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Abstract 

The momentum distribution of the proton in liquid and solid hydrogen has been 

measured by neutron Compton scattering (NCS), at energy transfers between 3 and 50 

e V. The data display features due to the first observation of interference between the 

proton and neutron wavefunctions and are accurately described by a simple quantum 

mechanical model, incorporating previous spectrocopic data. The excellent agreement 

between calculation and data in this simple system demonstrates that the NCS technique 

can provide accurate information about the behaviour of the proton in condensed 

matter. There are many applications ofNCS to more complex physical systems of 

fundamental interest in physics, chemistry and biology. 
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A MEASUREMENT OF THE PROTON WAYEFUNCTION IN MOLECUidAR 

HYDROGEN BY NEUTRON COMPJON SCATTERING 

The possibility of measuring nuclear momentum distributions in condensed matter 

systems by neutron scattering was first suggested by Hohenberg and Platzmann [1] 

nearly 30 years ago. The method is analagous to the measurement of electron 

momentum distributions by Compton scattering [2] and measurement of nucleon 

momenta by Deep Inelastic Scattering [3] and is known as Neutron Compton Scattering 

(NCS) or Deep Inelastic Neutron Scattering (DINS). The theoretical basis of all three 

techniques is the impulse approximation (lA), which is exact when the momentum 

transfer ij and energy transfer ro are infinite [ 4,5,6]. When the lA is valid, the scattering 

cross section is proportional to the distribution of nuclear momentum components 

along the direction of ij and can be used to determine nCp), the distribution of nuclei 

(and hence atoms) in momentum space. 

NCS measurements on protons have a particularly simple interpretation, as the 

interaction of protons with other atoms can usually be accurately accounted for [7 ,8] in 

terms of a single particle potential and hence by a proton wavefunction. From 

elementary quantum mechanics, n(p) is related to the Fourier transform of the proton 

wavefunction 'l'(r) via, 

n(jJ) = _1_31J 'l'(r)exp(ip.F)drl2 
(21t) 

(1) 

and an NCS measurement of nCp) can be used to determine the wavefunction in an 

analagous way to the determination of real space structure from a diffraction pattern. In 

principle such measurements can provide very detailed information about the 

behaviour of the proton in a variety of systems of fundamental interest in physics, 

chemistry and biology. 

NCS measurements on protons have only become possible since the construction of 

intense accelerator based neutron sources, which have allowed accurate inelastic 

neutron scattering measurements with energy transfers in the eV region [9]. For NCS 

measurements on the ·proton in molecular hydrogen, energy transfers much greater than 

the vibrational frequency of the molecule (516 me V [ 10]), are required before the lA 

can be used to reliably determine n(p). At lower energy transfers the lA is no longer 

valid and n(p) is not related in a simple way to the observed scattering intensities. In 

sytems with weaker binding, lower energy transfers can be used and many early NCS 
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measurements were performed on helium at relatively low energy and momentum 

transfers, (0> < 300 me V and q< 15 A-1). These studies were motivated primarily by 

the possibility of directly observing the Bose condensate fraction in superfluid 4He 

[11,12,13,14,15]. More recently NCS measurements with 15<q<40 A-1 and incident 

energies up to 2 eV have been made on condensed phases of helium16 and neon17. 

There have been a few pioneering studies on various systems at e V energy transfers 

[18,19,20]. Measurements on molecular hydrogen have also been made, with 0> 

insufficient to excite vibrational transitions [21,22]. This allows a measurement of the 

centre of mass motion of H2 molecules rather than the momentum distribution of 

individual protons. The measurements described here were made with 3<ro<50 eV and 

30<q<130A-1. At such high values of qand ro, accurate NCS measurements can be 

made even in strongly bound systems such as hydrogen. 

The formal statement of the lA in neutron scattering is [23] 

SCq ro) = fn(p)B ro+L- P q 'P 
( 

2 C+_i, 
' 2M 2M 

(2) 

where S(q,ro) is the dynamic structure factor, n(p) is the nuclear momentum 

distribution, p is the atomic momentum and M is the nuclear mass. The B function 

expresses the conservation of kinetic energy, which applies to the collision between the 

nucleus and the neutron when the lA is satisfied. When the scattering sample is isotropic 

it can be shown that [5], 

where 

and 

M 
S(q,ro) =-J(y) 

q 

J(y) = 21t ~;pn(p)dp 

(3) 

(4) 

(5) 

J(y)dy is the probability that an atom has momentum component along q with 

magnitude between y and y + dy and is known as the Compton profile. Equations 3 to 5 

express the 'y scaling' property of the neutron cross section at sufficiently high q [24]. 
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The measurements were performed on the electron volt spectrometer e VS at the ISIS 

neutron source [25]. A filter difference technique [26], with a gold foil analyser, was 

used to fix the energy of the scattered neutron at 4. 922 e V. Time of flight techniques 

[27] were used to determine the energy of the incident neutron and hence S(q,ro). The 

sample of para hydrogen was measured at temperatures of 20K and 4K (the liquid and 

solid phases respectively) and was a 5% scatterer, contained in a planar aluminium can 

with a sample thickness of -lmm and with the sample plane perpendicular to the 

incident beam. Measurement times were 24 hours at each temperature. Due to the y 

scaling property mentioned above, all scans through q ,m space map on to the same 

function J(y). Thus providing the lA is well satisfied the measurements of J(y) at 

different angles differ only in the width of the instrument resolution function and can be 

averaged to improve statistical accuracy. As the differences observed between the 4.9K 

and 20K data were at the limits of measurement accuracy, the data sets at the two 

temperatures were also averaged, to further reduce the statistical error. 

Figure la shows the average of Compton profiles measured in 10 3He gas detectors 

at angles between 35 and 45°, Figure 1 b that for 10 detectors between 45 and 55° and 

le for 20 detectors at angles between 55 and 75°. The instrument resolution function 

[25,28] is also shown for each of these data sets, together with the energy and 

momentum transfers corresponding to the detector at the centre of each bank. There is 

a small multiple scattering component in the data which is visible at large positive y 

values , particularly in the data sets at the two lower angles and this has been fitted by a 

second order polynomial. 

It follows from the physical significance of the Compton profile that J (y) should be 

symmetric about y = 0. However the data in Figure 1 shows small systematic shifts of 

the peak of the distribution towards negative y, due to inaccuracies in the lA which are 

present at the finite q of the measurement. It has been shown by Sears [5] that 

symmetrisation of data about y = 0 removes most of these inaccuracies and this 

procedure has been followed to produce the data shown in Figure 2. The data from all 

detectors between 35° and 55° has been averaged and the multiple scattering 

background subtracted before symmetrisation. 

The results are well described by a simple quantum mechanical model. It is assumed 

that the hydrogen molecule is bound by a harmonic potential and that its centre of mass 

translational motion is independent of its vibration along the bond axis. The latter 

approximation is highly accurate due to the different energy scales involved in the two 
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types of motion. J (y) is then the convolution of the momentum distributions for the 

vibrational and translational motions considered separately. 

(6) 

The translational momentum distribution lr (y) is approximated by a Gaussian function. 

lr(y) = ~ 1 exp( -l2 J 
21tcrr 2 2crr 

(7) 

From previous measurements [21] the kinetic energy of the centre of mass motion is 63 

±6K in the liquid at 17K and 76±9 in the solid at lOK. Taking the average of these 

values as 70K, the translational kinetic energy of each atom is 35K =3crr 
2 
/C2M) and 

crr=0.70 A-1. 

The momentum distribution lv (y) associated with vibration along the bond can be 

determined from the wave function of the proton in the molecule. Since the binding is 

assumed harmonic, each atom will have a Gaussian probability distribution along the 

bond axis, centred at its mean position at distance R from the centre of mass, where 2R 

is the bond length. In parahydrogen below 20K only the J=O state of rotation is 

thermally occupied and the molecular wavefunction has no directional dependence. 

Thus the wave function of each proton is a spherical shell. 

where the mean square displacement of the atom from its mean position along the 

bond is cr2 I 2 ( = J r 21'¥ (r)l2 
dr) . The normalisation constant in equation 8 is 

approximate in that it relies upon the shell width being small compared to R, and 

neglects terms of order eifc[R2 I (a 
2
)), where eifc(x) is the complementary error 

function . Neglecting terms of order eifc[ R2 I (2cr2
)] equations 1 and 8 give, 

(8) 

n(p) = 
312 2 

2 ~ 
2 

(pcr2 
cos pR + R sin pRY exp( -cr2 p 2

) (9) 
1t p (cr +2R ) 

The bond length is accurately known from spectroscopic measurements (R=0.3405 A 

[10]) and the value of cr can be determined from the frequency of molecular vibration. 
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In the vibrational gound state the total kinetic energy of molecular vibration is rov /4 

where rov is the vibrational frequency . Thus each atom has kinetic energy rov /8 and 

since the potential is assumed harmonic, the momentum distribution is Gaussian with a 

standard deviation of crv = ~Mrov/48. With Olv=516 me V, crv=5.577 A-1 and the 

mean square displacement of the atom from its mean position along the bond is 

cr
2
/2=1/(4cr/); thus cr = 0.1269 A. With these values of cr and R, the 

approximations involved in the derivation of equation 9 are accurate to better than one 

part in 106. 

The functions fv (y) and J(y), calculated from equations 5,6,7 and 9 using the values 

of cr ,R and crr obtained above are shown in Figure 3, together with the convolution 

of J(y) with the average instrument resolution function for the 35°-55° bank of 

detectors. The solid line in Figures la-le is fit to a convolution of the model J(y) with 

the resolution function. The only fitting parameters are a scale factor, the position of 

the distribution and the polynomial coefficients, which account for the multiple 

scattering background. The values of cr ,R and crr were fixed at the values given 

above. It can be seen that the model gives excellent agreement with the measurements 

at all angles. The small shift in the peak position from the expected value at y = 0, 

which decreases as q increases, is due to inaccuracies in the lA. The solid line in Figure 

2a is the calculated J (y) after convolution with the resolution function- there are no free 

parameters. The difference between the predictions of the model and the symmetrised 

data is shown in figure 2b as the points oo. The good agreement between data and 

calclulation suggests that the symmetrisation effectively removes the small deviations 

from the lA which are observed in the data. A fit to the data shown in figure 2a, with R 

and a as free parameters gave R=0.356±0.003 A and a=5.70±0.03 A-1, in good 

agreement with the values of 0.37 and 5.577 obtained from spectroscopy, although 

outside the quoted statistical error, due to small systematic errors. 

The importance of including the oscillatory terms in equation 9 is demonstrated by the 

predictions of a classical model, which neglects the wave nature of the proton. It is 

assumed that the molecule is a classical linear vibrator and that each proton has a 

Gaussian momentum distribution along the bond. Averaging over all possible directions 

of the bond axis in space, to take account of the isotropy of the sample gives 

1 
n(p)=-2 2 ny(p) 

1tp 
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where "v (p) is the distribution of momentum components along the bond. A 

calculation using equations 5,6,7 and 10 gives the results shown as the dashed line in 

Figure 2a. The difference between the classical and the quantum models is shown as the 

solid line in figure 2b. The same values of the vibrational and translational kinetic 

energies were used in both calculations. The difference displays oscillations with a first 

maximum at y z n/ (2R). This is well reproduced by the points xx, which are the 

difference between the data and the classical prediction. The oscillations in the data are 

the first observation of interference between the proton and neutron wavefunctions. 

The future applications of NCS measurements from protons and deuterons are very 

wide. An example is the hydrogen bond where NCS can determine whether the 

observed bi-modal distribution of the proton in hydrogen bonds is the result of statistical 

or quantum disorder [29]. The information obtained from NCS is qualitatively different 

to that given by neutron diffraction measurements. The latter determine an infinite time 

average of the spatial distribution of the proton, wheras the former measures the proton 

wavefunction on a very short timescale. Thus NCS can distinguish between quantum 

tunneling and thermally induced hopping of the proton between different sites. One 

application is to the study of the mechanism of protonic diffusion in metals, 

semiconductors and ionic conductors. Another is to the determination of the proton 

wavefunction in molecules which undergo rotational tunnelling [30]. In the latter case 

an independent measurement of the molecular centre of mass motion can be made by 

NCS measurements on heavier atoms in the molecule. 

The very close agreement between data and calculation in this simplest of protonic 

condensed matter systems, demonstrates that NCS measurements have now reached a 

high level of accuracy. It shows that wavefunctions of protons can be determined even 

in isotropic samples, such as liquids, powders, amorphous materials and polymers. 

Much more detailed information about the proton wavefunction can be obtained from 

single crystal samples, where NCS allows a model independent reconstruction of both 

the proton wavefunction and the potential well of the proton in three dimensions [29]. 

Orders of magnitude increases in the accuracy of NCS measurements will soon be 

produced by improvements in countrate and resolution and it seems certain that future 

measurements will provide precise and unique information about the short time 

dynamics of protons, in many condensed matter systems of fundamental physical 

interest. 
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FiKure Caotjons 

FiKure 1. 

The data points are the average of the measured neutron Compton profiles obtained 

from detectors in three different angular ranges. (a) 35°-45°, (b) 45°-55°, (c) 55°-75°. 

The solid line is the fit described in the text. The resolution function is shown for each 

data set as a dashed line. 

FiKure 2 

In (a) the points oo are the sum of data from 20 detectors at scattering angles between 

35° and 55° after subtraction of multiple scattering and symmetrisation. The solid line is 

the calculation using equation 9 and the dashed line that using equation 10, both after 

convolution with the instrument resolution function. Figure 2b shows the difference 

between the data and the two models. oo equation 9, xx equation 10. The solid line is 

the difference between the quantum and classical models. 

The solid line is the lv (y) calculated from equation 9, the dotted line is the convolution 

of lv (y) and lr (y) ie J(y) of equation 6. The dashed line is the convolution of J(y) 

with the instrument resolution function used in Figure 2. 
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