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Measurement of the Sensitivity Function
in a Time-Domain Atomic Interferometer

Patrick Cheinet, Benjamin Canuel, Franck Pereira Dos Santos, Alexandre Gauguet,
Florence Yver-Leduc, and Arnaud Landragin

Abstract—We present here an analysis of the sensitivity of
a time-domain atomic interferometer to the phase noise of the
lasers used to manipulate the atomic wave packets. The sensitivity
function is calculated in the case of a three-pulse Mach—-Zehnder
interferometer, which is the configuration of the two inertial sen-
sors we are building at the Laboratoire National de Métrologie
et d’Essais-Systeme de Références Temps-Espace. We success-
fully compare this calculation to experimental measurements. The
sensitivity of the interferometer is limited by the phase noise
of the lasers as well as by residual vibrations. We evaluate the
performance that could be obtained with state-of-the-art quartz
oscillators, as well as the impact of the residual phase noise of
the phase-locked loop. Requirements on the level of vibrations are
derived from the same formalism.

Index Terms—Atomic physics, gyroscopes, interferometry, laser
noise, phase-locked loops (PLLs), phase noise, vibrations.

I. INTRODUCTION

TOM optics are a means to realize precision measure-

ments in various fields. Atomic microwave clocks are
the most precise realization of a Systéme Internationale unit,
namely, the second [1], and high-sensitivity inertial sensors
[2]-[4], based on atomic interferometry [5], already reveal
accuracies that are comparable with state-of-the-art sensors
[6], [7]. Two cold atom inertial sensors are currently under con-
struction at the Laboratoire National de Métrologie et d’Essais-
Systtme de Références Temps-Espace (LNE-SYRTE)—a
gyroscope [8], which already reaches a sensitivity of 2.5 x
10 rad-s™! - Hz V/ 2 and an absolute gravimeter [9], which
will be used in the LNE watt Balance project [10]. Although
based on different atoms and geometries, the atomic gyroscope
and gravimeter rely on the same principle, which is presented
in Fig. 1. Atoms are collected in a 3-D magnetooptical trap
(3-D-MOT) in which the atoms are cooled down to a few
microkelvins. In the gyroscope, '3Cs atoms are launched
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Fig. 1. Scheme of principle of our inertial sensors, which is illustrated for the
gyroscope experiment. Cold atoms from the 3-D-MOT are launched upward,
and a pure quantum state is selected. At the top of their trajectory, we apply
three Raman laser pulses realizing the interferometer. Finally, a fluorescence
detection allows measurement of the transition probability. Such an interferom-
eter is sensitive to the rotation (£2) perpendicular to the area enclosed between
the two arms and to the acceleration along the laser’s axis.

upward with an angle of 8°, with respect to verticality using the
technique of moving molasses, whereas in the gravimeter, 3"Rb
atoms are simply allowed to fall. Then, the initial quantum state
is prepared by a combination of microwave and optical pulses.
The manipulation of the atoms is realized by stimulated Raman
transition pulses [11], using two counterpropagating lasers,
which drive coherent transitions between the two hyperfine
levels of the alkali atom. Three laser pulses, of durations 7r,
27R, and TR, separated in time by 7', respectively split, redirect,
and recombine the atomic wave packets, creating an atomic
interferometer [12]. Finally, a fluorescence detection gives a
measurement of the transition probability from one hyperfine
level to the other, which is given by P = (1/2)(1 — cos(®)),
being the interferometric phase. The phase difference between
the two Raman lasers (which we will call the Raman phase
throughout this paper, and will be denoted as ¢) is imprinted at
each pulse on the phase of the atomic wave function [13]. As ¢
depends on the position of the atoms, the interferometer is sen-
sitive to inertial forces and can thus measure rotation rates and
accelerations. A drawback of this technique is that the measure-
ment of the interferometric phase is affected by the phase noise
of the Raman lasers as well as parasitic vibrations. The aim of
this paper is to investigate both theoretically and experimentally
how these noise sources limit the sensitivity of such an atomic
interferometer.
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II. SENSITIVITY FUNCTION

The sensitivity function is a natural tool to characterize the
influence of the fluctuations in the Raman phase ¢ on the
transition probability [14] and, thus, on the interferometric
phase. Let us assume that a phase jump d¢ occurs on the Raman
phase ¢ at time ¢ during the interferometer sequence, inducing a
change of § P(d¢, t) in the transition probability. The sensitivity
function is then defined by

g(t) =2 lim 0P(3¢,1) (1)

sp—0 O

The sensitivity function can easily be calculated for infini-
tesimally short Raman pulses. In this case, the interferometric
phase ® can be deduced from the Raman phases ¢1, ¢, and ¢3
during the three laser interactions, taken at the position of the
center of the atomic wave packet, i.e., ® = ¢1 — 2¢5 + @3 [15].
Usually, the interferometer is operated at ® = /2, for which
the transition probability is one half, to get the highest sensi-
tivity to interferometric phase fluctuations. If the phase step d¢
occurs, for instance, between the first and the second pulses, the
interferometric phase changes by & = —J¢, and the transition
probability by 6 P = — cos(7/2 + §®)/2 ~ —¢/2 in the limit
of an infinitesimal phase step. Thus, in between the first two
pulses, the sensitivity function is —1: the same way one finds
for the sensitivity function between the last two pulses, i.e., +1.

In the general case of finite-duration Raman laser pulses,
the sensitivity function depends on the evolution of the atomic
state during the pulses. To calculate ¢(t), we make several
assumptions. First, the laser waves are considered as pure plane
waves. The atomic motion is then quantized in the direction
parallel to the laser beams. Second, we restrict our calculation
to the case of a constant Rabi frequency (square pulses). Third,
we assume that the resonance condition is fulfilled. The Raman
interaction then couples the two states |a) = |g1, P’) and |b) =
lg2, 7 + h?efw, where |¢g1) and |g2) are the two hyperfine
levels of the ground state, 7’ is the atomic momentum, and ?Cﬁ‘
is the difference between the wave vectors of the two lasers.

We develop the atomic wave function on the basis set
{la),|b)} so that |T(t)) = Cu(t)|a) + Cu(t)|b) and choose
the initial state to be |¥(¢;)) = |¥;) = |a). At the output
of the interferometer, the transition probability is given by
P =|Cy(ts)?, where ty =t; + 2T + 47r. The evolution of
Cq and Cy, from ¢; to ¢ is given by

Oa t a tz
(G g (G0 o
Col(ty) Co(t:)
where M is the evolution matrix through the whole inter-
ferometer. Solving the Schrodinger equation gives the evolu-

tion matrix (3), shown at the bottom of the page, during a
Raman pulse [16], from time ¢ to time ¢, where Qg /27 is the
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Rabi frequency, and wy, which is the effective frequency, is
the frequency difference between the two lasers wy, = wy — wy.
Setting Qg = 0 in M, (to,t,2r, @) gives the free evolution
matrix, which determines the evolution between the pulses. The
evolution matrix for the full evolution is obtained by taking the
product of several matrices. When ¢ occurs during the ¢th laser
pulse, we split the evolution matrix of this pulse at time ¢ into
two successive matrices—the first one with ¢; and the second
one with ¢ = ¢; + d¢.

Finally, we choose the time origin at the middle of the
second Raman pulse. We thus have t; = —(T + 27g) and
ty =T + 27r. We then calculate the change in the transition
probability for an infinitesimally small phase jump at any time ¢
during the interferometer and deduce g(¢). It is an odd function,
whose expression is given here for ¢ > 0. Thus, we have

O0<t<Tr
TR<t<T+71R @)
T+7mr<t<T+4+275.

sin(QRt),
gt) =41,
—sin (Qr(T — 1)),

When the phase jump occurs outside the interferometer, the
change in the transition probability is null, so that g(¢) = 0 for
‘t| > T+ 27R.

To validate this calculation, we use the gyroscope experiment
to experimentally measure the sensitivity function. About 108
atoms from a background vapor are loaded in a 3-D-MOT
within 125 ms, with six laser beams tuned to the red of the
F =4 — F' =5 transition at 852 nm. The atoms are then
launched upward at ~2.4 m/s within 1 ms and cooled down to
an effective temperature of ~2.4 K. After launch, the atoms
are prepared into the |F' = 3, mp = 0) state using a combina-
tion of microwave and laser pulses. They first enter a selec-
tion cavity tuned to the |[F' = 4, mp = 0) — |F = 3, mp = 0)
transition. The atoms left in the F' = 4 state are pushed away
by a laser beam tuned to the F' = 4 — F' = 5 transition, 11 cm
above the selection cavity. The selected atoms then reach
the apogee 245 ms after the launch, where they experience
three interferometer pulses of duration 7p — 27 — 7 Wwith
Tr = 20 ps separated in time by 7' = 4.97 ms. The number
of atoms Np_3 and Np—4 are finally measured by detecting
the fluorescence induced by a pair of laser beams located 7 cm
below the apogee. From these measurements, we deduce the
transition probability Np—4/(Np—3 + Np—4). The total num-
ber of detected atoms is about 10°. The repetition rate of the
experiment is 2 Hz.

The setup for the generation of the two Raman laser beams
is displayed in Fig. 2. Two slave diode lasers of 150-mW
output power are injected with extended cavity diode lasers.
The polarizations of the slave diode output beams are made
orthogonal so that the two beams can be combined onto a
polarization beam splitter cube. The light at this cube is then
split in two distinct unbalanced paths.

—1e

e—iwa(t—t0) cog (QiR(t _ to)) o~ iwa(t—to) pilwrtot+®) gip (QTR(t — to)) > 3)

- 2
M,y (to,t,Qr, ¢) = (_ieiwb(tto)ei(tho+¢) sin (22 (t — t))

e~ iwn(t—t0) cog (Q—QR(t — o))
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Fig. 2. Principle of the laser phase lock. The beatnote at 9.192 GHz between the two Raman lasers is observed on a fast response photodetector. After

amplification, this beatnote is mixed with the reference frequency at 9.392 GHz
with the reference frequency at 200 MHz from the same frequency chain to get
laser and to the PZT that controls the laser cavity length.

On the first path, most of the power of each beam is sent
through an optical fiber to the vacuum chamber. The two beams
are then collimated with an objective attached onto the chamber
(waist wg = 15 mm). They enter together through a viewpoint,
cross the atomic cloud, and are finally retroreflected by a mirror
fixed outside the vacuum chamber. In this geometry, four laser
beams are actually sent onto the atoms, which interact with
only two of them, because of selection rules and resonance
conditions. The interferometer can also be operated with co-
propagating Raman laser beams by simply blocking the light in
front of the retroreflecting mirror. A remarkable feature of this
experiment is that the three interferometer pulses are realized
by this single pair of Raman lasers that is turned on and off
three times, the middle pulse being at the top of the atoms’
trajectory. For all the measurements described in this paper,
the Raman lasers are used in the copropagating configuration.
The interferometer is then no longer sensitive to inertial forces
but remains sensitive to the relative phase of the Raman lasers.
Moreover, as such Raman transitions are not velocity selective,
more atoms contribute to the signal. All this allows us to reach a
good signal to noise ratio of 150 per shot. We insist here on the
fact that the formalism developed in this paper does not depend
on the geometry of the Raman beams. We test the model with
copropagating Raman measurements, but it applies as well to
the case of counterpropagating measurements.

The second path is used to control the Raman laser phase
difference, which needs to be locked [17] onto the phase of a
very stable microwave oscillator. The phase-locked loop (PLL)
scheme is also displayed in Fig. 2. The frequency difference
is measured by a fast photodetector, which detects a beatnote
at 9.192 GHz. This signal is then mixed with the signal of
a dielectric resonator oscillator (DRO) tuned at 9.392 GHz.
The DRO itself is phase locked onto the 94th harmonics of a
very stable 100-MHz quartz. The output of the mixer (IF) is
200 MHz. A local oscillator (LO) at 200 MHz is generated by
doubling the same 100-MHz quartz. IF and LO are compared

from the frequency chain to obtain a signal at 200 MHz. This signal is compared
an error signal. This error signal is then processed and sent to the current of the
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Fig. 3. Atomic sensitivity function g(¢) as a function of time for a three-
pulse interferometer with a Rabi frequency Qr = (7/27R). The theoretical
calculation is displayed in solid line and the experimental measurement in
crosses. A zoom is made on the first pulse.

using a digital phase and frequency detector, whose output
is used as the error signal of the PLL. The relative phase of
the lasers is stabilized by reacting on the current of one of
the two diode lasers, as well as on the voltage applied to the
piezoelectric transducer (PZT) that controls the length of the
extended cavity diode laser [17].

To measure g(t), a small phase step of d¢ = 0.107 rad is
applied at time ¢ on the LO. The PLL copies this phase step onto
the Raman phase within a fraction of a microsecond, which is
much shorter than the Raman pulse duration of 7z = 20 us.
Finally, we measured the transition probability as a function
of t and deduced the sensitivity function. We display in Fig. 3
the measurement of the sensitivity function compared with the
theoretical calculation. We also realized a precise measurement
during each pulse and clearly obtained the predicted sinusoidal
rise of the sensitivity function.

For a better agreement of the experimental data with the
theoretical calculation, the data are normalized to take into



1144

account the interferometer’s contrast, which was measured to
be 78%. This reduction in the contrast with respect to 100% is
due to the combined effect of inhomogeneous Rabi frequencies
between the atoms and unbalanced Rabi frequencies between
the pulses. Indeed, the atomic cloud size of 8 mm is not
negligible with respect to the size of the single pair of Raman
Gaussian beams: wg = 15 mm. Atoms at both sides of the
atomic cloud will not see the same intensity, inducing variable
transfer efficiency of the Raman transitions. Moreover, the
cloud moves by about 3 mm between the first and the last
pulse. In order for the cloud to explore only the central part of
the Gaussian beams, we choose a rather small interaction time
of T'= 4.97 ms with respect to the maximum interaction time
possible of 7" = 40 ms. Still, the quantitative agreement is not
perfect. One particularly observes a significant asymmetry of
the sensitivity function, which remains to be explained. A full
numerical simulation could help in understanding the effect of
the experimental imperfections.

III. TRANSFER FUNCTION OF THE INTERFEROMETER

From the sensitivity function, we can now evaluate the fluc-
tuations of the interferometric phase ® for an arbitrary Raman
phase noise ¢(t) on the lasers as

T sl

t
so= [gwaot) = [ o) a
The transfer function of the interferometer can be obtained by
calculating the response of the interferometer phase ® to a
sinusoidal modulation of the Raman phase, given by ¢(t) =
Ag cos(wot + ). We find 0P = Agwolm(G(wyp)) cos(v),
where G is the Fourier transform of the sensitivity function.

Thus, we have

—+o00

Glw) = / ety (t)dt, ©)

—0o0

When averaging over a random distribution of the modu-
lation phase ), the rms value of the interferometer phase is
0P = | AgwoG(wp)|. The transfer function is thus given by
H(w) = wG(w). If we now assume uncorrelated Raman phase
noise between successive measurements, the rms standard de-
viation of the interferometric phase noise og"* is given by

+o00
(067)" = [ [HW)[*S4(w)dw ()
/

where Sy (w) is the power spectral density of the Raman phase.
We calculate the Fourier transform of the sensitivity function
and find

o) = 4iQr . <w(T+2TR)>

sin
2 _ 02
w Q% 2

X (cos (M) + %sin (WT>> ®)
2 w 2
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Fig. 4. Calculated weighting function for the Raman phase noise as a function
of frequency. Below 1 kHz, the exact weighting function is displayed. It shows
an oscillation with a period frequency of 6 f = 1/(T" + 27). Above 1 kHz, only
the mean value of the weighting function over ¢ f is displayed. The weighting
function acts as a first-order low-pass filter, with an effective cutoff frequency

of fo = (v/3/3)(Qr/2m).

At low frequency, where w < (g, the sensitivity function
can be approximated by

Gw) = —% sin?(wT/2). )

The weighting function | H (27 f)|? versus the frequency f is
displayed in Fig. 4. It has two important features. The first one
is an oscillating behavior at a frequency given by 1/(T + 27r),
leading to zeros at frequencies given by fr = k/(T + 27R).
The second is a low-pass first-order filtering due to the finite
duration of the Raman pulses, with an effective cutoff frequency
fo, given by fo = (v/3/3)(Q2r/27). Above 1 kHz, only the
mean value over one oscillation is displayed on the figure.

To measure the transfer function, a phase modulation
A, cos(27 ft + 1) is applied on the Raman phase, triggered
on the first Raman pulse. The interferometric phase variation is
then recorded as a function of f,,,. We then repeat the measure-
ments for the phase modulation in quadrature A, sin(27 f,,t +
). From the quadratic sum of these measurement, we extract
H (27 f,,)%. The weighting function was first measured at low
frequency. The results, which are displayed in Fig. 5 together
with the theoretical value, clearly demonstrate the oscillating
behavior of the weighting function. Fig. 6 displays the measure-
ments performed slightly above the cutoff frequency and shows
two zeros. The first one corresponds to a frequency multiple of
1/(T + 27). The second one is a zero of the last factor of (8). Its
position depends critically on the value of the Rabi frequency.

When comparing the data with the calculation, the experi-
mental imperfections already mentioned have to be accounted
for. An effective Rabi frequency (. can be defined by the
relation Qg7 = 7, where 7y is the duration of the single pulse,
performed at the center of the Gaussian Raman beams, that
optimizes the transition probability. For homogeneous Raman
beams, this pulse would be a 7 pulse. This effective Rabi
frequency is measured with an uncertainty of about 1%. It
had to be corrected by only 1.5% in order for the theoretical
and experimental positions of the second zero to match. The
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Fig. 5. Phase noise weighting function |H (27 f)2| for T' = 4.97 ms and
Tr = 20 ps at low frequency. The theoretical calculation is displayed in solid
line and the experimental results in squares. We clearly see that the oscillating
behavior of the weighting function and the experimental measurement are in
good agreement with the theoretical calculation.

0] |

QOIS
o

IH(2x

0.01

REEEEE

1E-4
13100

13150 13200 13250 13300

Frequency (Hz)

Fig. 6. Phase noise weighting function |H (27 f)2| for T = 4.97 ms and
Tr = 20 ps displayed near the Rabi frequency. The theoretical calculation is
displayed in solid line and the experimental results in squares. We identified
the zero multiple of (1/7" + 27) and experimentally observed both zeros with
a good agreement with theory.

excellent agreement between the theoretical and experimental
curves validates our model.

IV. LINK BETWEEN THE SENSITIVITY FUNCTION
AND THE SENSITIVITY OF THE INTERFEROMETER

The sensitivity of the interferometer is characterized by the
Allan variance of the interferometric phase fluctuations o (7),
which is defined as

1 - -
o2(r) = 3 ((6®p41 — 6Pr)?) (10)
R [ IR 2
=g i | e oD

k=1

where §®; is the average value of §® over the interval
[tk, tg+1] of duration 7. The Allan variance is equal, within a
factor of two, to the variance of the differences in the successive
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average values 0®;, of the interferometric phase. Because the
interferometer is sequentially operated at a rate f. = 1/7,, 7 is
a multiple of T : 7 = mT,. Without losing generality, we can
choose ty, = —T./2 + kmT.. The average value 8}, can now
be expressed as

tp+iT, d
Gt —te— (i — VT, — T,/2) d—fdt

P s
- /gk()dt
tk

where g (t) => 1", g(t — kmT, — (i — 1)T¢). The differ-
ence between successive average values is then given by

12)

+o0
- - 1 d
0Ppi1 — 0P = o / (grt1(t) — k(1)) d—fdt. (13)

For long-enough averaging times, the fluctuations of the
successive averages are not correlated, and the Allan variance
is given by

+oo
11
J%(T)ziﬁ/|Gm(w)|2w25¢(w)dw (14)
0

where G, is the Fourier transform of the function gy41(t) —
gi(t). After a little algebra, we find, for the squared modulus of
G, the following expression:

s sin?(wmT,/2) 2
GulwP =1 IR, as)
When 7—o00, [Gnp(w)]?~(2m/Te) 372 (w—j2nfe)

|G(w)|?. Thus, for large averaging times 7, the Allan variance
of the interferometric phase is given by

o0

> |H@mnf)[? S(2mnfe). (16)

e

Equation (16) shows that the sensitivity of the interferometer is
limited by an aliasing phenomenon similar to the Dick effect
in atomic clocks [14]. Only the phase noise at multiple of
the cycling frequency appears in the Allan variance, and it is
weighted by the Fourier components of the transfer function.

Various sources of phase noise will contribute to (16). Phase
noise of the reference oscillator, electronic noise of the PLL,
laser phase noise outside the PLL bandwidth, and difference
of phase accumulated in the propagation of the two Raman
beams to the vacuum chamber will contribute in the same way,
whatever the configuration of the Raman beams (copropagating
or counterpropagating) is.

In the case of inertial forces, the sensitivity arises from
the Raman phase fluctuations of counterpropagating beams in
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the referential frame of the atoms and can be treated with the
same formalism. As the two laser beams are first overlapped
before being sent onto the atoms, their phase difference is
mostly affected by the movements of a single optical element,
i.e., the mirror that finally retroreflects them. A displacement
of the retroreflecting mirror by ¢z induces a Raman phase shift
of keff(s z.

V. LASER PHASE NOISE

In this section, we focus on the influence of the phase noise
of the reference oscillator and on the limitations imposed by
the PLL.

Let us examine first the case of white Raman phase noise
Se(w) = Sg. The interferometer sensitivity is given by

0= (3)

In that case, the sensitivity of the interferometer depends not
only on the Raman phase noise spectral density but also on
the pulse duration 7. For a better sensitivity, one should use
the largest pulse duration as possible. However, as the Ra-
man transitions are velocity selective in the counterpropagating
configuration, a very long pulse will reduce the number of
useful atoms. This increases the detection noise contribution,
so that there is an optimum value of 7y that depends on the
experimental parameters. In the case of the gyroscope, the
optimum was found to be T = 20 us.

To reach a good sensitivity, the Raman phase needs to be
locked to the phase of a very stable microwave oscillator (whose
frequency is 6.834 GHz for 87Rb and 9.192 GHz for '33Cs).
This oscillator can be generated by a frequency chain, where
low phase noise quartz performances are transposed in the
microwave domain. At low frequencies (f < 10—100 Hz), the
phase noise spectral density of such an oscillator is usually well
approximated by a 1/f3 power law (flicker noise), whereas at
high frequency (f > 1 kHz), it is independent of the frequency
(white noise). Using (16) and the typical parameters of our
experiments (7p = 20 us and T' = 50 ms), we can calculate the
phase noise spectral density required to achieve an interfero-
metric phase fluctuation of 1 mrad/shot. This is equivalent to
the quantum projection noise limit for 10¢ detected atoms. The
flicker noise of the microwave oscillator should be lower than
—53 dB -rad® - Hz ! at 1 Hz from the carrier frequency and
its white noise below —111 dB -rad® - Hz~!. Unfortunately,
there exists no quartz oscillator combining these two levels of
performance. Thus, we plan to lock a SC Premium 100 MHz
oscillator (from Wenzel Company) onto a low flicker noise
5 MHz Blue Top oscillator (Wenzel). From the specifications
of this quartz, we calculate a contribution of 1.2 mrad to the
interferometric phase noise.

Phase fluctuations also arise from residual noise in the servo-
lock loop. We have experimentally measured the residual phase
noise power spectral density of a phase-locked system anal-
ogous to the one described in Fig. 2. This system has been
developed to phase lock the Raman lasers of the gravimeter
experiment. The measurement was performed by mixing IF and

289 T,

T TR.

a7)
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Fig. 7. Phase noise power spectral density between the two phase-locked

diode lasers. Up to 100 kHz, we display the residual noise of the PLL, which
is obtained by measuring the phase noise of the demodulated beatnote on a fast
Fourier transform analyzer. There, the phase noise of the reference oscillator is
rejected. Above 100 kHz, we display the phase noise measured directly on the
beatnote observed onto a spectrum analyzer. In this case, the reference oscillator
phase noise limits the Raman phase noise to 1.5 x 10~11 rad? - Hz=1. An
extrapolation of the phase noise due to the PLL alone between 100 and
300 kHz is displayed with dotted line.

LO onto an independent RF mixer, whose output phase fluc-
tuations were analyzed onto a fast Fourier transform analyzer.
The result of the measurement is displayed in Fig. 7. At low
frequencies, below 100 Hz, the phase noise of our phase-locked
system lies well below the required flicker noise. After a few
kilohertz, it reaches a plateau of —119 dB - rad® - Hz !. The
amplitude of this residual noise is not limited by the gain of the
servo loop. Above 60 kHz, it increases up to —90 dB - rad? -
Hz~! at 3.5 MHz, which is the bandwidth of our servo-lock
loop. Using (16), we evaluated to 0.72 mrad its contribution to
the interferometer’s phase noise.

Other sources of noise are expected to contribute, which are
not investigated in this paper. The measurement presented here
has been performed with a single optical beat setup, which re-
jects noise of the photoconductor as well as other noise sources
inherent to the setup (vibrations of the mirrors and beamsplit-
ters in the beat setup for instance). Independent measurements
we have performed with two independent photoconductors
show that these noise sources are anyway negligible—their
contribution was found to be on the order of 0.1 mrad/shot. In
addition, the phase noise due to the propagation of the Raman
beams in free space and in optical fibers has already been
studied in [18].

VI. CASE OF PARASITIC VIBRATIONS

As already stated before, the same formalism can be used
to evaluate the degradation of the sensitivity to inertial forces
caused by parasitic vibrations due to the movement of the
retroreflecting mirror.

The sensitivity of the interferometer is then given by

2 oo
o3 (1) = l%% Z |H(2mnf.)|* S (2mnf,) (18)
n=1



CHEINET et al.: MEASUREMENT OF THE SENSITIVITY FUNCTION IN A TIME-DOMAIN ATOMIC INTERFEROMETER

where S, (w) is the power spectral density of position noise.
Introducing the power spectral density of acceleration noise
Sa(w), the previous equation can be written as

2(7) = ke Z |H 27mfc ?

Sa(2mnf.). (19)

It is important to note here that the acceleration noise is
severely filtered by the transfer function for acceleration which
decreases as 1/ f*.

In the case of white acceleration noise Sy, and to first order
in 7z /T, the limit on the sensitivity of the interferometer is

given by
k2.T* /2T S,
2 — eff c _ 1 a .
7(7) 2 ( 3T ) T

To put this into numbers, we now calculate the requirements
on the acceleration noise of the retroreflecting mirror to reach
a sensitivity of 1 mrad/shot. For the typical parameters of our
gravimeter, the amplitude noise should lie below 1078 m - s72 -
Hz~'/2. The typical amplitude of the vibration noise measured
on the lab floor is 2 x 1077 m-s~2 - Hz~'/2 at 1 Hz and rises
up to about 5 x 1075 m - s72 - Hz /2 at 10 Hz. This vibration
noise can be lowered to a few 10~7 m-s~2-Hz /2 in the
1- to 100-Hz frequency band with a passive isolation platform.
To fill the gap and cancel the effect of vibrations, one could use
the method proposed in [18], which consists of measuring the
vibrations of the mirror with a very low noise seismometer and
compensating the fluctuations of the position of the mirror by
reacting on the Raman laser phase difference.

(20)

VII. CONCLUSION

We have here calculated and experimentally measured the
sensitivity function of a three-pulse atomic interferometer. This
enables us to determine the influence of the Raman phase noise,
as well as of parasitic vibrations, on the noise on the interferom-
eter phase. Reaching a 1 mrad/shot to shot fluctuation requires
a very low phase noise frequency reference and an optimized
PLL of the Raman lasers, together with a very low level of
parasitic vibrations. With our typical experimental parameters,
this would result in a sensitivity of 4 x 108 rad - s~ - Hz /2
for the gyroscope and of 1.5 x 107® m - s~2 - Hz /2 for the
gravimeter. One can then expect that, compared to previous
experiments [4], the vibration noise will be, by far, the dominant
limitation on the sensitivity of the gravimeter, as reaching the
equivalent level of vibration is very difficult.

Improvements on the contribution of some of the noise
sources are still possible. The frequency reference could be
obtained from an ultrastable microwave oscillator, such as a
cryogenic sapphire oscillator [19], whose phase noise lies well
below the best quartz available. In addition, the requirements
on the phase noise would be easier to achieve using atoms
with a lower hyperfine transition frequency, such as Na or K.
Trapping a very large initial number of atoms in the 3-D-MOT
would enable a very drastic velocity selection. The duration
of the Raman pulses could then be significantly increased,
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which makes the interferometer less sensitive to high-frequency
Raman phase noise. The manipulation of the atoms can also be
implemented using Bragg pulses [20], [21]. Because difference
in the frequencies of the two beams is much smaller, the
requirement on the stability of the relative phase is far less
stringent. In that case, a different detection method needs to be
implemented as atoms in both exit ports of the interferometer
are in the same internal state. Using ultracold atoms with
subrecoil temperature, atomic wave packets at the two exit ports
can be spatially separated, which allows for a simple detection
based on absorption imaging. Such an interferometer would
benefit from the long interaction times available in space to
reach a very high sensitivity.

We also want to emphasize that the sensitivity function can
also be used to calculate the phase shifts arising from all
possible systematic effects such as the light shifts, magnetic
field gradients, and cold atom collisions.
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