment is not a true
Penning trap in that it lacks an axial quadrupole electrostatic
field. However, the basic ideas of charged-particle motion are
the same. There are three motional modes:

1. An axial “bounce” or back-and-forth motion with period
Tz.

2. A cyclotron (circular) motion about the magnetic field
lines with period Tc = 2πmp/eB, where mp and e are the
proton’s mass and charge.

3. A magnetron drift motion perpendicular to the magnetic
field lines with period Tm. The magnetic and electric fields
inside the trap are primarily axial. They have small radial
components and their azimuthal components are negligible,
so the �E × �B force is purely azimuthal and causes a slow
azimuthal (magnetron) drift of the trapped particle’s helical
path in a circle about the trap’s axis. The fraction of
the particle’s transverse energy in the magnetron mode
is negligibly small, and the trap has excellent azimuthal
symmetry, so the magnetron motion is of no consequence
to us and will henceforth be ignored.

It can be shown that for a charged particle moving in a
magnetic field, the quantity p2

⊥/ �B · �l is an adiabatic invariant
(for example, see Ref. [54]). Here �l is a unit vector along the
guiding center path, i.e., the path of the center of cyclotron
motion, and p⊥ is the particle momentum perpendicular to �l.
The adiabatic condition requires that the magnetic field vary
slowly over one cycle of the particle’s motion, or

d( �B · �l)
dl

(
lcyc

�B · �l

)
� 1, (28)

where lcyc = 2πvz/ωcyc is the pitch of cyclotron motion (the
length along �l of one cycle). In our proton trap, the quantity
in Eq. (28) is everywhere less than 10−3, so the adiabatic
condition is satisfied. If one defines the longitudinal kinetic
energy (kinetic energy along the guiding center path) to be

Kl = ( �p · �l)2

2mp

, (29)

the adiabatic invariant causes Kl to vary as

dKl = −
(

p2
⊥

�B · �l

)
d( �B · �l)

2mp

. (30)

A variation in the magnetic field along �l will cause a
corresponding change in Kl . The dot product �B · �l acts, in
effect, as a one-dimensional scalar potential that is proportional
to the transverse energy of the proton. This quantity is treated
as a magnetic pseudopotential. By dividing by the proton
charge, we can express the magnetic pseudopotential for a
particular proton trajectory as a voltage that is a function of
position along the guiding center path, with zero defined to
be the initial position at birth. It is added to the electrostatic
potential, also a function of position, to get the total potential
associated with every point along the path. In this picture,
a proton will be trapped if its initial sum of longitudinal
kinetic energy plus electrostatic potential energy is less than
the maximum total potential energy (electrostatic plus the

magnetic pseudopotential) along its trajectory. The maximum
end potential is large enough (about 800 V) and the magnitude
of the magnetic pseudopotential is small enough (less than
30 V for all proton trajectories in our trap) that all protons
created at ground potential in the central region will be trapped.

For protons created in the end region, at an elevated
potential, the trapping probability will depend on the magnetic
pseudopotential along its trajectory. As we vary the trap length,
the door electrodes remain fixed, but the position of the mirror
is moved with respect to the magnet; therefore, the shape of the
magnetic field and hence the size and shape of the magnetic
pseudopotential in the mirror region are slightly different for
different trap lengths. So while nl remains proportional to the
number of trap electrodes, Lend varies with trap length.

(b) Divergence of the neutron beam passing through the
trap. The neutron beam diverges slightly as it passes through
the trap. Because the mirror is moved as we change trap
length, the radial distribution of proton birth locations will
vary with trap length. The electrostatic potential has a slight
radial dependence as seen in Figs. 12(b) and 12(d). This causes
the trapping probability for protons created near the ends to
change slightly with trap length, which causes Lend to vary
slightly with trap length.

(c) Variation in trap electrode and spacer lengths. Each of
the electrodes is nominally identical with a length of 18.6 mm
and an inner radius of 13.0 mm. The electrodes in the trap
are separated by spacers of nominal length 3.0 mm. Slight
variations in these lengths (see Table I) will cause the total
trap length to deviate from strict proportionality to the number
of electrodes, and also cause Lend to vary slightly with trap
length.

The variation of Lend with trap length as described above
will cause the data points of Ṅp/Ṅα+t versus n to deviate from
a straight line. A Monte Carlo simulation of the experiment
was developed in order to correct for these effects.

For the simulation we calculated the electrostatic potential
for the electrode geometry of our trap (see Fig. 12) by the
method in Ref. [50]. The measured lengths of the electrodes
and spacers are as given in Table I. To calculate �B(r, z), we
first measured Bz along the axis of the trap (r = 0) using an
axial Hall probe. The measured points of Bz versus z are shown
in Fig. 13. Noting that ∇ · �B = 0 and ∇ × �B = 0, we expand
�B(r, z) about Bz(r = 0, z):

Br (r, z) ≈ −1

2
r
∂Bz(r = 0, z)

∂z
, (31)

Bz(r, z) ≈ Bz(r = 0, z) − 1

4
r2 ∂2Bz(r = 0, z)

∂z2
. (32)

Derivatives of Bz higher than the second derivative can be
neglected.

In the Monte Carlo simulation, neutron decay recoil
protons were generated according to the energy distribution of
Nachtmann [55] with the Fermi function F (Z,E) evaluated
using the expansion of Wilkinson [56]. For each proton, a
neutron decay vertex was chosen at random according to the
measured radial neutron intensity distribution. Each proton
was given a random direction, and the trajectory of its guiding
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FIG. 13. Axial magnetic field inside the trap, measured along the
axis using an axial Hall probe. Also shown are the positions of the 16
trap electrodes.

center path was calculated using the calculated �B(r, z). The
electrostatic potential and magnetic pseudopotential at each
point along the path determined whether the proton was
trapped. A proton whose trajectory was reversed by both the
door and mirror was considered trapped.

Five different cases of varying complexity were simulated
by the Monte Carlo in order to develop an understanding of the
different contributions to the trap nonlinearities. For each case,
eight different trap lengths, from 3 to 10 grounded electrodes
in the central region (in correspondence to the experimental
trap lengths), were calculated.

Case A: The most realistic case. The magnetic field inside
the trap was calculated from the measured axial magnetic
field as described above. The measured values of the trap
electrode and spacer lengths from Table I were used. We
used the neutron beam radial intensity distribution that
was measured at the end of the trap (see Sec. IV B). The
radius of this distribution was scaled by trap position z to
form a cone with half-angle 4.15 mrad, determined by the
geometry of the beam collimators, so that the neutron beam
distribution and divergence were both accurately modeled
in the simulation.

Case B: The same as case A, except a uniform 4.5 T axial
magnetic field was used instead of the calculated field.

Case C: The same as case B, except the neutron beam was
nondivergent. The radial intensity distribution measured at
the end of the trap was used throughout the trap.

Case D: The same as case B, except the neutron beam had
zero radius (line source).

Case E: The same as case D, except we used electrodes of
uniform length 18.6 mm and spacers of uniform length
3.0 mm.

A total of 4 × 107 protons were generated for each trap
length, except for case E, which had 2.1 × 108 decays per trap
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FIG. 14. Data from Monte Carlo case E. (a) Proton/neutron ratio
Ṅp/Ṅ0 versus trap length; (b) data/fit residuals.

length. A nominal neutron lifetime of τn = 885 s was used
in all runs to establish the neutron lifetime. For each Monte
Carlo case we determined the ratio of proton trapping rate
to thermal-neutron fluence rate Ṅp/Ṅ0. The thermal-neutron
fluence rate Ṅ0 is related to the α counting rate Ṅα+t in the
experiment by the factor ε0, the overall efficiency of counting
the reaction products for a thermal neutron that passes through
the trap. Also implicit here is an assumption that the proton
counting efficiency εp equals unity in the Monte Carlo.

In case E, all of the effects described earlier that cause
Lend to vary with trap length are avoided, so Ṅp/Ṅ0 versus n
should yield a perfectly straight line. The Monte Carlo data
for case E are shown in Fig. 14. A linear fit to the trapped
proton/neutron ratio Ṅp/Ṅ0 gives a slope that corresponds to
τn = (885.042 ± 0.058) s, with a χ2 of 9.3 for 6 dof. The input
neutron lifetime of 885 s was precisely recovered in this case.

Figure 15 shows the differences in Ṅp/Ṅ0 between cases
A, B, C, D and case E; e.g., the open circle points are Ṅp/Ṅ0

(case D) minus Ṅp/Ṅ0 (case E). The effects on the slope
of Ṅp/Ṅ0 due to differences in the electrode and spacer
lengths and beam divergence are seen to be very small. The
main differences in Ṅp/Ṅ0 between cases B, C, and E are
in the vertical offsets, caused by the different neutron radial
distributions between these cases. When a proton is created at
a large radius from the trap axis, the shape of the electrostatic
potential in the end region is more square (see Fig. 12), so
fewer protons created in the end region are trapped. As a result,
Lend decreases with increasing beam radius. The divergent
beam of case B has a slightly smaller average radius than the
nondivergent beam of case C, so its Ṅp/Ṅ0 data are slightly
higher.
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The largest effect on both the offset and the slope comes
from the actual magnetic field shape in the trap. Looking at
Fig. 13, one can see that the axial magnetic field is slightly
lower at the door electrodes (electrodes 1 through 3), so the
magnetic pseudopotential in the door is negative relative to
both the central region of the trap and the mirror for trap
lengths 3 through 8. For these trap lengths, some protons
created at an elevated potential in the mirror have enough
longitudinal kinetic energy to escape through the door, while
they would not have escaped with a perfectly uniform magnetic
field. Therefore Lend is reduced, and we see a negative vertical
offset of the solid circle points in Fig. 15. For trap length 9
the mirror is on electrodes 13 through 15, where the magnetic
field begins to drop off at the downstream end. The magnetic
pseudopotential is slightly negative at the mirror, about equal
to that in the door, so fewer protons created there can escape
through the door, causing a small increase in Lend. Finally,
for trap length 10, the mirror is on electrodes 14 through 16,
where the magnetic field is lower. In this case, the magnetic
pseudopotential has dropped well below that of the door, and
the effect is reversed. Some protons created near the door can
escape through the mirror, so Lend is significantly lower.

To correct the experimental data for these nonlinear effects,
we divide the Monte Carlo Ṅp/Ṅ0 data for case A by those
of case E. This yields a set of correction factors, listed in
Table VIII. The factor εp/ε0 cancels when the Monte Carlo
data are divided, as does the assumed neutron lifetime of
885 s, so the correction factors can be applied directly to the
experimental data. We multiply the experimental Ṅp/Ṅα+t

for each trap length by the corresponding correction factor
to restore the linearity of the experimental data points. This
results in a correction of −5.3 s to our neutron lifetime,
dominated by the magnetic field gradient at the end of the
trap in the 10-electrode configuration. For comparison, if we
exclude all 10-electrode data from our complete analysis,

TABLE VIII. Correction factors for the experimental data:
Ṅp/Ṅ0[case A] divided by Ṅp/Ṅ0[case E]. The statistical uncertainty
is ±0.0002 on each point.

Trap length Correction factor
(number of central electrodes)

3 1.0243
4 1.0205
5 1.0174
6 1.0146
7 1.0129
8 1.0113
9 1.0085

10 1.0153

the extrapolated neutron lifetime (equivalent to Fig. 20) is
(888.4 ± 1.5) s, a consistent result, and the correction becomes
only −1.0 s.

2. Determination of trap correction uncertainties

The uncertainty in the Monte Carlo correction factors is
dominated by the uncertainty in the magnetic field, which
derives from two primary sources: the uncertainty in the axial
magnetic field map and the uncertainty in the trap position in
the magnetic field coordinate system. These two independent
sources of uncertainty were estimated separately.

The magnetic field map was performed three times, each
with measurements at 1 cm intervals along the axis of the bore.
It is only the magnetic field gradient that affects the lifetime
determination, so the absolute calibration of the Hall probe is
unimportant. We need to know only the relative uncertainty due
to zero drifts and random fluctuations. We can use the variance
in the three measurements made at each point to estimate this
uncertainty. An improved estimate can be made by combining
the three fractional deviations in Bz with the three fractional
deviations from adjacent points, for a total of nine fractional
deviations from which the variance and standard deviation are
estimated. This procedure is valid because the true standard
deviation should depend only on B, which is quite close for
adjacent points in z. The effect smooths out the estimated
standard deviation function versus Bz, taking advantage of
the fact that only three measurements were taken at each z.
This was done at many different z; so in effect, we made a
lot of measurements at each value of B. Figure 16 shows the
estimated fractional standard deviation in Bz as a function of
axial position z.

Ten sets of dithered axial magnetic field data were generated
by randomly varying the average measured Bz by a Gaussian
distribution at each point z using the estimated σB/B shown
in Fig. 16 (solid line). For each magnetic field set, the full
Monte Carlo simulation was performed, which yielded 10 sets
of correction factors analogous to those in Table VIII. For
each set of correction factors, the complete data analysis was
performed to extract the neutron lifetime from our full data
set, producing 10 different values of the neutron lifetime. The
standard deviation of these lifetimes is σMC,1 = 0.35 s, which
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we take to be the 1 σ uncertainty in the lifetime due to the
axial magnetic field map.

The second important source of uncertainty is the axial
position of the trap in the magnet bore. The transverse and
angular alignments of the trap to the bore were done to
high precision using a theodolite, and those uncertainties are
negligible. The axial position was established to the nearest
0.8 mm (1/32 in.) using a scale. The uncertainty in the trap’s
axial position was conservatively estimated to be ±1 mm. To
estimate the resulting error in the lifetime, the trap position was
shifted by ±1 mm in the Monte Carlo simulation. This small
shift has a relatively large effect on Ṅp/Ṅ0 for the 10-electrode
trap, because the axial magnetic field is falling quite rapidly
there. When the corresponding Monte Carlo correction factors
were applied to the full data analysis, a shift in the lifetime of
±0.71 s was obtained, which we take to be the 1 σ uncertainty
σMC,2 in the lifetime due to the uncertainty in the trap position.

The net systematic uncertainty in the lifetime due to the
Monte Carlo correction is then the quadrature sum of σMC,1

and σMC,2, which is σMC = 0.79 s.

D. Determination of proton detector losses

The efficiency of proton detection is less than unity because
of several well-known effects. Some protons lose all of
their energy before traversing the dead layer of the detector
and never reach the active layer. One must also impose a
discriminator threshold on the proton pulse-height spectrum
because of the detector and preamplifier noise. This results in
the loss of protons that do not deposit their full energy into the
detector and fall below the discriminator threshold. In addition,
some fraction of protons will Rutherford backscatter from the
inactive layer of the detector and not be detected. There is
some probability, however, that those protons will be reflected
back to the detector and have another chance at being detected.

This quantity is difficult to calculate but can be determined by
measuring the lifetime at different calculated backscattering
fractions and then fitting for the slope and intercept. The
slope gives a measure of the effective backscattering fraction,
which will be reduced by those backscattered protons that are
returned to the detector, and the intercept gives the free neutron
lifetime.

An accurate determination of the proton detection efficiency
is one of the more time-consuming aspects of this work because
it requires an extrapolation to remove the dependency on
backscattering. Thus, one must measure the neutron lifetime
at many values of the calculated backscatter fraction. This
value is varied experimentally by acquiring data at several
acceleration voltages and by using detectors with different
dead layer thickness and composition. The calculated value for
the fractions was determined using two independent methods,
a Monte Carlo calculation using SRIM 2003 [57] and an
analytical calculation based on the Rutherford backscattering
formula. The SRIM calculations were used to obtain the fraction
since they consider energy loss mechanisms that are not
included in analytical calculations. The calculations, however,
provide considerable insight into the loss processes and are
presented for completeness.

The main source of energy loss for protons is Rutherford
scattering from the atomic nuclei. As the starting point, one
considers protons of kinetic energy E impinging on a material
of atomic number Z. The Rutherford backscattering cross
section is given by

σ = 2π

∫ π

π
2

(
mec

2

E

Zre

4 sin2 θ
2

)2

sin θ dθ

= π

4
Z2r2

e

(
mec

2

E

)2

, (33)

where θ , the proton scattering angle, is integrated over all
backward angles and re is the classical radius of the electron
(≈2.8 × 10−15 m). The use of a screened nucleus, necessary
to keep Eq. (33) finite when the integral includes θ = 0 rad,
makes a negligible difference over this angular range. It follows
that the backscattering probability p is given by

p = NA

A
σρ, (34)

where A is the atomic weight of the material and ρ is the
areal density of the material. This function is plotted in Fig. 17
as a function of ρ and E. Also shown in the same figure are
black circles indicating the configuration space sampled in
this work.

A second important effect is their energy loss as the
protons travel through the detector material. In our regime,
the approximate formula for energy loss is

dE

dρ
= −k

√
E, (35)

where E is the kinetic energy, ρ is the areal density, and k is
a constant of proportionality. For the two materials of interest
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FIG. 17. Backscattering probability versus dead layer thickness
and proton energy [Eq. (34)]. Each contour represents a line of con-
stant Rutherford backscattering probability. The contour labels give
the Rutherford backscattering probability for protons impinging on a
layer of gold. The black circles indicate where lifetime measurements
have been carried out. Those entries with zero thickness correspond
to the runs where so-called windowless detectors were employed. In
fact, these detectors have a nonnegligible dead layer consisting of
silicon and silicon dioxide.

in our detectors (Au and Si), we have

kAu = 11
√

keV
cm2

mg
,

(36)

kSi = 65
√

keV
cm2

mg
.

Note that k is proportional to 1/A in contrast to p which
is proportional to A. Thus, higher Z materials have greater
backscattering probability and less energy loss than do lower
Z materials.

Equations (34) and (35) can be used to construct an
analytic model of the proton loss process. The proton energy
as a function of distance into the detector is calculated by
integrating Eq. (35) over ρ (essentially distance). Then Eq. (34)
is used to tally those protons that backscatter as they travel
through the detector losing energy.

1. Backscattering calculation

Calculations using SRIM were used to determine the
backscattering fractions since they take into consideration
mechanisms (such as multiple scattering and energy loss
upon scattering) that the analytical model does not. First,
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FIG. 18. (Color online) A proton pulse-height spectrum for a
typical run. The acceleration energy of the protons was 32.5 keV,
and the detector was a surface barrier detector with 40 µg/cm2 of
gold. The energy loss Eloss is the difference between the acceleration
energy and the energy of the peak, or 1.64 keV.

one must determine the dead layer thickness of each detector.
We determined the dead layer thickness by measuring the
difference between the acceleration energy of the proton and
the deposited energy. Figure 18 shows a typical proton pulse-
height spectrum. Detectors were calibrated in situ using either
an 241Am or 109Cd source. The detector was mounted on the
end of the manipulator with 1 m of travel. It could be retracted
from its position for proton detection to a position where
one could mount a source outside the vacuum approximately
10 cm from the detector. The detector was still cold and under
vacuum, so possible systematic problems due to gain shifts
were minimized. The relevant γ lines are 59.5 and 88.0 keV
for the 241Am and 109Cd sources, respectively. The energy
resolution for a typical detector was 10% at the 59.5 keV line
of 241Am; the full width at half maximum is 6.0 keV.

After measuring the energy loss, one can input the ap-
propriate parameters in the SRIM code to determine the two
most relevant values: the fraction of protons that backscatter
(fBsc), and thus have additional chances for detection, and
the fraction of protons that cannot be detected (fLost) because
they either stopped in the dead layer or deposited an amount
of energy below the detection threshold. When running the
Monte Carlo, one tallies the classes of events that are the
predominant contributors to those fractions. These quantities
may be written simply as

fBsc = fRuth + fAT (37a)

fLost = fStp + fBT, (37b)

where fRuth is the fraction of protons that Rutherford backscat-
ter from the dead layer and exit the surface of the detector, fAT

is the fraction that backscatter and exit from the active layer
but does not deposit enough energy to be detected (i.e., their
energy is still above the threshold for detection), fStp is the
fraction that stops in the dead layer, and fBT is the fraction
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FIG. 19. (Color online) SRIM calculation of the energy spectrum
of protons with incident energy of 27.5 keV transmitted through
a 20 µg/cm2 gold dead layer. Of the initial 3 × 105 events for
this example, 298 019 were transmitted with an average energy of
26.0 keV, 1980 backscattered and exited the detector, 18 entered the
active silicon with an energy below the registration threshold, and 1
stopped in the dead layer.

that arrives in the active layer but with an energy below the
discriminator threshold.

To obtain the quantities in Eqs. (37a) and (37b), the SRIM

calculation was done in two steps. The first step inputs a proton
of the appropriate energy incident on a dead layer of silicon
dioxide and/or gold and an active silicon substrate, where the
overall thickness of both is determined by a combination of
the calibration and the manufacturer specification. The average
energy of the transmitted beam must be equal to the incident
energy minus the energy loss in the dead layer. The calculation
is done iteratively by changing the dead layer thickness until
those two quantities are equal. From this calculation, one tallies
fRuth, fBT, and fStp. Figure 19 is a plot of the energy spectrum
of transmitted protons from SRIM for 27.5 keV incident protons

on a surface barrier detector with a 20 µg/cm2 gold layer
and 5.0 nm of silicon. The second step inputs the transmitted
proton beam into active silicon, and one tallies the fraction of
events that are backscattered and leave the active layer with a
sufficient amount of energy that they could be detected it they
were to return to the detector (fAT).

For each series, 300 000 events are tallied in the Monte
Carlo. Table IX gives all the input parameters for determining
the proton detector backscattering fractions along with the
results from the SRIM calculations.

2. Extrapolation to zero backscattering fraction

With the values of fBsc and fLost, one can determine the
free neutron lifetime τn. Each measured lifetime τmeasured must
be reduced by the factor 1 + fLost since this fraction of decay
protons was missed. These corrected values of the measured
lifetime are plotted versus fBsc and are fit to the linear form

τmeasured,i

1 + fLost,i
= τn + XfBsc,i, (38)

as shown in Fig. 20, where the index i refers to a particular
series. The slope of line X may vary between 0 and 1. The
physical significance of X = 0 is that every backscattered
proton returned to the detector and was registered; the physical
significance of X = 1 is that no returning proton was registered
in the detector. Both of these extreme values are unlikely. The
electrostatic potentials are such that protons will be returned
to the detector face, but the spectrum of those backscattered
protons is lower and they encounter the same loss mechanisms
as the incident protons.

The fitted value of the slope gives the fraction of returned
protons that are detected. For the data in Fig. 20, the slope is
0.74 ± 0.13. The extrapolation to zero backscattering gives
the free neutron lifetime τn = (886.3 ± 1.2) s, where the
uncertainty is statistical. Note that the intercept of Eq. (38) is
insensitive to an overall multiplicative factor in the backscat-
tering values. Such a factor could change the slope, and thus
the interpretation of how many returned protons are detected,
but not the value of the neutron lifetime.

TABLE IX. Input parameters for determining the proton backscattering fraction and results from SRIM Monte Carlo calculations.

Series Au (µg/cm2) Eacc (keV) Eloss (keV) Ethr (keV) fRuth (%) fAT (%) fBT (%) fStp (%) fBsc (%) fLost (%)

121 20 27.5 1.47 8.43 0.0660 0.004 0.006 0.000 0.664 0.006
125 20 27.5 1.47 8.43 0.0660 0.004 0.006 0.000 0.664 0.006
130 20 30.0 1.30 9.91 0.0575 0.003 0.006 0.000 0.578 0.006
134 20 30.0 1.42 9.91 0.0575 0.003 0.006 0.000 0.578 0.006
140 20 32.5 1.64 10.31 0.0474 0.003 0.004 0.000 0.477 0.004
142 20 32.5 1.66 10.31 0.0474 0.003 0.004 0.000 0.477 0.004
143 20 32.5 1.69 10.31 0.0474 0.003 0.004 0.000 0.477 0.004
149 60 27.5 5.44 10.66 0.2354 0.020 0.656 0.143 2.374 0.799
151 60 32.5 5.87 10.66 0.1811 0.008 0.344 0.070 1.819 0.414
154 0 30.0 9.17 11.22 0.0158 0.036 0.117 0.084 0.194 0.201
155 0 32.5 9.70 11.93 0.0156 0.027 0.090 0.061 0.183 0.151
166 40 27.5 3.14 9.89 0.1479 0.011 0.129 0.009 1.490 0.138
170 0 27.5 8.60 10.40 0.0201 0.042 0.159 0.106 0.242 0.266
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FIG. 20. (Color online) A linear fit of the measured neutron
lifetime versus the detector backscattering fraction fBsc. The extrap-
olation to zero backscattering gives the free neutron lifetime. The
measured lifetime values plotted here have already been adjusted for
the known neutron and proton counting loss mechanisms.

3. Backscattering calculation uncertainties

We determined the fraction backscattered and the fraction
lost by two independent methods to serve as a check on the
values. We use the SRIM results as the more accurate values
because additional physics is included in the Monte Carlo
code that is difficult to implement in the analytical calculation.
The two predominant differences are the treatment of multiple
scattering and energy loss.

If one compares the results for the two methods, the fBsc

values are systematically lower for SRIM. The reason is that
SRIM allows protons that have been backscattered to scatter
again, and they may have sufficient energy to enter the active
layer. At first consideration, one might expect this fraction to
be a negligible correction since the initial fraction is already
a small number. When the effect of energy loss in included,
however, the backscattering probably increases significantly.
The energy spectrum of singly scattered protons is broadened
and shifted to lower energies, and hence, their probability
for subsequent scattering is increased. This effect produces
the slightly smaller values for fBsc from SRIM in comparison
with the analytical calculation. We checked this assertion
by comparing the number of backscattered events from the
analytical calculation with the comparable value from SRIM,
that is, the number of single-backscattered events.

The main contributions to the systematic uncertainty of the
backscattering values come from the Monte Carlo statistics and
the measurements of the dead layer thickness. The uncertainty
in the latter value is dominated by the calibration of the
detector. The method of performing the in situ calibrations
does not allow much time to collect data because one does not
want to produce gain shifts due to warming of the detector.
The uncertainty in the peak of the calibration is typically

±7%. We estimate the uncertainty on the gold thickness of
surface barrier detectors to be ±7% of the nominal value.
This is a conservative value based on past measurements
performed on similar detectors (from the same vendor) used
in a previous in-beam measurement of the neutron lifetime
[29]; the agreement with the nominal values was better than
±7%. We estimate the statistical uncertainty of each SRIM

calculation to be 5%. As a consequence of this, there is a
5% series-dependent uncertainty and a 7% detector-dependent
uncertainty in each fLost,i and fBsc,i and these will add in
quadrature. In a simple Monte Carlo, which was repeated
many times, each of the fractions was randomly varied by an
appropriate normally distributed amount after which τn was
determined via Eq. (38). The standard deviation of derived
τn’s was 0.4 s, making this our estimate for the uncertainty
due to proton scattering in the detector.

V. RESULTS

The result of the lifetime measurement is τn = (886.3 ±
1.2[stat] ± 3.2[sys]) s, which is the most precise measurement
of the lifetime using an in-beam method. This result is in good
agreement with the current world average [10]. The systematic
uncertainty is dominated by neutron counting, in particular the
areal density of the 6LiF deposit and the 6Li(n,t) cross section.
A summary of all corrections and uncertainties was given in
Table IV.

One notes that the lifetime produced by this measurement
technique is inversely proportional to the value of the 6Li cross
section, which is obtained from the current ENDF evaluation.
The value could be made independent of the cross section by
an absolute calibration of the neutron counter. Furthermore,
such a calibration would improve the uncertainty on the
lifetime significantly by eliminating the two largest systematic
uncertainties. A cryogenic neutron radiometer that promises to
be capable of such a calibration at the 0.1% level has recently
been demonstrated [35,58], and we are pursuing this method
further. We expect that this experiment will ultimately achieve
an uncertainty of approximately 2 s.
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