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Abstract: The averaged point spread function (PSF) estimation of an image acquisition system is important for many 

computer vision applications, including edge detection and depth from defocus. The paper compares several mathematical 

models of the PSF and presents an improved measurement technique that enabled sub-pixel estimation of 2-D functions. 

New methods for noise suppression and uneven illumination modelling were incorporated. The PSF was computed from an 

ensemble of edge spread function measurements. The Generalized Gaussian was shown to be an 8 times better fit to the 

estimated PSF than the Gaussian and a 14 times better fit than the pillbox model. © 2007 Optical Society of America 

          OCIS codes: 110.2970, 110.4850, 220.4840, 350.4600, 150.5670, 220.2560. 

 

1 INTRODUCTION 
The research reported concerns mathematical 

modelling and practical measurement of the Point 

Spread Function (PSF) of focused and defocused 

image acquisition systems, such as digital TV 

cameras. This measure of image blur can be utilised to 

optimize image processing functions such as edge 

detection [1-3] and Depth From Defocus (DFD) depth 

estimation [4-11]. An image acquisition system 

typically consists of optical components (such as 

lenses and apertures) and electronic components (such 

as the 2-D CCD array, anti-aliasing and 

communication circuits). Each of the components in 

the optical and electronic paths can be considered as 

spatial low-pass filters. Considering the system in the 

terminology of system theory, the transfer functions 

of each of its components can be estimated and then 

all combined to find the overall transfer function. 

Alternatively, and the approach taken in this work, the 

transfer function for the entire system can be 

measured. Typically, input signals are provided in the 

form of bar patterns, point sources or step edges.  For 

entire system measurement, the output signal is the 

captured digital image. 

The Fourier transform of the PSF is the Optical 

Transfer Function (OTF), and both measures have 

been widely used to characterize systems. The lens can 

be thought of as a 2-D low-pass filter with a spatial 

cut-off frequency that is limited by diffraction and 

aberration effects. The 2-D array samples the image 

and also includes low-pass filtering as the individual 

sensor elements have a finite area required for low 

light operation. Together the elements tile the image 

plane. As a simple model, charge generated by a 

photon at a point in an element will distribute evenly 

across the tile [12]. The sampled value is then 

proportional to the accumulated charge from all the 

photons converted in the element during the 

acquisition phase and since the previous sample was 

acquired. The CCD is read by a raster scanning 

process [12]. Here the charge in each of the elements 

is transferred to vertical columns of shift registers. In 

turn these shift into a horizontal register and are 
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shifted to an analogue charge-to-voltage converter and 

then further electronics that provide, nominally, 1-D 

signal processes such as low-pass filtering and 

digitization. The low-pass filtering provided by the 

lens is necessary as it acts as an anti-aliasing filter for 

the image discretization. CCD elements require a 

relatively large area for the camera to work well at 

low light levels, and this finite area limits the high-

frequency response. 

PSF measurements can be limited by the Nyquist 

frequency of the discretization in the acquisition 

system, however an averaging and accumulation 

process was researched to overcome this [2,13,14]. 

This process required a knife or step edge to be 

imaged, i.e. this is not a general technique for all 

images. The image was of a blurred step and several 

edge-spread functions (ESF) were estimated along the 

length of the edge. The ESFs were then each 

registered to a reference point and accumulated to 

form a super-resolution ESF that contained frequency 

information above the Nyquist limit of the sampling 

grid. The PSF is more useful than the ESF for DFD 

measurement and image simulation as it can be 

directly convolved with an input image to estimate the 

output image [2,6,9]. The PSF is obtained by 

differentiating the ESF, however, even low levels of 

noise in the ESF can result in high levels of noise in 

the PSF and render it unusable. The source of the 

noise is in the imaging system’s sensors and 

electronics. In this research it was found that both 

digital and inexpensive analogue TV cameras had too 

poor a signal-to-noise ratio (SNR) for the previous 

PSF measurement techniques to work reliably. 

In this paper we compare research into several 

methods to both reduce the noise in the ESF 

estimation and to accurately model usable PSFs for 

the acquisition system. In Section 2 we review PSF 

measurement techniques and describe how a super-

resolution ESF, and eventually a PSF is computed 

from an ensemble of low-resolution measurements. In 

Section 3 we examine the theoretical PSF models that 

result from consideration of both geometric and 

diffraction optics. In Section 4 we describe 

improvements to the traditional super-resolution PSF 

measurement technique that involve:- (i) 

Compensation for non-uniform illumination within 

the light box used to produce the test images; (ii) A 

regularized numerical differentiation process to limit 

noise in the computed PSF; (iii) Models of the ESF 

that have been developed and used to compute PSFs 

that have then been compared with the theoretical 

models described in Section 2. Fitting the correct ESF 

model to the measured data is key to obtaining 

accurate PSFs for the system. Section 5 presents the 

experimental results from both focused and defocused 

systems. Specific 1-D results have been used to 

demonstrate problems with noise in the ESF 

estimation, and bias to the PSF when non-uniform 

illumination remains uncompensated. Then the results 

of ESF fitting experiments have been reported and 

discussed. Finally 2-D PSF plots have been produced 

for the most successful fitting methods. Section 6 

provides conclusions. 

2 MEASUREMENT TECHNIQUES 
Here we have proposed PSF measurement of the 

whole system, however methods exist to measure 

individual PSFs for each component. These can then 

be combined to give the overall PSF. Lasers have been 

used to measure the PSFs of individual pixels within 

the CCD array [15,16]. These are a function of 

wavelength, and so a complete characterization is 

lengthy and complex. However the PSF for the array is 

spatially variant and widely used in image restoration. 

Classically, images of sinusoidal gratings have been 

used for OTF lens measurements. When a  
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Fig. 1. Migration of samples onto the ESF 

 

focal plane array (FPA) images the grating the 

discretization means that the FPA must be moved 

relative to the image to give minimum and maximum 

MTF curves [17]. Sinusoidal laser interference 

patterns have been used by Marchywka and Socker 

[18], and laser speckle techniques can also be 

employed [19]. The main limitation of lasers is the 

monochromatic light. Spatial domain techniques have 

been used to measure the PSF of the lens. A scanned 

point source can be used to obtain a 2D PSF 

containing local blur and aberration information up to 

the Nyquist limit of the FPA. A 2D unit intensity step, 

known as a knife-edge can be easily produced 
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experimentally, using a lightbox. Differentiating the 

response of the lens, the ESF, gives the PSF. 

The knife-edge technique can be extended to 

acquisition system measurement. If the system 

contains a FPA then undersampling effects cause 

errors in the PSF estimation due to aliasing. In 

practice PSF information beyond the Nyquist limit of 

the array is often required. Reichenbach et al. [13] 

solved the problem by using many ESF profiles to 

create a super-resolution image of a 1D edge. Tzannes 

and Mooney [14] fitted a sum of three Fermi-Dirac 

functions to the edge to reduce the noise during 

differentiation to obtain the PSF, and Staunton [2] 

extended the technique to measure the ESF for many 

differently angled edges to produce a 2D PSF and 

MTF. At edge angles other than 0 or 90 degrees, a 

resampling of the data was performed to obtain the 

discrete ESFs along normals to the edge. A normal 

was set and then the closest samples to it projected on 

to it from a direction parallel to the edge as shown by 

the dashed lines in Fig. 1. The sampled values were 

then not equally spaced along the normal, but this
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Fig. 2. Simple model of the optical system with the image plane on the left. 
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Fig. 3. Normalized-magnitude PSFs for a 16mm, f4 lens. (a) Focused. (b) Defocused. 

 

 

was irrelevant to the following super-resolution stage. 

To understand the super-resolution stage used in 

[2,13,14], consider an edge oriented close to zero 

degrees, but not actually at zero. The edge cuts each 

pixel along its length so that part of the pixel is 

brightly illuminated, and part is dark. The sampled 

value for each pixel along the edge is proportional to 

the averaged illumination throughout the pixel. Each 

sampled value along the edge is therefore different. In 

the same way each of the many ESFs located at the 

pixels along the edge comprises differently sampled 

values. These low-resolution ESFs are then registered 
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with one another and assembled to form a single high 

resolution ESF that is resampled onto typically a 0.1 

pixel grid. 

The proposed knife-edge technique is simple 

to perform, but the PSF measurements are averaged 

along the length of the edge. Such an average is 

advantageous for shift invariant models used in 

processes such as edge detector testing [2], depth 

from defocus [6], or image simulation, but may be 

disadvantageous for processes that require models of 

lens aberrations in addition to spherical aberration, 

such as may be required for image restoration [20]. 

These may require space variant estimation of the 

PSF. 

3 THEORETICAL PSF MODELS 

A Geometrical Optics 
Pentland [4] showed that for the simple defocused 

optical system shown in Fig. 2, and assuming 

geometrical optics, the PSF is a pillbox shape with a 

blur circle radius given by 
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where vo is the distance between the lens and the 

CCD, u is the depth of the object, F is the focal length 

of the lens and f is the f-number, which is defined as f 

= F/d, where d is the diameter of the aperture. The 

distance uo is the distance at which an object would 

appear in focus on the image plane. 

B Diffraction Approach 
The PSF h(x) of a focused lens that is subject to 

diffraction effects and with optical aberrations as a 

function θ(x), but neglecting sampling due to the 

FPA, is given by [21] as 
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where x is a position vector, A(ξ) is the aperture 

function, λ is the wavelength of light and F is the 

focal length of the lens. Out-of-focus blurring can be 

modelled as a quadratic aberration of the form 
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where u is the distance between the object and the 

lens, and v is the distance between the FPA and the 

lens. Substituting (3) into (2), assuming polychromatic 

light with equal intensities between wavelengths λ1and 

λ2, and the aperture function, A(ξ), to be a circle, 

radius r, then in 1D the PSF becomes 
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Fig. 3(a) shows a PSF expected for a focused system 

where only diffraction is present. The polychromatic 

light is modelled as white light with equal intensity 

components in the range 400 to 700 nm. The PSF 

looks similar to a Gaussian. Fig. 3(b) shows a PSF for 

a defocused 16mm lens where the camera is focused at 

0.464m and the point source is at 0.8m. The PSF has 

been flattened out and made to look more like a 

pillbox function. 

4 IMPROVEMENTS TO EDGE SPREAD 

FUNCTION ESTIMATION 
In this research the knife-edge technique was 

employed and this section firstly considers an 

improvement to Staunton’s [2] algorithm that 

incorporates the effect of non-uniform illumination of 

the lightbox. Without noise the ESF could be 

differentiated to yield the PSF, but differentiating a 

noisy function amplifies the noise. In this paper 

models of the ESF are developed from several PSF 

models and then compared. A regularized numerical 

differentiation process is proposed. 
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Fig. 4. ESF with a pillbox PSF where σ = 5 (solid) and 

the ideal step edge (dashed) 

A Compensation for Non-Uniform 
Illumination 
An ideal brightness step changes abruptly from one 

constant brightness level to the other. Experimentally a 

light box was employed with a knife-edge to 

approximate the step, however, in practice the 

brightness of each region was significantly non-
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uniform. This resulted in erroneous PSFs. We propose 

a new model that retains the abrupt transition, but 

allows each region to have a linear change in intensity 

as a function of spatial position. As an example, 

shown by the dotted trace in Fig. 4, both the bright 

and darker areas of this particular light box increase in 

intensity towards the knife-edge. However other 

linear illumination field conditions can also be 

modelled by this scheme. The modified step was 

given by 

)()()()()( 022011 xxucxmxxucxmxs −++++=    (5) 

 

where u(x) is the unit step function, c1 and c2 are the 

brightness of the upper and lower regions and m1 and 

m2 are the gradients of the brightness. 

B ESF Assuming a Pillbox PSF 
For a defocused lens under geometrical optics the PSF 

is a pillbox and given by 
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where σ is the radius of the pillbox, and hence the blur 

circle. The ESF assuming a pillbox PSF and using (5) 
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where x0 is the location of the transition [22]. An 

example of the ESF for a PSF with a blur circle radius 

σ = 5 is shown in Fig. 4 where the original step is 

shown with a dotted line. 

Note that there are two sharp transitions in the 

resulting ESF. A pillbox PSF would result if the lens 

passed every spatial frequency, however, due to 

diffraction it is known that this is not possible and a 

smoother PSF will result. 
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Fig. 5. ESF when the PSF is a Gaussian with σ = 5 

(solid line) and unevenly illuminated ideal step edge 

(dashed line). 

C ESF Modelled as a Sum of Fermi-Dirac 
Functions 
Tzannes and Mooney [14] fitted a sum of three Fermi-

Dirac functions to the ESF. Their technique resulted 

in a smoothed transition across the edge. In general 

form the sum of N Fermi-Dirac functions for 

modelling the ESF is 
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where constants ai have been added to normalize the 

intensity, bi to set the centre point, ci to control the 

gradient and d to account for the non-zero brightness 

of the lowest level. In order to recover the PSF the 

ESF must be differentiated, which is given by [22] as 
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However a problem with this model is that it cannot 

readily take into account the non-uniform illumination 

in a way that allows the step and the PSF to be 

separated. The PSFs determined experimentally were 

consequently non-symmetrical, as shown for example 

in Figure 10. 

D ESF Assuming a Gaussian PSF 
The Gaussian PSF is the most frequently assumed 

model found in the literature on defocused lenses and 

this is partly due to its simplicity. A 1D Gaussian with 

a standard deviation σ and centered at xx = is then 

given by 

.
2

2)(

2

1
exp

2

1
)(

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −
−=

σσπ
xx

xgh                 (10) 

 5



The ESF assuming a Gaussian PSF and a step edge 

with non-uniform illumination is given by [22] 
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where erf(·) is the error function, defined as 
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If the ideal step with non-uniform illumination as 

shown in Fig. 4 is defocused with a Gaussian (σ = 5, 

x  = 0) then the ESF is as shown in Fig. 5. 
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Fig. 6. Generalized Gaussian PSFs where (left) (p = 1, σ = 5) and (right) (p = 4, σ = 5) 

 

E ESF Assuming a Generalized Gaussian PSF 
The Generalized Gaussian function [23] is being proposed 

here as a model of the PSF of a defocused lens. Along 

with the mean x  and the standard deviation σ, the power 

p of the function is required. The function can take the 

form of a Gaussian when the power p = 2 and a pillbox 

when p = ∞, and thus encompasses both of the frequently 

used models of defocus. The Generalized Gaussian is 
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where Г(·) is the Gamma function and |·| represents the 

modulus. The term before the exponential ensures the 

function has unit area. Two Generalized Gaussian 

functions are presented in Fig. 6, where p=1 (eg for a lens 

in focus), and p=4 (eg defocused). 

The ESF, assuming a step edge with non-uniform 

illumination and a Generalized Gaussian PSF, is given by 

the convolution of (11) with (13). A closed form, 

algebraic solution could not be found so the convolution 

integral was evaluated numerically. The ESF is given by 

[22] as 
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Using the PSFs shown in Fig. 6 and the ideal step with 

non-uniform illumination the resulting ESFs are shown in 

Fig. 7. 

F Regularized Numerical Differentiation 
In order to recover the PSF from the super-resolution Edge 

Spread Function (ESF) the response must be differentiated 

and as the data is discrete, finite-difference 

approximations must be employed. However the ESF is 

noisy and both two and five point numerical 

differentiation were found to give poor results. Chartrand 

[24] considered the problem of finding the derivative of a 

function when the underlying function is noisy and has a 

discontinuity in the derivative. The solution proposed uses 

total-variation regularization where the derivative of a 
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function y(x) defined on the closed interval [0, L] is the 

minimizer of the function 
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where u′(x) is the first derivative of the function y(x) and 

α is a regularization term that weights the first term, a 

penalty term, against the second term, the data fidelity 

term. 

 

The total variation suppresses the noise without removing 

discontinuities in the derivative. The appeal of this 

approach is that a pillbox PSF has two finite 

discontinuities and this method ensures that they can be 

recovered and that additionally noise suppression is 

achievable. The main problem is the choice of the 

regularization parameter α as it affects the derivative 

produced. 
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Fig. 7. The ideal steps (dashed lines) and the ESFs (solid lines) assuming Generalized Gaussian PSFs with (left) (p = 1, σ = 

5) and (right) (p = 4, σ = 5) 

 

 

 
 

Fig. 8. An example of the windowed image 
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Fig. 9. Five-point numerical differentiation results for f2.8, z=0.725m, angle=0 degrees with ESF shown on the left and the 

PSF on the right 

 

 7



5 EXPERIMENTAL RESULTS, FOCUSED 

AND DEFOCUSED SYSTEMS 

A The PSF Recovery Algorithm 
Initially a knife-edge was setup on a lightbox so that it 

was angled with a slight offset to a row of pixels in the 

FPA. Its image was windowed (51 x 500 pixels) as shown 

in Fig. 8. Individual ESFs along the edge therefore 

contained 51 samples from black to white. This width was 

sufficient even for defocused lens measurements. 

The sampled ESFs were normalized to remove non-

uniform illumination along the direction of the edge. Next 

the central brightness positions of the ESFs were 

estimated using a cubic fit and the ESFs aligned to these. 

This alignment resulted in the samples being displaced 

relative to each other. The super-resolution edge was 

created by averaging the pixel intensities within sub-pixel 

bins to give a ten times resolution improvement. Having  
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obtained the mean ESF for a given distance, f-number and 

knife-edge angle it was necessary to find the PSF. The 

methods examined were:- Five-point numerical 

differentiation; Regularized numerical differentiation 

using Chartrand’s algorithm; Regularized numerical 

differentiation using Chartrand’s algorithm followed by a 

fit of the resulting PSF to a Generalized Gaussian 

function; Fitting the ESF to a sum of Fermi-Dirac 

functions [14]; Fitting the ESF to a defocused step 

assuming even illumination and a Gaussian PSF; Fitting 

the ESF to a defocused step where the illumination is 

assumed to have a linear dependence on position and a 

Gaussian PSF; Fitting the ESF to a defocused step 

assuming even illumination and a Generalized Gaussian 

PSF; Fitting the ESF to a defocused step where the 

illumination is assumed to have a linear dependence on 

position and a Generalized Gaussian PSF. In this section 

results for a 24mm photographic lens fitted to a Basler 

A631fc color camera are presented when the lightbox was 

0.725m from the camera. 
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Fig. 10. The actual ESF (dashed line) and Fermi-Dirac fitted ESF (solid line) results for f/2.8, 
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Fig. 11. Regularized numerical differentiation results 

(right) for α = 10 (dashed), α = 100 (dash-dot) and α = 

1000 (solid) 

 

B Specific 1D Results 
The results from the five-point numerical differentiation 

in Fig. 9 show that although the ESF looks fairly smooth, 

the noise is swamping the underlying PSF, thus making 

this approach unusable without further processing. 

When the measured ESF was fitted to a sum of 

Fermi-Dirac functions, as shown in Fig. 10, the ESF 

appeared to have a good fit, however the PSF neither had 

symmetry or a single peak. These are properties expected 

of a physical PSF.  

C Regularized Numerical Differentiation 
In order to determine the optimum regularization 

parameter α, a series of simulations were performed. 

Both pillbox and Gaussian PSFs were used to defocus an 

ideal step. Three levels of noise were added with SNRs 

of 20 (high noise), 25, and 30 (low noise) dB, and then 

the ESF was differentiated using Chartrand’s algorithm 
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[24]. The MSE was employed as a distance measure 

between the actual PSF and the result of the numerical 

differentiation. The value: α = 1000 was optimum for the 

SNR = 20 dB case, while α = 100 was optimum for 25 

and 30 dB. These values were employed in the modelling

 

Table 1. MSE results for f/2.8 as a function of the depth to the light box 

 Mean Square Error (MSE) / 10-3

Method 0.414m  0.491m  0.569m  0.647m  0.725m 

Fermi-Dirac  25.2  29.2  34.3  28.3  26.1 

Generalized Gaussian 

without I.C. 

10.3 7.37 9.03 5.58 6.45 

Generalized Gaussian 

with I.C. 

7.91 5.92 7.95 4.99 6.01 

Gaussian without I.C. 64.6 51.1 64.9 68.2 70.2 

Gaussian with I.C. 47.6 43.4 55.0 51.1 48.5 

Pillbox without I.C. 130.0 90.9 90.7 86.0 85.5 

Pillbox withI.C. 102.0 70.3 72.4 70.8 68.3 

 

of real ESFs. An example is shown in Fig. 11 where we 

have taken the low noise case because it illustrates a 

problem with the method in that it could not take into 

account non-uniform illumination and produced non-

symmetric PSFs.  

The remaining fitting methods produced PSFs with less 

noise and better symmetry, and so were processed further 

to give 2D results. 

 

Table 2. Mean MSE results for all three apertures from 

best to worst 

Method Average MSE / 

10-3

Generalized Gaussian with 

Illumination Correction 

5.04 

Generalized Gaussian without 

Illumination Correction 

6.93 

Sum of three Fermi-Dirac functions 26.7 

Gaussian with Illumination 

Correction 

42.5 

Gaussian without Illumination 

Correction 

56.7 

Pillbox with Illumination Correction 72.0 

Pillbox without Illumination 

Correction 

97.6 

 

D Edge Spread Function Fitting Experiments 
The ESFs were fitted to the various functions for a range 

of distances. The results for aperture f2.8 are displayed in 

Table 1. It shows the MSE of the fit as an average for all 

angles tested, which were -80 to +90 degrees in 10-degree 

intervals. The plane in-focus was at 0.414m in front of the 

lens. 

The results show that the error assuming a pillbox PSF 

decreases for increasing defocusing, which was expected 

from the diffraction-based optics theory in Section 3. The 

MSEs of the fits using Generalized Gaussian, Gaussian 

and pillbox models are lower when the non-uniform 

illumination was taken into account. The experiment was 

repeated for f-numbers of f4 and f5.6. In Table 2, the 

summarized results for all apertures show that the 

Generalized Gaussian with illumination correction has 

resulted in the lowest MSE, thus giving the best fit to the 

data. The pillbox model produced the worst results with a 

MSE about 14 times greater than that of the Generalized 

Gaussian. The MSE of the Gaussian fell almost half way 

between the Generalized Gaussian and the pillbox. 

E Results assuming Gaussian and Generalized 
Gaussian PSFs 
Images of the knife-edge were obtained in 1mm 

increments over a 30cm depth range for angles of -80 to 

+90 degrees in 10-degree increments. Each image gave a 

single mean ESF and that ESF was fitted assuming both 

Gaussian and Generalized Gaussian PSFs, as derived in 

Section 4. The PSFs were found to be very nearly 

circularly symmetric and so the following results are given 

for the x direction only. Fig. 12 shows the standard 

deviation of both the Gaussian and Generalized Gaussian 

as a function of distance for three different f-numbers 

tested. The plots appear to be smooth and increase 

monotonically, except for the Gaussian at the maximum 

distance tested for f2.8. Being more robust with increasing 

depth, the Generalized Gaussian is considered a better 

model for use with DFD [22]. 

The Generalized Gaussian PSF has two parameters, the 

standard deviation σ and the power p. When the power as 

a function of depth was plotted it was found to be noisier 

than σ as shown in Fig. 13. 

F Two-dimensional PSFs 
Complete 2D-PSFs are presented below assuming pillbox, 

Gaussian and Generalized Gaussian PSF models for two 

depths, corresponding to the furthest and closest positions 

tested. The non-uniform illumination improvement was 
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used. Figs. 14 to 16 show the PSFs for a distance, z = 

0.725m, between the camera and the lightbox for an 

aperture of f/2.8. 

The Gaussian PSF model shown in Fig. 14 is for a 

defocused lens, and is clearly circularly symmetric. The 

fit has resulted in a smooth contour plot. The Generalized 

Gaussian PSF model shown in Fig. 15 appears to be a  

cross between the Gaussian and a pillbox. The fit has 
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Fig. 12: Standard deviation against depth when fitting (left) a Gaussian PSF and (right) a Generalized Gaussian PSF 
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Fig. 13: The power of the Generalized Gaussian against 

depth 

 

resulted in a contour plot that is less smooth than for the 

Gaussian, which is probably due to noise in the ESFs and 

increased complexity of the function due to it having more 

parameters than all the other models. The pillbox model, 

Fig. 16, has resulted in a reasonably circular PSF. Figs. 17 

to 19 show the PSFs for z = 0.414m, the in focus case.  

Note the change of x and y axis scales in Figs. 17 to 19. 

Now all three models have less circularly symmetry and 

have a maximum spread at approximately 45 degrees to 

the x axis. The power of the Generalized Gaussian is less 

than two, and so the function is more pointed than that for 

the Gaussian. 

G Discussion 
The goodness-of-fit of the Generalized Gaussian PSF is 

exemplified by the results of Table 3. Where the non-

uniform illumination model was employed, the fit was 

between 9 and 16 times better than using a Gaussian PSF. 

The Gaussian PSF has a faster roll-off when the camera is 

very defocused compared to that using the Generalized 

Gaussian because the power of the Generalized Gaussian 

increases with defocus, making it more pillbox in shape, as 

highlighted in Fig. 20. 
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Fig. 14. 2D PSF assuming a Gaussian model for z = 0.725m and f2.8 where x and y are in pixels 
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Fig. 15: 2D PSF assuming a Generalized Gaussian model for z = 0.725m and f2.8 where x and y are in pixels 
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Fig. 16: 2D PSF assuming a Pillbox model for z = 0.725m and f2.8 where x and y are in pixels 
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Fig, 17: 2D PSF assuming a Gaussian model for z = 0.414m and f2.8 where x and y are in pixels 
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Fig. 18: 2D PSF assuming a Generalized Gaussian model for z = 0.414m and f2.8 where x and y are in pixels 
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Fig. 19: 2D PSF assuming a Pillbox model for z = 0.414m and f2.8 where x and y are in pixels 
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Table 3. The average MSE for each method 

Average Mean Square Error (MSE) 

/ 10-3

Method, direction  f/2.8 f/4  
f/5.6 

Gaussian, x-

direction  
31.7 21.9  23.3  

Gaussian, y-

direction  
46.1 27.3  23.7  

Generalized 

Gaussian,  

x-direction  

2.20 1.67  1.42  

Generalized 

Gaussian,  

y-direction  

4.99 2.44  1.87  
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Fig. 20: Comparison between PSFs for the Gaussian 

(dashed line) and Generalized Gaussian (solid line) 

 

6 CONCLUSION 

We have reported improvements to an easily performed 

super-resolution, but averaged, PSF estimation method 

that enables it to be used for focused and defocused lenses 

and with noise generated within the camera. The method 

involved the initial accumulation of a super-resolution 

ESF. Previously the calculation of the PSF from the ESF 

could give both noisy and distorted results.  

Distortions were attributed to non-uniform illumination of 

the knife-edge test object. Where a model of the 

illumination could be incorporated into the computation 

of the PSF, symmetrical functions resulted.  

Previously noise in the ESF was amplified when it was 

differentiated to form the PSF. We researched a 

regularized numerical differentiation that greatly reduced 

the noise. However changes to the value of the 

regularization parameter chosen resulted in varying 

distortions of the PSF. The method was not constrained 

by any assumption of an underlying model of the ESF or 

PSF, but in practice, it was found to be outperformed by 

methods that did. 

Several widely used models of the PSF were investigated 

including the pillbox and Gaussian, together with the use 

of Fermi-Dirac fitting functions. A Generalized Gaussian 

that incorporated both pillbox, Gaussian, and a continuum 

of models in between, through the choice of a parameter, 

was also used to model the PSF. The corresponding 

models for the ESF were derived from these as reported in 

the paper. The results showed that the MSE of the fit using 

the Generalized Gaussian performed best across the range 

of distances and f-numbers tested and that it was 8 times 

better than the Gaussian model and 14 times better than 

the pillbox model. Pillbox and Gaussian models are often 

assumed in DFD work and this research has shown that 

both are sub-optimum. Finally, 1D PSFs for various knife-

edge angles were combined to form 2D PSFs. 

 

REFERENCES 
1. R.G. White and R.A. Schowengerdt, “Effect of point 

spread functions on precision step edge 

measurement”, J. Opt. Soc. Am. A-Optics 11, 2593-

2603 (1994). 

2. R.C. Staunton, “Edge operator error estimation 

incorporating measurements of CCD TV camera 

transfer function”, IEE P-Vis. Image Sign. 145, 229-

235 (1998). 

3. R.C. Staunton, “Detected edge evaluation using 

measured acquisition system parameters”, Pattern 

Recogn. Lett. 26, 1609-1619 (2005). 

4. A. Pentland, “A new sense for depth of field,” IEEE 

T. Pattern Anal. 9, 523-531 (1987). 

5. M. Subbarao and N. Gurumoorthy, “Depth recovery 

from blurred edges,” In Proceedings of IEEE 

Conference on Computer Vision and Pattern 

Recognition (IEEE, 1988), pp. 498-503. 

6. J. Ens and P. Lawrence, “An investigation of methods 

for determining depth from focus,” IEEE T. Pattern 

Anal. 15, 97-108 (1993). 

7. M. Subbarao and G. Surya, “Depth from defocus: a 

spatial domain approach,” Int. J. Comput. Vis. 13, 

271-294, (1994). 

8. A.N. Rajagopalan and S. Chaudhuri, “A variational 

approach to recovering depth from defocused 

images,” IEEE T. Pattern Anal. 19, 1158-1164 (1997). 

9. M. Watanabe and S. Nayar, “Rational Filters for 

Passive Depth from Defocus,” Int. J. Comput. Vis. 27, 

203-225 (1998). 

10. Li-Ma and R. C. Staunton, "Integration of 

multiresolution image segmentation and neural 

networks for object depth recovery", Pattern Recogn. 

38, 985-996 (2005). 

11. P. Favaro and S. Soatto, “A geometric approach to 

shape from defocus” IEEE T. Pattern Anal. 27, 406-

417 (2005). 

 13



12. D.K. Schroder, Advanced MOS Devices (Addison 

Wesley, 1987). 

13. S.E. Reichenbach, S.K. Park and R. Narayanswamy, 

“Characterizing digital image acquisition devices”, 

Opt. Eng. 30, 170-177, (1991). 

14. A.P. Tzannes and J.M. Mooney, “Measurement of 

the modulation transfer function of infrared 

cameras”, Opt. Eng. 34, 1808-1817 (1995). 

15. D. Kavaldjiev and Z. Ninkov, “Influence of 

nonuniform charge-coupled device pixel response on 

aperture photometry”, Opt. Eng. 40, 162-169 (2001). 

16. G. Boreman and E.L. Dereniak, “Method for 

measuring modulation transfer-function of charge-

coupled-devices using laser speckle”, Opt. Eng. 25, 

148-150 (1986). 

17. J.C. Feltz and M.A. Karim “Modulation transfer-

function of charge-coupled-devices”, Appl. Optics 

29, 717-722 (1990). 

18. M. Marchywka and D.G. Socker, “Modulation 

transfer-function measurement technique for small-

pixel detectors”, Appl. Optics 31, 7198-7213 (1992). 

19. A. Daniels, G.D. Boreman and A.D. Ducharme, 

“Random transparency targets for modulation 

transfer-function measurement in the visible and 

infrared regions”, Opt. Eng. 34, 860-868 (1995). 

20. A. Rosenfeld and A. C. Kak, Digital picture 

processing, 1, (Academic, 1982). 

21. T.J. Schultz, “Multiframe image restoration”, in 

Handbook of Image and Video Processing, A. Bovic 

ed. (Academic, 2000), pp. 175-189. 

22. C.D. Claxton, “Colour Depth-from-defocus 

incorporating experimental point spread function 

measurements”, (Ph.D. dissertation, Univ. Warwick, 

Coventry, U.K. Jan 2007). 

23. A. Tarantola, Inverse problem theory: Methods for 

data fitting and model parameter estimation, 

(Elsevier, 1987). 

24. R. Chartrand, “Numerical differentiation of 

noisy, nonsmooth data,” 
http://math.lanl.gov/Research/Publications/Docs/char

trand-2005-numerical.pdf 

 14

http://math.lanl.gov/Research/Publications/Docs/chartrand-2005-numerical.pdf
http://math.lanl.gov/Research/Publications/Docs/chartrand-2005-numerical.pdf

	6 CONCLUSION

