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The Virgo interferometer, aimed at detecting gravitational waves, is now in
a commissioning phase. Measurements of its optical properties are needed
for the understanding of the instrument. The techniques developed for the
measurement, of the optical parameters of Virgo are presented in this paper.
These parameters are compared to the Virgo specifications.
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1. Introduction

Virgo! 3 is a gravitational wave antenna aiming at detecting gravitational waves emitted by
several types of astrophysical sources. Several other detectors based on the same principle
are being operated or commissioned in the USA (LIGO?), in Germany (GEO®) and in Japan
(TAMA®). The Virgo detector has been built near Pisa in Italy. It is based on a Michelson
interferometer with 3-km long arms. The interferometric detection is based on the following
property: as a gravitational wave passes the optical length of one arm gets longer while the
other gets shorter. This induces a change in the interference pattern that is detected by
measuring the intensity of the light exiting the interferometer output port.”® In order to
improve the sensitivity with respect to a simple Michelson each arm of the interferometer
contains a Fabry-Perot cavity? and the power recycling technique?® is used with the addition
of a partially reflecting mirror at the entrance of the interferometer.

Virgo is in a commissioning phase since Fall 2003. Such a detector has to be kept on an
optimal working point by means of quite complex feedback controls and the optical properties
of the interferometer have to be well known in order to understand the error signals used
for these controls. The optical properties also define the coupling of some of the noises
to the gravitational wave signal. This article describes the techniques developed for the
measurements of the optical properties of the interferometer. These techniques are applied
to the Virgo data to extract its optical properties and compare them with the Virgo design.
A detailed simulation is used to interpret these results and to understand which components

have to be replaced to achieve the Virgo design sensitivity.

2. The optical design of Virgo

The Virgo detector is based on a Michelson interferometer with 3 km long arms. Figure 1
shows the optical scheme of Virgo. All the mirrors of the interferometer are suspended to a
chain of pendulums for seismic isolation. Above the pendulum resonant frequency the mirrors
can be considered as free falling masses in the horizontal direction. Each arm contains a
Fabry-Perot cavity whose role is to increase the optical path and therefore the phase shift
induced by a gravitational wave. To achieve maximal sensitivity the interferometer arm
length difference is set to obtain a destructive interference at the interferometer output port.
In this condition all the light is reflected toward the laser and it can be reinjected into the
interferometer using an additional mirror (the power recycling mirror). This power recycling
technique can increase the amount of light impinging on the Michelson beam splitter by
orders of magnitude, and as a consequence improves the interferometer sensitivity.

The error signals which are used to control the interferometer globally are based on the
Pound-Drever-Hall technique.!®!'! For this purpose the laser beam is phase modulated at a

high (several MHz) frequency f,,,q. This creates additional components to the laser beam



(the sidebands) whose frequency differs by n X f,,.4 (n is any integer) from the carrier one.
The beams exiting the interferometer are collected on InGaAs photodiodes whose signals are
also demodulated at one, two or three times the modulation frequency.

At high frequency the sensitivity of such an interferometer is given by the amplitude of the

signal equivalent to the shot noise:

h 7w AJJ3(m)G(1 = C) + 6T J3(m) N2
o) =53 spnver ()0

where A\ is the laser wavelength, P, the input power, F' the finesse of the Fabry-Perot cavi-

ties and fo = ¢/4F L their cut-off frequency, G the recycling gain of the laser carrier, T' the
product of the sidebands recycling gain by their transmission to the output port, 1 — C' the
contrast defect, m the modulation depth and .Jy(;) are Bessel functions. The factor 6 in front
of T J(m) takes into account the fact that the first-order sidebands are not stationary.'?
Figure 2 shows the shot noise limited sensitivity as a function of the modulation depth for
plausible values of the contrast defect and of the transmission of the sidebands. The shot
noise limit can be pushed down by optimizing the modulation index for a given contrast
defect: the worse the contrast the higher the modulation has to be. Since high modulation
depth is difficult to achieve the contrast defect has to be kept as small as possible. For this
purpose Virgo uses high quality mirrors'® and in addition an output mode cleaner'® is used
to filter high-order spatial modes that have built up in the interferometer.

The recycling gain is limited by the losses of the Fabry-Perot cavities: the best recycling gain
is obtained for a reflectivity of the recycling mirror equal to the reflectivity of the Fabry-Perot
cavities. Since the losses are not a priori precisely known, the recycling mirror reflectivity
is kept small enough with respect to the expected reflectivity of the long cavities in order
to avoid any longitudinal locking instabilities. The transmission factor of the sidebands is
also increased with the presence of a recycling cavity, therefore the modulation frequency is
chosen such that it resonates inside the recycling cavity.

A particularity of Virgo with respect to other similar interferometers is that the angular
alignment of the Fabry-Perot mirrors is based on the Anderson-Giordano technique,'¢ a
variant of the Anderson technique:'” the modulation frequency used for this purpose is cho-
sen such that when the carrier resonates with the TEM(, mode of the Fabry-Perot cavities
the upper sideband frequency coincides with the resonance of the TEMy; mode. It was shown
that, provided that the sideband components are resonant in the recycling cavity, a single
phase modulation can be used to extract both the longitudinal locking error signals and the
alignment error signals.? When the interferometer is on its working point the TEMg, of the
carrier resonates in the cavities; this implies that the modulation frequency corresponds to
the mode separation frequency of the cavities.

The mode separation frequency (see Section 7.B) is determined by the radius of curvature of
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the mirrors of the cavity and by its length. These quantities also define the size of the beam
which resonates in this cavity. The input beam parameters have therefore to be matched to
these properties.

The Virgo optical design characteristics are: F' = 50, G = 50, T' = 0.46, flat Fabry-Perot
input mirrors and curved end mirrors with a radius of curvature R,,;=3450 m, and the input
beam waist wy = 2 cm. All mirrors were required to have losses lower than 10 ppm.? The
modulation frequency was set at f,,,q = 6.26 MHz.

The mirror reflectivities have been defined by the gain of the cavities (F' and G). After the
coating, the reflectivity and the mirror surface profile have been measured before installation
on the Virgo site. These mirror maps are incorporated in an optical simulation, described
in Section 3, in order to obtain a realistic estimation of the Virgo optical parameters. These
parameters are also deduced from the interferometer signals. The measurements are reported
in the following sections and compared to simulation results when it is relevant. Concerning
the laser beam parameters, the measurement of the modulation index and the tuning of the
modulation frequency are described in Section 4. Section 5 describes the input mode cleaner
measurements while the matching of the input and output beams are discussed in Section 6.
The measurement of the characteristics of the Fabry-Perot and of the recycling cavities are
described in Sections 7 and 8 respectively. Finally the contrast defect is discussed in Sec-
tion 9.

The measurements reported in this paper have been performed with the 2005 optical con-
figuration which does not include the replacement of the power recycling mirror and the

modifications on the injection system introduced at the end of 2005.

3. Simulation of Virgo optical properties

The SIESTA?! simulation has been used to produce time domain signals which, once com-
pared to real data signals allow the extraction of some optical parameters, like the finesse of
the cavities.

In addition, we have developed two independent simulation codes that both aim at testing
the effects of interferometer defects on its overall sensitivity. Real interferometer character-
istics that can be studied are typically beam and mirrors misalignments, length mismatch,
mirror defects, thermal deformations and so on. The simulation results can be sensitive to
the way these characteristics are represented so that two independent codes proved to be
very useful. Both simulations are static, so only steady state fields are computed.

One code (DarkF) is based on the representation of the various fields in a plane wave basis
and on a fast Fourier transform algorithm for propagation, while in the second code (NV)
the fields are represented in an Hermite-Gauss functions basis. DarkF and NV don’t have ex-

actly the same properties. For the simulations with some centered defects at long correlation
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Fig. 1. Optical scheme of Virgo.

length (typically of the order of the centimeter), NV is well adapted. DarkF is also adapted

to the simulations with defects at short correlation length (but larger than the sampling
step).

3.A. The DarkF simulation

DarkF is an optical simulation code using a plane wave decomposition to propagate the
wavefronts. Beams and mirrors are sampled on a grid (x,y) and the DarkF resolution depends
on the grid size and on the number of points. Typically a size of 0.7m, i.e. larger than a mirror
and 128x128 points are used. This granularity is good enough since the results do not change
when the number of points is increased. With the Fourier transform method, the propagated
beam Es(x,y,z) is obtained from the initial beam E;(x,y,z9) and a propagator (P) in the

Fourier space (z is the propagation axis):'8!?

p24q?

Es(w,y,2) = FT_1<FT(E1(:c,y,zo))><e‘i o HO)

_ T (FT(E1 (2,9, 20)) X P) (2)

where F'T and FT ! are the Fourier and inverse Fourier transforms respectively and p and
q are the Fourier space coordinates. This code can be used to simulate a simple or a complex

system as a Fabry Perot cavity or Virgo. To obtain an intracavity beam (Ecav) composed
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by two mirrors M; and M, a convergence algorithm is used:
ECGUn+1 = tlEO - 7”1T2M1PLM2PLECCLUn (3)

where P, is the propagator on a length L, r; and 75 the reflection coefficient of M; and My,
t; the transmission coefficient of M;, and E; the incoming beam. The main drawback of
DarkF is its large computing time (typically of the order of one hour for the configurations

used here).

3.B. The NV simulation

In the Hermite-Gauss representation each interface, substrate, or free space is represented by
a complex operator, calculated in the Hermite-Gauss space, which acts on the field incident
upon it. Starting from real cartesian maps of the mirrors surface z(z,y) and reflectance
r (z,y) taken from metrology instruments, elementary reflexion operators r; j_, , are calcu-

lated using :

Tijomn = / gig (2, y) (2, y) exp (4inz (2,9)) Gy (2,9) d dy
.,y
where the ¢g’s are the Hermite-Gauss basis functions, and ¢g* denotes their complex conjugate.
Transmission operators are calculated in the same way. The elementary operators can then be
combined to create operators representing whole optical components, Fabry-Perot cavities,
and eventually the full interferometer. Those operators are applied on the field u represented

as a superposition of Hermite-Gauss modes:

u (xa y) - Z uijgi,j (xa y)
]
where the sum runs over all the basis functions. The field ' transformed after interaction
with an optical component is then simply calculated by applying the relevant operator on
the incident field like :

Upnn = D Tigjsmnllij
irj

Figure 3 shows the intensity reflexion operator of Virgo, calculated using maps for each
optical component. As can be seen on the figure, working with an Hermite-Gauss basis
gives immediately access to all the coupling factors between TEM;; modes inside Virgo and
their precise localization, and allows the immediate computation of the energy in each mode
everywhere in the interferometer and outside. The main limitation of this particular code is
the difficulty to represent accurately beams with shapes that strongly differ from that of a
TEMgy beam without using a prohibitive number of Hermite-Gauss functions. In order to

test these effects at least 153 basis functions are used.
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Fig. 3. Intensity reflection operator of the full interferometer with real maps.
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4. Modulation of the laser beam

The laser beam is phase modulated by mean of an electro-optic modulator (EOM) located
before the input mode cleaner. The value of the modulation depth is set by varying the
voltage applied on the modulator and its value is cross-checked with the interferometer
signals. The modulation frequency has to be carefully tuned so that it fulfills the required

resonance conditions inside the optical cavities of the interferometer.

4.A.  Modulation depth measurement

The modulation depth has first been set to a small value, around 10%, and will be increased
in the future if it is needed to improve the sensitivity. The value set at the level of the

modulator is cross-checked with the interferometer data in the following ways:

1- A calibration of the voltage applied on the EOM was performed for a high voltage
value (~ 5 Volts), using signals from a reference cavity located before the input mode
cleaner. It is based on the same principle as the third method described below. An

extrapolation of this calibration to the applied voltage gives m = 0.13 £ 0.03.

2- With the signals observed with the central part of the interferometer aligned and free
mirrors: the amplitude of the demodulated signal is proportional to Jy(m).J;(m) while
the amplitude of the DC signal is proportionnal to .Jy(m). The ratio of the amplitudes
of these signals gives therefore access to the value of m: m = 0.16 £ 0.01 where the

uncertainty comes from the knowledge on the calibration of the signals.

3- With a free Fabry-Perot cavity, using the measurement of the power stored inside
the cavity for the sidebands and the carrier. When the TEMy, mode of the carrier
resonates the power is proportional to JZ(m) while when the TEMg, mode of the
upper sideband resonates it is proportional to JZ(m). These resonances are shown in
Figure 10. In this case the ratio of these signals is free of any calibration errors since the
same photodiode channel is used and is just limited by the noise on the small sideband

signal. The measurement gives m = 0.165 £ 0.005.

Both methods based on the interferometer signal agree well and the value obtained is used

in the following.

4.B.  Modulation frequency

Since the beam is modulated before the input mode cleaner (IMC) the sidebands should
resonate in the IMC in order to be transmitted. As was pointed out in Section 2 they
should also resonate inside the recycling cavity and correspond to the Anderson frequency

(i.e. the frequency spacing between the resonance of TEMy; mode and the resonance of
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the TEMy, mode) of the Fabry-Perot cavities. The radius of curvature of the end mirror
defines the mode separation frequency of the cavity. This gives a set of possible values for
the modulation frequency. Given the foreseen range of values for the input mode cleaner
length and the recycling cavity length, the value of the modulation frequency has been set,
among the possible values which matched the resonance condition inside these cavities, to
6.26 MHz. The fine tuning is then done after the precise measurement of the mode cleaner
length. The modulation frequency has to be an exact multiple of the IMC’s free spectral

range:
c

, 4
2Lnc @)
with n=6. This condition has to be tuned very carefully since any mismatch couples the

fmod =n FSI%IMC =n

length noise of the IMC to the interferometer signals used for its longitudinal controls. After
the measurement of the IMC length (see Section 5) the modulation frequency has been
adjusted to fioq = 6.264180 MHz.

It has then been checked that it matched the recycling length and the mode separation

frequency:

e The condition of resonance inside the recycling cavity takes into account the phase
shift introduced by the Fabry-Perot cavities. An analytical calculation and simulations
with SIESTA?! and Finesse?? give the same optimal recycling length: /,,. = 12.073 m
for this modulation frequency. This condition should be fulfilled within about 1 ¢m in
order not to degrade the recycling factor. The length of the recycling cavity has been

measured (see Section 8.A.2) and agrees with this requirement within 1 cm.

e The Anderson technique, used for the angular alignment of the Fabry-Perot cavities,
requires that the TEMO1 mode of the upper sideband is distant from the carrier by
a multiple of the free spectral range, and therefore the modulation frequency should
fulfill:

fmod - fsep +n FSI%FP (5)

where fg, is the mode separation frequency of the Fabry-Perot cavity and FSRpp is its
free spectral range. The Anderson technique requires that the modulation frequency
corresponds to the optimum frequency given by Equation (5) within the linewidth of
the cavity (1000 Hz). The mode separation frequency is deduced from the measurement
of the end mirror radii of curvature (see Section 7.B) and the free spectral range has
been measured as described in 7.C, FSRpp = (49967 + 1) Hz. The optimal values of
fmod are therefore (with n = 125): fo“~ = (6264420 + 100) Hz for the north cavity

m

and £V — (6264340 4 200) Hz for the west cavity. The value set for the modulation
frequency corresponds to the optimum values within at most 300 Hz and is therefore

well within the allowed range.

11



Following these measurements it can be concluded that all the required resonance conditions
for the sidebands are fulfilled.

5. The input mode cleaner cavity

The input mode cleaner (IMC) is a triangular optical cavity whose aim is to filter the input
beam jitter and to obtain a clean gaussian beam at the entrance of the interferometer. Its
optical components are suspended to achieve adequate seismic isolation. Therefore it offers
a good reference for the laser frequency and is used to stabilize the laser frequency. The
mode cleaner design parameters are: a length of 143 m, a finesse of 1000, and a waist of
5 mm. To achieve these goals the mirrors of the cavity have been designed with the following
characteristics: a radius of curvature of (1834+5) m for the end mirror and a transmittance
of (3000 + 300) ppm for both the input and output mirrors.

The measurement of the input mode cleaner optical properties are detailed in the following.

5.A.  The input mode cleaner transmittance

The transmittance of the IMC is degraded by losses inside the cavity and by the imperfect

matching of the input beam to the cavity.

5.A.1. Losses of the input mode cleaner

The transmittance of the cavity for the TEMy, mode can be deduced from the measurements
of the individual transmittance of the mirrors and of their losses. The DC transmittance of
the cavity is, according to Equation (6) of,?
4T\ T:
T = = (6)
(T + T, + Lgr)

where T} and T, are the input and output mirror transmittances, and Lgrr the round trip

losses, including the far curved mirror transmittance. The input and output mirror trans-
mittances have been measured after coating: 77 = (2427 &+ 30) ppm and Tp = (2457 £ 30)
ppm.

The measurement of the cavity pole fp and of the free spectral range FSR are necessary

to compute the round trip losses Lrr which can be deduced from the equation:
T1+T2—|—LRT:47T—. (7)

The free spectral range and the cavity pole are measured with the open loop transfer function
H of the lock of the laser on the cavity around the free spectral range frequency. In this
frequency range, the shape is given by the transfer function H between frequency noise and
Pound-Drever-Hall signal. The result is fitted with

/= Acxp(d) <1+z'(f—FSR)/fZ>

[+ i(/ —FSR)//r (8)
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Fig. 4. Open loop transfer function of the lock of laser frequency on the cavity,

around 1 MHz. In blue, measured data; in red, the fitted curve.

similar to Equation (18) in,?® where A and ¢ are arbitrary amplitude and phase of the open
loop transfer function at this frequency, and f; an empirical zero which is needed to fit the
data and reflects a not understood experimental effect. The fit, shown in Figure 4, gives with
95% confidence level errors: fp = (479 4+ 3.3) Hz and FSR = (1044039 £ 2.2) Hz. The losses
deduced from these values, using Equation (7) are Lgr = (886 & 60) ppm.

An alternative way to measure the cavity pole fp is the determination of the decay time.
It is measured after a fast change of the laser frequency, large enough to drive the cavity
out of resonance. A fit of the measured data with an exponential decay, shown in Figure 5,
gives a measurement of the decay time: 7 = (167.2 & 0.2) pus. Then, using fp = 1/(4n7) =
(475.9+0.6) Hz and Equation (7) the total losses are deduced: Lrr = (846 +45) ppm (where
the uncertainty is dominated by the uncertainties on 77 and Ts). This is in agreement with
the value measured with the transfer function.

Then the expected transmission of the input mode cleaner for the TEMy, mode is T' =
(73 £ 2)% (from Equation (6)).

5.A.2. Beam matching and radius of curvature of the end mirror

The beam matching is deduced from the measurement of the transfer function H around the

frequency of resonance of the TEMy; mode. The result is fitted with

M 1 ) .

v=Aep(0)(1- ST
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Fig. 5. Time decay experiment: power transmitted by the input mode cleaner,

after a fast change of input laser frequency

from Equation (21) in,?® where A and ¢ are arbitrary amplitude and phase of the open
loop transfer function at this frequency, M is the amount of light intensity coupled to the
TEMjy, mode of the cavity, fos is the frequency of the TEMgy; mode, fp is the pole of the
cavity. The fit gives, with 95% confidence intervals: fp = (593 + 51) Hz, M = 0.17 £+ 0.01,
fo2 = (726569 + 35) Hz. The value of the pole is out of the boundaries given by previous
measurements, probably because this measurement is noisier as can be observed from
Figure 6.

Thus, the mode shaping mismatching is 17%. A mismatching of about 15% had also been
deduced from the measurement of the size of the beam which confirms the measurement

presented here.

The effective radius of curvature R can also deduced from the measurement of the
frequency of the TEMg, mode fyo (as explained in the case of the Fabry-Perot cavities in
Section 7.B). The deduced value is R = (181.99 £ 0.01) m, in agreement with the design

specification.

5.A.3. Total transmittance of the input mode cleaner

The measurement of the power of the beams at the output ports of the interferometer can
be used to deduce the power incident on the interferometer. The values found range from 7
to 8 W.

The measurements described in the previous sections lead to an expected total transmittance
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Fig. 6. Open loop transfer function of the lock of laser frequency on the cavity,
around the frequency of the TEMy, mode (726 kHz). In blue, measured data;
wn red, the fitted curve.

of the input mode cleaner of (60+3) %: 83% due to imperfect beam matching and 73% due to
the transmittance of the TEMyg mode. The input power being 16.7 W, the power transmitted
by the output mode cleaner is therefore expected to be 10 W. The difference with the power
incident on the interferometer points to additional losses which have not been understood

yet.

5.B.  Finesse and length of the input mode cleaner

The other optical properties of the cavity are also deduced from the transfer function
measurements and the decay time experiment. The finesse is directly deduced from the

measurements of the pole of the cavity fp described in the above sections:

c
F=——- 10
4fpLc (10)
The most precise measurement comes from the decay time experiment and gives F' = 109742.
The optical length of a half round trip is deduced from the measurement of the free spectral

range:
c

11
2Lnic (1)

FSR =

and gives Lpyc = (143533326 + 30)um.
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6. Matching of the input and output beams

Any mismatch of the beam with respect to the optical cavities of Virgo (input and output
mode cleaners and Fabry-Perot cavities) results into a loss of the effective power and therefore
a worsening of the sensitivity. Some loss of the input power is also the result of a non-
unity transmittance of the input mode cleaner. The tuning of the beam parameters and the

measurement of these losses are described in this section.

6.A. Input beam matching to the interferometer

The beam exiting the input mode cleaner has a waist of 5 mm and is adjusted to the Virgo
Fabry-Perot cavities by means of an off-axis telescope formed by two spherical mirrors.
The Virgo beam waist is around 20 mm and is located at the Fabry-Perot input mirrors.
The length of this telescope has to be tuned so that the beam incident on the interferom-
eter matches as well as possible the fundamental mode of the Fabry-Perot cavities. The
tuning consists in adjusting the distance between the two mirrors forming the input tele-
scope in order to obtain the highest power stored inside the Fabry-Perot cavities at the
TEMgp resonance.

The size of the beam on the end mirrors during the tuning of the telescope is compared to a
simulation with Finesse?? as shown in Figure 7. This allows a rough extraction of the input
beam parameters: w, = 18 mm, 2o, = —500 m, w, = 18 mm, 25, = 500 m where the z
axis is oriented towards the injection system and its origin is located on the beam splitter
mirror. After this tuning it is expected that about 94% of the input beam is coupled to the
TEMgy mode of the cavities. This coupling is measured by comparing the amplitude of the
first Laguerre mode to the amplitude of the TEMy, mode in the Fabry-Perot cavities (see
Figure 10) and is found to be 94%. This could not be further improved since the beam was
astigmatic due to a bad centering of the beam on the spherical mirrors of the telescope: a

better alignment of the beam would have been needed.

6.B. Matching of the beam to the output mode cleaner

The beam entering the output bench has a waist of about 2 cm. The dark fringe beam is
passed through the output mode cleaner (OMC) in order to improve the contrast defect.
The waist of the mode cleaner cavity is 140 pm. The output beam is adapted to the mode
cleaner cavity by means of a telescope made of three lenses. The position of these lenses
is adjusted in order to get the best transmission of the Fabry-Perot TEMy, mode. Only a
rough matching was done using the direct beam exiting from the injection system. Due to
the astigmatism of this beam the matching to the output mode cleaner could not exceed
94%. The relative position of the lenses is tuned in order to minimise the power reflected by
the OMC and a matching of 93% is reached.
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Fig. 7. Size of the beam after 3 km along two orthogonal azxis as a function
of the input telescope length tuning. The curves represents the result of the
stmulation while the dots are the experimental measurements. The wider black

curve shows the power transmitted by the cavity as predicted by simulation.®?

The matching is then cross-checked with the beam reflected by the North Fabry-Perot cavity.
The cavity is kept at resonance and the end mirror position is excited with a frequency line.
This line should be seen only by the mode which resonates into the cavity, i.e. the Fabry-
Perot TEMyg mode. Therefore, comparing the amplitude of this line on the beams reflected
and transmitted by the OMC gives an estimate of the OMC transmission for the Fabry-
Perot TEMyg. It is found to be around 94% and could in principle be improved with a better
tuning of the telescope. The matching was considered to be good enough at that time and
no further tuning was performed. It will be repeated when the Virgo sensitivity gets closer
to its design goal.

7. Fabry-Perot cavities

The Fabry-Perot cavities are characterized by their finesse, their length, the radius of cur-
vature of the end mirrors and the losses due to defects of the mirrors. This section reports

on the measurement of these quantities.

7.A. Finesse

The finesse of the Fabry-Perot cavities is extracted from the TEMgy, Airy peaks: it is de-

fined as the ratio of the distance between two consecutive TEMy, resonances (FSR) to their
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linewidth (FWHM). Unfortunately, due to dynamical effects the Airy peak is distorted, as
shown in Figure 8, and this effect prevents measuring the linewidth directly. Nevertheless,
if the speed of the cavity mirrors is known this distortion can be predicted by a simulation
including dynamical effects. It is therefore first needed to measure the speed of the cavity,
then the shape of the Airy peak is compared to a time domain simulation including dynam-
ical effects (STESTA?') for a set of finesse values.

The speed of the cavity can be determined from the measurement of the cavity length
as a function of time using the fact that the cavity length difference between two
TEMjg resonances is equal to A/2. If the cavity is not too much excited (angularly and
longitudinally) its length varies sinusoidally with time. Figure 9 shows the length of the
cavity as a function of time and the cosine function fitted to these points: [(t) = cos(wt + ¢).
The speed is derived from [(¢) and is measured with an uncertainty of 1 to 2%.

For each Airy peak the simulation is run with the measured speed for a set of finesse values.
The shape of the peak is compared to these simulations and the value which best matches
the data is kept. This measurement is repeated on several points and the dispersion of these
measurements defines the accuracy. Table 1 gives the measurement for each cavity as well

as the values expected from the mirror coating measurements:

p— /N (12)

1-— ISR

where 7y is the field reflectivity of the input (end) mirrors. It should be noted that since
the input mirror is flat, its effective reflectivity is expected to vary due to thickness variation
induced by temperature and therefore the finesse of the cavity is expected to vary as well.
This effect is proportional to the value of the second face anti-reflective coating of the input
mirror: AF/F = 4+2rr where 14 is the field reflectivity of this second face. The coating
measurement, gave R r = 150 ppm and therefore the variation of finesse are expected to be
about £2.5%.

Table 1. Fabry-Perot finesses

Measurement | From mirror reflectivities
North FP cavity 49.0+0.5 50
West FP cavity 51+1 51

The values of the two Fabry-Perot finesses are obtained with the measurement based on the shape of the
Airy peaks (first column) compared to those deduced from the mirror reflectivity measurements (second
column).
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Fig. 8. Profile of the Airy peak without dynamical effects (dotted line) and with
dynamical effects (full line) for a speed of 10 pm/sec.

7.B.  Radius of curvature of the end mirrors and mode separation frequency

The radius of curvature of the end mirrors defines the waist of the beam but, as shown in
Section 4.B, it is also related to the modulation frequency, via the mode separation frequency
of the cavities. The mode separation frequency fs, corresponds to the frequency difference
for which the TEM;, and the TEM; modes resonate and is related to the radius of curvature

of the end mirror Ry (the input miror is flat) and the length of the cavity Lpp:

c / Lyp
fsep = Vo1 — Voo = 27‘(‘LFP acosy /1 — R—2 (13)

The radius of curvature can be deduced from the signals measured at the transmission of the

Fabry-Perot cavities and also from the measurement of the map of the mirrors as described
in the following. The mode separation frequency also depends on the cavity length whose

measurement is described in 7.C.
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7.B.1. Measurement with the Fabry-Perot signals

The radius of curvatures can be deduced from the optical spectrum of the cavity by measuring
the cavity length difference between the TEM,,,, modes:

dnmf(]O 1 LFP
0 — Zacosy/1 — —— 14
(TL -+ m)dog_go WaCOS R2 ( )

where d,,,,_oo is the length difference between the resonances of TEM,,,,, and TEMqq , dgo_oo
is the length difference (\/2) between two consecutive TEMgy resonances.

Figure 10 shows the transmitted power when the cavity is freely swinging and well aligned.
One can recognise the TEM,,,,, resonances for low values of m+n. The modes of the carrier are
used to do this measurement. Since the TEM, of the lower sideband is superimposed to the
TEMj; of the carrier the cavity has to be enough misaligned so that the TEMj; of the carrier
is dominant. The data used for this measurement fullfil this criterion. The cavity length is
reconstructed as a function of time with the same method as described in Section 7.A. The
length difference between the modes can then be reconstructed. The measurement is done
for m+n =1,2,4 and uses several tens of points. The uncertainty on d,,,_oo is given by the
RMS of its distribution. The effective radius of curvature is deduced from formula (14). The
effective radius of curvature extracted from these measurement are given in Table 2. The

precision is typically of the order of 20 meters.
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Since the mirror curvature is not necessarily uniform different modes might see a different
radius of curvature since they have different distribution of power. The radii of curvature seen

by different modes are compatible showing that the mirror curvature is reasonably uniform.

7.B.2. Measurement from the mirror surface maps

The surface maps of the mirrors have been measured after coating. The radius of curvature

can be deduced from these maps in several ways:

(1) with a simulation of the FP cavity including the maps based on FFT field propagation
(DARKF) and applying the same method as on real data

(2) with the same simulation as in (1) but using the size of the beam which resonates in

the cavity since it is directly related to the radius of curvature of the cavity mirrors

(3) by fitting the map of the mirrors with a sphere weighted by a gaussian in order to

simulate the beam profile.

The radius of curvature determined with these three methods are given in Table 2.

The measurements of the radius of curvature based on the Fabry-Perot signals agree with
the results based on the mirror surface maps for the North cavity but are systematically
about 70 m lower for the West cavity. It is now known that a small bias was introduced
during the measurement of these maps due to the apparatus holding the mirror. This could

explain this difference.

7.B.3. Mode separation frequencies

These results are turned into a measurement of the mode separation frequency using Equa-
tion (13). Since the Anderson technique used in Virgo is based on the TEMy; mode only

results from this mode are used. The Anderson frequencies are:

e for the North arm: f2or'h = (18533 + 100) Hz

sep

e for the West arm: fie* = (18450 + 200) Hz.

sep

These values are compared to the modulation frequency in Section 4.B.

7.C. Arm length

The length of the arms can be extracted with a method similar to that described for the
measurement of the radius of curvature in section 7.B by noting that the difference of length
between the TEMg, resonance of the sidebands and of the carrier corresponds to the modu-

lation frequency modulo the free spectral range:

fmod = VUSB — Vearrier + 125 FSR =

c (dUSBcarrier

125 F 1
T >+ 5 FSR (15)

dOOfUO
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Table 2. Radius of curvature of the end mirrors.

interferometer data

Mirror maps (1)

Mirror maps (2)

Mirror maps (3)

North cavity

m+n=1 3555 £ 20

m-+n=1 3563 £+ 20

m+n=2 3550 £ 10 | m+n=2 3558 £ 10 3598 £ 20 3583
m+n=4 3585 + 10
West cavity | m+n=1 3570 £40 | m+n=1 3643 = 20 3650 £ 20 3624

m+n=2 3540 £+ 20

m+n=2 3614 + 10

The values of the radius of curvature are deduced from the Fabry-Perot signals and from the mirror map

measurement (last 3 columns) for the two Fabry-Perot cavities of Virgo.

where dysg_camier 1S the cavity length difference between the upper sideband and the carrier
TEMg resonances. The upper sideband resonance is well observed for a well aligned cavity
as shown on Figure 10. Since the modulation frequency is known the cavity length can be
determined from (15). This gives: Lyotn = (2999.86 + 0.03) m which is compatible with the
expected length (2999.90 m).

7.D.  Cauvity losses

The Fabry-Perot cavity losses can be due to mirror absorption, scattering (due to rugosity)
or long range surface defects which couple the TEMyg mode to higher-order modes. The
first kind of losses (absorption and scattering) lead to the loss of some power inside the
interferometer while the long range surface defects couple the TEMy to higher order modes
so that the power is not necessarily lost, but both result in a decrease of the Fabry-Perot
reflectivity for the TEMqg.
The mirror absorption and scattering have been measured after the coating and the total is
of the order of 10 ppm for each mirror. A small fraction (typically 50 ppm) of the beam is
transmitted by the end mirror to the end benches. The effect of long range surface defects
is estimated with simulations including the measurement of the mirror surface maps.
The losses inside the Fabry-Perot cavity lower their reflectivity and as a consequence lowers
the recycling gain, so it is therefore important to keep them as small as possible.
The reflectivity (in amplitude) of the cavities is given by:
ri —re(l — L)

1—rre

(16)

r'rp =

where 7 is the reflectivity of the input (end) mirror and L the round trip losses. This

reflectivity can in principle be measured with a free cavity by comparing the power
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reflected by the cavity out of resonance to the power reflected on the TEMg, resonance:
T%P = P,y res/ Pout res- Unfortunately this does not give a precise measurement due to
dynamical effects and power fluctuations with the alignment. With this method the power

reflectivity was estimated to be in the range 96 to 98% for both cavities.

It is nevertheless possible to estimate the fraction of the input power which is lost
due to scattering inside the Fabry-Perot cavities: from the power measured by the
photodiodes at the interferometer pickups (the end mirrors transmitted beams and the
interferometer transmitted and reflected beams) it can be deduced that about 35% of the
power incident on the interferometer is lost inside the interferometer. The simulation also
shows that 33% of the input power is lost in the Fabry-Perot cavities due to the mirror
surface defects. This power loss is equivalent to round trip losses of 330 ppm inside each
arm. It can be concluded that the losses due to long range surface defects which scatter the

light at relatively small angle are well reproduced by the simulation.

8. Recycling cavity

The lengths of the recycling cavity are of particular importance since the asymmetry between
the two arms defines the transmission of the sideband signals to the dark fringe and the mean
recycling length should fulfill the resonance condition for the sidebands. The other important

quantity is the recycling gain which directly affects the shot noise limit of the sensitivity.

8.A. Lengths
8.A.1. Michelson length asymmetry

The use of the modulation technique requires that the small Michelson is asymmetric. This
asymmetry is defined by Al = I, — [;. The sidebands transmission depends on this asym-
metry. Therefore this quantity is also needed in order to estimate the expected sidebands
transmission (see Section 8.C).

The beam reflected by the West cavity travels 2Al more than the beam reflected by the
North arm. Therefore the optimum demodulation phase of this beam should be different by
Ap = 2A—é9. The measurement makes use of this property: the two cavities are alternatively
locked and the demodulation phase tuned with a precision of 0.1 degree. The asymmetry
deduced from this measurement is: Al = (0.844 £+ 0.013) m.

8.A.2. Recycling cavity length

In order to reach the best sensitivity both the carrier and the sidebands should resonate
inside the recycling cavity. The condition of resonances are:

%2lm = 0[27] (17)
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for the carrier and L Q
WTQZ’"“ =7+ dpp[27] (18)

for the sidebands, where ¢rp is the phase introduced by the Fabry-Perot cavities on the
sidebands. Once the microscopic condition (17) is fulfilled, (18) transforms into a macroscopic

condition on the recycling length:

Q
;2lrec:7l'+¢)pp[2ﬂ'] (19)

An analytical calculation and a simulation study taking into account the dephasing due to
the Fabry-Perot cavities shows that the optimum value is /... = 12.073 m. The recycling
length should fulfill this condition within £1 cm. It was also found with the simulation
including the mirror maps (see Section 3) that these have a non negligible impact on the
optimal recycling length and it could be several centimeters different from this last value. But
since the beam splitter transmission map had not been measured at 45 degrees no conclusion
could be drawn.

Several independant measurements of this length have been done:

e it has been deduced from the measurement of the position of the mirror suspension
point during the installation and the known position of the reflective surface of the

mirrors with respect to this point: l.. = (12.07 £+ 0.01) m.

e the optical length of the recycling cavity has been measured during the commission-
ing of the central part of Virgo (the CITF??*) using an auxiliary laser: it is deduced
from the measurement of the free spectral range of this cavity obtained from transfer
function between frequency noise and the interferometer output signal. This measure-
ment cannot be performed on Virgo since the laser beam is now filtered by the input
mode cleaner cavity which makes the measurement less straightforward. Taking into
account the changes of position of the mirrors for Virgo with respect to the CITF gives:
lree = (12.07 £ 0.01) m.

e the last measurement is done with the Virgo final configuration and relies on the fact
that if the sidebands are at resonance the field comes back in phase with the incoming
field, otherwise some phase shift is accumulated proportionnally to the mean number
of round trips i.e. to the recycling gain. In this last case the demodulation phase
should shift from the case without recycling. The interferometer has been locked in the
recombined and in the recycled configuration and the demodulation phase of the dark
fringe has been adjusted. A phase difference lower than 2 degrees has been measured,

this indicates that the recycling cavity length is the correct one within about 1 cm.

These three measurements agree within each other. The third one is the more direct and

confirms that the recycling length is within 1 cm of the optimal value.
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8.B. Recycling gains

The recycling gains depend on the power recycling mirror reflectivity and the Fabry-Perot

G = (“37"’“)2 (20)

reflectivity for the carrier

14 TPRTFP
as well as the small Michelson asymmetry for the sidebands:
lpr 2
Gp = ( ) 21
B 1 —cos(22)rppri® (21)

where tpr and rpg are the PR amplitude transmission and reflectivities, rpp (resp. ry5)

the average Fabry-Perot reflectivity for the carrier (resp. sidebands), €2 the modulation
frequency and Al the small Michelson asymmetry. Without losses in the Fabry-Perot
cavities, when these are resonant on the carrier, rpp = —1 and r3% = +1 and given a
PR mirror reflectivity equal to 92.2% the recycling gains are expected to be G = 50 and
Ggsp = 36.

These gains can be deduced from the ratio of the power incident on the beam splitter

mirror with and without recycling:

Precycled Precycled

bo Gy = 2Tpp—22 (22)

00 __
G = TPR Pﬁeéombined Pngelcombined

where Pgegzr;g)ined(recyded) is the DC power (resp. the power at twice the modulation frequency)
in the recombined (resp. recycled) configuration. The recycling gains extracted from these
measurements are: G = 31 &1 and Ggp = 19 £ 1. Taking into account the mismatching of
the input beam with the Fabry-Perot cavities (see Section 6.A) the deduced recycling gains
for a well matched TEM, should be:

G" =33+1 GYy =20+1 (23)

These gains are significantly smaller than those computed above from scalar values. This
is expected if there are non negligible losses in the Fabry-Perot cavities. A simulation (see
Section 3) including the mirror long range surface defects which have been measured after
coating gives also smaller recycling gains: G = 34 and Ggp = 30. It is clear from this
simulation that these low gain values are due to the surface defects of the mirrors. The
carrier is mainly sensitive to defects inside the Fabry-Perot cavities (see 7.D) while the
sidebands are mainly sensitive to the recycling cavity defects since they do not couple to
the Fabry-Perot cavities. The gain of the carrier obtained in simulation agrees well with
the measurement while the gain of the sidebands is significantly higher in simulation. This

might be due to the fact that the beam splitter mirror is not well simulated: the surface map

26



was only measured at zero degrees and not at 45 degrees. Moreover, as shown in Figure 11
the gain of the sidebands is also sensitive to the residual radius of curvature which is not
known for the beam splitter mirror (the residual radius of curvature of the power recycling
mirror is around 30 km). The gain of the sidebands is also sensitive to the length of the
recycling cavity: simulation shows that it varies by + 1 for a variation of £+ 1 cm.

Assuming that all the losses are located inside the Fabry-Perot cavities, the mean Fabry-
Perot reflectivity for the carrier, deduced from (20) is therefore: Rpp = 0.982 £+ 0.002.
This is equivalent to mean round trip losses of (570 + 50) ppm (including the end mirror
transmission which is around 50 ppm). This gives only an upper limit of the Fabry-Perot
losses since the recycling gain might also be lowered by defects inside the recycling cavity,

as it is observed in simulation.

Assuming Rpp = r%p = 0.982 the maximum recycling gain which could be achieved
taking the same reflectivity for the PR mirror would be 55. A new PR mirror has being
installed with a reflectivity of 95% which allowed, as expected, the increase of the carrier
recycling gain up to 43.

8.C.  Transmission of the sidebands

For a non perfect contrast the higher the transmission of the sidebands the smaller the shot
noise limit (see Equation 1) therefore the sidebands transmission has to be maximized. For

the recycled interferometer it is given by:

. QAl tPR’I“%IB;Sin(Q—N) 2
o120 - (e :
SBSITE 1— cos(%)rperﬂ]@ (24)

From the Virgo design, neglecting losses, one expects 7" = 0.45. Since this quantity is propor-
tional to the recycling gain, the measurement of the recycling gain (presented in Section 8.B)
suggests a lower value: T = 0.25.

The dark fringe signal is also demodulated at twice the modulation frequency allowing a
measurement of the sidebands power: Pyg = 2T, PyTJ;(m)? where T,,; is the transmission
of the dark fringe from the interferometer to the photodiode. Unfortunately there are signif-
icant uncertainties on quantities entering this equation (about 10% on P, and .J;) therefore
the sidebands transmission is not precisely measured: 7" = 0.12 4+ 0.03. It is significantly
smaller than what is expected from the sidebands recycling gain. This might indicate that
the sidebands contain a large fraction of high-order modes since 7T is measured after the

output mode cleaner while Ggp is not.
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Fig. 11. Recycling gain of the sidebands as predicted by simulation as a func-
tion of the radius of curvature (in meters) of the power recycling mirror. The
stmulation is done for a simple cavity, the mirror transmissions are set respec-
tively to 7.8% and 1.4% so that the expected gain corresponds to the mazimum
gain of the sidebands in Virgo (G=356).
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9. Contrast defect

The contrast defect is defined by twice the ratio of the carrier transmitted power to the power
incident on the beam splitter mirror. Since the interferometer is locked on the dark fringe it
should be null for a perfect interferometer. However there is always a small contrast defect
due to the mirror defects, mode mismatch to the cavities and the alignment imperfections
(due to finite gain of the alignment loops): these create higher order modes which are not
on the dark fringe.

Taking into account only the asymmetry of the Fabry-Perot field reflectivities which, from
simulations is expected to be of the order of 0.2%, the resulting contrast defect is of the order
of few 107%. A full simulation including higher order modes shows that a typical contrast
defect is of the order of 1072. As can be seen on Figure 2 the shot noise limited sensitivity
improves significantly if the contrast defect is reduced below 1074,

1415 which rejects

The contrast is improved in Virgo by means of an output mode cleaner
higher order modes. In the following the contrast before and after the output mode cleaner
(OMC) are given for two optical configurations: the so-called recombined and recycled con-
figurations. In the recombined configuration the recycling technique is not used: the power
recycling mirror is misaligned, the Fabry-Perot cavities are kept at resonance and the Michel-
son on the dark fringe. The recycled configuration refers to the full Virgo, i.e. including the

power recycling technique.

9.A. Recombined interferometer
For the recombined interferometer the total DC power on the dark fringe is given by

1-C
PDC’ = PO (J[)(m)ZT + 2Trec0me1 (m)2> (25)

where, in this case Trecomp, the transmission of the sidebands is here given by Tiecomp =
QA
C

value of Tecomp- This term is negligible compared to the power on the dark fringe before the

sin?(#2t). The second term is the power of the sidebands and is estimated from the expected

output mode cleaner and the contrast defect is easily deduced from the measurement of the
DC power: 1 —C = 3 x 10~* before the output mode cleaner. After the output mode cleaner
the total power is comparable to the expected contribution of the sidebands, therefore only
an upper limit has been put: 1 — C' < 10~

9.B. Recycled interferometer

When the interferometer is in the recycled configuration the total DC power on the dark

fringe is the sum of a contribution of the carrier and of the sidebands:
,1—-C 2
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The second term is identical to the power demodulated at twice the modulation frequency
(see 8.C) and can be subtracted to determine the contrast defect (1 — C'). The mean power
before the OMC is 6.6 mW whereas after it is reduced to 1.6 mW out of which (1.2£0.2) mW
is the sidebands contribution. Therefore the contrast defect is: 1 — C = 3 x 10~* before the
OMC and 1 — C' = 3 x 107° after. The observed contrast defect before the output mode
cleaner is quite good, while it was predicted to be 1% by the simulation. This difference is
not yet understood.

Nevertheless, as illustrated in Figure 2, using the OMC allows to improve the sensitivity by
35% for a modulation index m ~ 0.15. Without an output mode cleaner the modulation
depth would have to be increased up to its maximum tunable value (around 0.4) in order

not to reduce the sensitivity by more than 10%.

10. Optical gain for the gravitational wave signal

The optical gain which converts the interferometer differential arm length variation (in me-

ters) into the output port photodiode signal (in Watts) is given by:

2F 27

OG = 4PX Ty Jo(m).J, (m)77\/ GT W/m (27)

00
where P,

the incident power coupled to the TEMyy mode, is given by the product of the
input power P, and of the beam matching to the cavities M. During the first period of the
recycled interferometer commissioning which is studied in this article (until end 2005), the
power exiting the input mode cleaner was reduced by a factor 10 before entering the interfer-
ometer. The input power was deduced from the output port power measurements and from
the input mode cleaner transmittance (see section 5): P, = (0.9 £0.1) W. Ty is the trans-
mission from the interferometer output port to the photodiodes measuring the dark fringe
signal: Ty = 0.85 £ 0.05. It is mainly given by the transmission of the output mode cleaner
(90%) and that of the Faraday isolator (96%) located between the output mode cleaner and
the photodiodes. The measurement of the other parameters entering in the expression (27)
are reported in this paper: M = 0.94, m = 0.16 £ 0.01, G =33 £ 1, T = 0.12 + 0.03 and
F =50 + 1. Therefore the expected optical gain is OG = (0.8 + 0.2) x 108 W/m.

The optical gain has been measured with the calibration procedure. To this purpose perma-
nent lines (at frequencies around 350 Hz) are added to the correction sent to the cavities end
mirror. The amplitude of these lines is converted into meters using the actuator electronic and
mechanical transfer function. The optical gain is then the ratio of the amplitude of the signal
measured on the dark fringe at this frequency to the amplitude of the mirror displacement.
The optical gain measured with this procedure was OG = (0.71 & 0.15) x 10* W/m where
the uncertainty reflects the uncertainty on the mirror actuator transfer function. Therefore

the measured optical gain agrees with the expected optical gain.
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At the end of 2005, before the commissioning run called C7, the modulation index was
increased by roughly a factor 2. Its value was measured with the same method as de-
scribed in Section 4.A: m = 0.30 £ 0.01. In this case the expected optical gain is
OG = (1.5 £ 0.3) x 10*® W/m. This value is compatible with the measured optical gain
OG = (1.0 £0.2) x 108 W/m.

11. Conclusion

The techniques developed for the measurement of the Virgo optical parameters have been
presented in this paper. The good agreement observed between these measurements and
the predictions made with the simulation using the measured mirror maps allows the un-
derstanding of the optical characteristics of the interferometer and gives confidence in the
simulation for future upgrade studies.

It has been shown that, except for the recycling gain, the measured optical parameters meet
the design specifications reported in.? It can in particular be noticed that the contrast de-
fect of the interferometer is good, and better than expected. Nevertheless, the use of an
output mode cleaner leads to an improvement of the sensitivity by about 35%. Concerning
the smaller value of the recycling gain, it was possible to understand that this gain was
limited by losses inside the Fabry-Perot cavities. Some upgrades can therefore be designed
based on these observations. In particular since the power recycling mirror has been changed
recently, its reflectivity has been increased in order to obtain a higher recycling gain. This
value was fixed on the basis of the measurement of the Fabry-Perot reflectivities. Moreover,
it was shown that the main contribution to losses is due to long range surface defects of
the mirrors inside the Fabry-Perot cavities. When these mirrors will be changed a corrective
coating could be performed in order to obtain a more regular surface and therefore reduce
these losses.

Following each modification in the Virgo optical configuration the techniques presented here

will be used in order to measure the interferometer optical properties.
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