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Obrecht, John Michael (Ph.D. Physics)
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Thesis directed by Dr. Eric A. Cornell

A measurement of the temperature dependence of the Casimir-Polder force is

presented along with subsequent measurements of electric fields near surfaces. These

measurements were obtained by studying the effects of surface forces on the collective

oscillations of a magnetically trapped 87Rb Bose-Einstein condensate (BEC).

In the first part of this thesis, the measurement of the Casimir-Polder force is

described. In this experiment, the BEC was placed a few microns from a dielectric

substrate and excited into its dipole oscillation. Changes in the collective oscillation

frequency resulted from spatial variations in the surface-atom force. The temperature

dependence of this force was observed as a threefold increase in its strength as the

substrate was heated from 300 K to 600 K, in agreement with theory.

The second part of this thesis deals with measurements that were made of electric

fields emanating from surface adsorbates. An alternating external electric field was ap-

plied that adds to (or subtracts from) the adsorbate’s field in such a way as to resonantly

drive the BEC into a mechanical dipole oscillation. The growth rate of the oscillation’s

amplitude provides information about the magnitude and sign of the adsorbate’s field

gradient. Using this technique, we were able to reconstruct vectorially the electric field

produced by surface contaminants and account for their systematic effects. Lastly, we

show that baking the substrate can reduce the electric fields emanating from adsorbates,

and that the mechanism for reduction is likely surface diffusion, not desorption.
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Chapter 1

Introduction

The advent of ultracold technology has made it possible to study atomic in-

teractions for long periods of time. The incredibly low temperatures achieved in such

systems have also made it possible to trap atomic ensembles in a relatively small volume

of space. Probing such a small collection of atoms in close proximity to bulk objects for

long periods of time has led to great advances in the study of atom-surface interactions.

The Casimir-Polder force (the quantum-electrodynamic (QED) interaction be-

tween an atom and a surface) has been of particular interest since its prediction sixty

years ago [1]. The force, Casimir and Polder theorized, is due to an atom’s interac-

tion with enhanced quantum electromagnetic field fluctuations near a surface. The

enhancement of field fluctuations comes about from the boundary conditions placed on

the field by the surface, and leads to a spatial variation in the field’s energy density

and hence a net force. This force is dominated by fluctuations of the vacuum field for

atom-surface separations larger than wavelengths associated with atomic transitions.

However, for larger atom-surface separations (size scales on the order of thermal radia-

tion wavelengths) vacuum-field fluctuations play a much less significant role and thermal

fluctuations of the field become the main contribution to the Casimir-Polder force.

Subsequent theories to the Casimir-Polder theory have added corrections to ac-

count for both the dielectric properties of the substrate [2, 3] and the presence of thermal

radiation [4]. The latter of the two corrections has been of great interest recently with
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regards to experimental measurements of the Casimir force (the QED interaction be-

tween two electrically-neutral, bulk obj ects) [5]. The thermal correction to the Casimir

force in these experiments is small (on the order of 1%), yet is of vital importance as

experimental precisions approach those necessary to measure exotic forces beyond the

Standard Model [6, 7, 8, 9].

The results described in this thesis shed a great deal of light on such corrections

to Casimir-type forces and help us better understand the intricate interplay between

light and matter at material interfaces.

1.1 Overview

My vision for the experiment was to continue with and add to the atom-surface

interaction measurements that had been made and documented in a previous thesis [10].

The first such experiment we set out to perform was one in which we measured the tem-

perature dependence of the Casimir-Polder force between a rubidium BEC and a fused

silica substrate, whose temperature was varied between room temperature (300 K) and

600 K. Our intention was to make measurements which would allow us to differentiate

forces that were due to thermal radiation from the substrate from forces that were due

to radiation from the surrounding environment. Variability in the temperature of the

substrate was critical to this work. By increasing the temperature of the substrate,

while keeping the environment temperature relatively unchanged, we were able to see

a large increase in the attractive nature of the Casimir-Polder force. This increased

attraction was specifically caused by an increase in the thermal near-field radiation

from the substrate. These measurements confirmed earlier theoretical predictions by

Antezza, et al . [11].

A secondary goal of the experiment was to make similar measurements over metal

surfaces (as opposed to those measurements that had been made over dielectric materi-

als). This investigation led to a deeper examination of electric fields caused by rubidium
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surface adsorbates. Proper accounting of electric field strengths from surface adsorbates

was found to be necessary when making precision measurements with atoms near sur-

faces. Our investigation led to the development of a new technique to map out the

vector electric field from the surface adsorbates. In addition, measurements were made

confirming our analysis of the systematic effects of electric fields on rubidium atoms. In

the end, it was found that measurements made over metal-coated dielectrics are plagued

by a number of systematic effects, which are detailed in this thesis.

1.2 Thesis Organization

This thesis is organized as follows. The first chapter of this thesis describes the

methods and procedures performed in the experiments discussed in Chapters 3 and

4, and Appendix A, as well as the improvements to techniques described in the two

previous theses which utilized this apparatus [10, 12].

The remainder of the thesis (Chapters 3–4) details the experiments that were

performed that focused on the study of atom-surface interactions. Chapter 3 describes

the work that was done in which a temperature dependence of the Casimir-Polder

force was measured. This experiment was the first measurement of a temperature

dependence of any Casimir-type force. The last chapter of this thesis (Chapter 4)

details the measurements that were made of electric fields emanating from rubidium

surface adsorbates.



Chapter 2

Experiment Methods, Procedures and Improvements

As the third-generation Ph.D. student working on this apparatus, I find it redun-

dant to dedicate a chapter of this thesis to describing the main features and techniques

previously discussed in other theses [10, 12]. Instead, I intend to provide a brief overview

of the apparatus and to focus more time on describing its upgrades and improvements.

In addition, many of the procedures in this thesis are progressions of past procedures

and experiments and utilize very similar techniques. In this sense, this chapter details

several second-generation improvements to these techniques and procedures, which were

necessary for making accurate measurements.

The experiments presented in this thesis which measure temperature-dependent

forces are completely unique to this thesis and are therefore discussed in much more

detail in subsequent chapters. The techniques, procedures and methods of analysis

developed for these experiments are quite new and require a great deal of discussion

further along in this chapter.

2.1 Overview of the Apparatus

The apparatus used in this thesis has been described in detail in earlier work [10,

12, 13] and will only briefly be reviewed in this thesis. The apparatus can be divided into

two main processes for producing BEC: (1) Producing dense, high-number, ultracold

clouds of rubidium in a magneto-optical trap (MOT) and (2) working with magnetically-
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trapped atoms in an ultrahigh-vacuum (UHV) region suitable for performing forced

rf-evaporation to Bose-Einstein condensation (BEC). Delivery of atoms between these

two chambers is done by spin-polarizing the atoms and magnetically transferring them

to a separate, ultra-stable magnetic trap. This transfer is done by physically moving

two electromagnetic coils, which carry 24 turns of ∼ 220 A of current to provide the

magnetic trapping fields, a distance of ∼ 40 cm to the ultra-stable magnetic trap. The

current in the transfer coils is slowly ramped down as the currents in the magnetic trap

are slowly ramped up to smoothly transfer the atoms between traps. Once off, the

transfer coils are returned back to the MOT region for the next experiment.

The MOT setup is shown schematically in Fig. 2.1. Rubidium gas is dispensed

into the (bottle-shaped) MOT chamber via a rubidium dispenser that contains a salt

which releases, among other things, rubidium gas when heated. The heat is provided

via electrical resistance by running a continuous electrical current (∼ 3.8 A) through the

getter. This current remains on 24 hours a day and no ill effects have been seen from

its continual use. Getters often require some delicacy in handling, but we have found a

very successful recipe for activating and using them over the years. These issues will be

discussed in detail in Sec. 2.1.1.

The MOT cooling beams, which provide the trapping forces to the atoms, are

created by a two-stage amplification system in which approximately 3 mW of locked

laser light is amplified one-hundred fold and directed at the atoms from six orthogonal

directions. This laser is locked via standard saturated absorption spectroscopy (SAS)

and has a resultant frequency detuned approximately −3Γ of the F = 2 → F ′ = 3

transition of the D2 line in 87Rb1 .

Overlapped with three of the six MOT cooling beams is light referred to as repump

light. This light acts to repopulate the F = 2 ground state by repumping atoms which

have decayed into the F = 1 state back to the F ′ = 2 state. Electrons in this state

1 where Γ is the natural linewidth of the transition (∼6 MHz)
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may decay either to the F = 1 or the F = 2 state with similar probability, closing the

cooling transitions and making the MOT possible.

The repump light is then turned off abruptly, followed ∼1 ms later by the MOT

cooling light. The delay in shutting off the cooling light acts as an optical pumping

scheme which leaves the atoms in the F = 1 manifold of the ground state. Atoms which

are not specifically in the |F = 1,mF = −1〉 hyperfine state are lost at this point due

to their lack of trapping ability. The trapped atoms are then transferred to the final

magnetic trap for evaporative cooling towards BEC. The stability and reproducibility

of the number of atoms produced in a BEC is very dependent upon the MOT cooling

and repump beams and will be discussed in great detail in Sec. 2.2.1

Our magnetic trap is referred to as a hybrid Ioffe-Pritchard magnetic trap due

to the fact that the trap consists of both permanent magnets and electromagnets. The

permanent magnets provide the radial trapping confinement for the atoms (∼ 510 G/cm

field gradients in the x and y-directions), while the electromagnets provide both an

axial confinement for the atoms (∼50 G/cm2 in the z-direction) and a bias magnetic

field which can be varied between -100 G and 100 G without affecting the trapping

frequency in z. Much care is placed in stabilizing the temperature of the permanent

magnets, as fluctuations in their temperature directly correlate with fluctuations in

the radial trapping frequencies. Care is also taken in stabilizing the currents which

pass through the electromagnetic coils, as this also directly affects the radial trapping

frequencies. This will be discussed in more detail in Sec. 2.2.2.

The final chamber of the experiment is known as the science cell (shown in

Fig. 2.2). This cell is composed of a 40 × 12 × 12 mm3 pyrex glass cell which con-

nects to the steel vacuum chamber. Inside our science cell sits a monolithic pyrex glass

piece which holds four glass substrates in place in order to perform BEC work below

(see inset in Fig. 2.17). The materials shown in Fig. 2.2 have since been replaced with

other materials since this photo was taken. The magnetic trap surrounds the science
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Figure 2.1: The laser and optics setup. Waveplates (gray-filled optics) directly preced-
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cell and is able to be translated from substrate to substrate. The photograph also shows

a small rounded piece of glass sitting on the chamber floor. This piece of glass is used

as a spacer to keep the holder piece and substrates from moving too close to the end of

the chamber.

2.1.1 Rubidium Getter Source

During the high-temperature bake-out procedure (performed to attain UHV con-

ditions) the getters are slightly activated by running a few amps of current through

them while the chamber is hot. This prevents the getters from absorbing much contam-

ination. Once the vacuum system has cooled down one can begin to look for rubidium

gas in the chamber following getter activation.

The activation of the getters is often the most difficult part in making them work

properly and is required due to the fact that a significant number of contaminants must

have entered the getter salt during the bake-out procedure. We have found that courage

and patience are the key qualities in making a successful activation. By ‘activation’ we

mean a brief increase in the getter current, designed to clean the getter and to get the

rubidium emission process going. First, the getter current was increased to ∼6 A for

several minutes. With such a large current the getter salt is seen to glow brightly from

heating and the pressure of vacuum chamber increases from ∼ 10−9 torr to ∼ 10−5 torr.

At this point one can begin looking for rubidium in the chamber by one of two

methods, each having equal probability of success. First, one can look for an absorption

signal of the rubidium by passing a laser beam through the chamber and scanning

the frequency of the laser back and forth across an atomic transition to look for the

transition lines to appear on an oscilloscope. Second, one can also set up the MOT

optics and turn on the magnetic coils to look for a cloud of trapped atoms. The latter

was our usual choice for detection because it is easy to see the trapped atoms on a

security camera and television screen. It usually takes several days for the background
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Figure 2.2: Picture of the science cell. Inside the science cell four glass substrates
rest on a monolithic pyrex glass piece. The substrates could, for instance, represent
four different materials or surface preparations. The BEC may be translated between
substrates with little difficulty. The rounded glass piece sitting at the right end of the
chamber is a spacer which prevents the holder and substrates from accidentally sliding
too close to the chamber wall during chamber assembly.
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pressure to settle down to steady-state conditions.

We also found that special care should be taken with the getters when breaking

vacuum. We were careful to back-fill the chamber with an inert nitrogen gas rather than

atmosphere due to the lack of water in the nearly-pure nitrogen gas. This ensured that

the getters were able to be re-activated for further use. In fact, one getter was used for

the past three years and survived two separate vacuum breaks and re-activations.

2.1.2 Vacuum Chamber Discussion

The decision to break vacuum with BEC experiments is never easy because it

usually requires a great deal of effort to restore the vacuum quality to UHV conditions.

Using similar bake-out procedures as before [10, 12] we have been able to produce

BEC one week following a vacuum break. The bake-out procedure is difficult and time

consuming, but the end result is not quite as risky as once thought.

A thorough investigation of the background pressure in the vacuum chamber

was performed using the magnetically-trapped atoms as a probe. The position of the

magnetic trap along the axis of the chamber was varied from the center position of the

MOT (0 cm) to the middle of the science cell (41 cm). Fig. 2.3 shows data in which the

lifetime of the atoms in the magnetic trap was measured, a quantity inversely scaled to

the residual local pressure in the chamber. The figure also provides a guide at the top

showing the corresponding position along the axis of the vacuum chamber. Collisions

due to high background pressures limit the lifetime of the atoms in the magnetic trap

(i.e. short lifetimes correspond to relatively high pressures and vice versa).

The data shows a magnetic trap lifetime of ∼4 seconds at the position of the

MOT (a). The lifetime seems to degrade somewhat as the track position is increased to

∼7 cm (b). This position corresponds to the end of the MOT cell and the beginning of

the transfer tube. Two 5 mm diameter apertures are placed along the transfer tube, one

at (c) and one at (d). These apertures act as conductance limiters between the vacuum
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chamber and the ion pumps. The aperture at (c) ensures a relatively high MOT cell

pressure (to capture large numbers of rubidium atoms), while the aperture at (d) acts

to prevent high pressures of gas from entering the science cell. In essence, one may

think of ion pump #1 as pumping solely on the MOT cell, while ion pump #2 pumps

entirely on the science cell. One can see from the data that the lifetime in the magnetic

trap increases from ∼3 seconds in the MOT cell to nearly 200 seconds near the science

cell. This allows us to determine the differential pressure ratio of 200/3 or a factor of

nearly 70.

An interesting feature of the data that we will return to in Sec. 2.3.1 is that the

trap lifetime abruptly decreases at the junction (e) between the steel chamber walls

(gray) and the pyrex chamber walls of the science cell (clear). The decrease in lifetime,

we believe, is due to the fact that the pyrex walls are semi-permeable to small atoms

like hydrogen and helium, and even get worse as the pyrex cell walls are heated.

2.2 Improvements to Apparatus Stability and Reproducibility

The precise nature of the temperature-dependent Casimir-Polder force measure-

ment demanded a great deal of stability of experimental parameters for long periods of

time (parameters such as magnet temperatures, laser detunings, etc.) and required a

high-degree of reproducibility (for such parameters as atom-surface distance, BEC size

dimensions, BEC number fraction (N0/N), oscillation amplitude, etc.). This section

of Chapter 2 deals with these necessary improvements and details the procedures and

diagnostics that were performed in order to produce a very stable, working experiment.

2.2.1 MOT Stability Issues

A great deal of the shot-to-shot stability and reproducibility of the BEC atom

number and BEC size come from the painstaking detail that was placed in the stabil-

ity and reproducibility of the magneto-optical trap (MOT) and the compressed MOT
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due to the porous nature of the pyrex and is discussed further in Sec. 2.3.2.
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(CMOT) conditions. We noticed a direct correlation between the number of atoms con-

densed in the BEC and the performance of the MOT and CMOT stages. This meant

that shot-to-shot reproducibility in the MOT and CMOT parameters were critical in

creating a stable BEC to probe atom-surface interactions.

A good diagnostic indicator of an ailing MOT is the time needed to load a given

number of atoms into the trap. This load time, we found, is very dependent on a

number of experimental factors. First, it depends heavily on the condition of the vacuum

chamber, namely the partial pressure of rubidium and also on the partial pressure of

all other non-rubidium gases. An ideal MOT chamber would consist of a small enough

partial pressure of rubidium to allow for significant MOT lifetimes, but large enough

partial pressures to accumulate a significant number of atoms in the MOT. The balance

of these two effects, we found, leads to ideal MOT lifetimes (and load times) of 4-5

seconds.2 If we noticed the load time get significantly long, we would need to adjust

either the partial pressure of rubidium, which is set by the current sent through the

getter source, or the balance of power in the MOT’s trapping beams. It should be

noted here that the background lifetime measured in the MOT chamber was a steep

function of the getter current. Under ideal conditions we found the optimum getter

current to be 3 .8 ± 0.1 A. The uncertainty here represents an estimate of the current

needed to change the background lifetime by ∼ 25%.

The stability in the balance of laser power between the six MOT cooling beams

comes from properly and accurately adjusting the polarization of the incoming laser

beam. The polarization of this primary beam directly determines how much power is

split into each secondary beam path. Fig. 2.1 shows the beam paths for the MOT.

The laser light is generated by a commercial external cavity diode laser (ECDL), la-

belled ‘MOT Cooling’. This light is sent through a 10 meter single-mode polarization-

2 The number of atoms trapped in the MOT rises to a constant background value like (1-e−t/τ ).
Under ideal conditions, loading 1- 1

e
of the atoms would result in a loading time exactly equal to the

background lifetime.
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maintaining (PM) fiber to the main optical table and amplified, first by a high-power

diode laser and then by a tapered amplifier. The output of the tapered amplifier is

nearly 500 mW of power, linearly polarized and locked to the MOT cooling transition.

This light is then sent through a meter-long, single-mode PM fiber, the output of which

is split into the six MOT cooling beams. The advantage of using an optical fiber in this

setup is twofold: first, the output of the fiber is spatially filtered to be in the TEM00

mode. Second, because the fiber output is firmly locked in space, the pointing stability

of the beams is much greater and the spatial drift of the MOT is minimized in this

sense.

We found the most critical part of the MOT setup, aside from background pres-

sures, was maintaining proper polarization of the laser beam upon output from optical

fibers. The optical fibers have an inherent polarization-maintaining axis to them. When

the polarization of the tapered amplifier output is aligned with the axis of the fiber, the

resultant polarization should have a minimal dependence on temperature fluctuations.

However, when the polarization is off-axis, the birefringence of the fiber tends to create

a small fraction of elliptically polarized light. This results in an imbalance of power

between the six MOT beams, which is highly dependent upon the fiber’s temperature

and internal stresses. A great deal of care was put into minimizing the effects of stress

and temperature.

The way we went about minimizing these effects was to first carefully inspect

the fiber for deformities along its length. Deformities in the fiber usually come from

improper storage and handling and can be seen as a permanent curvature of the fiber.

The fibers in our experiment were all carefully chosen to be short, defect-free fibers

and, when secured in large fiber-mounting hardware, let to rest in relaxed positions on

thermally insulating foam. The result of this work was that the effects from internal

stresses of the fiber were minimized. Minimizing the effects of temperature fluctuations,

however, is more difficult.
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Fig. 2.1 shows that following the output of the meter-long fiber, the beam po-

larization is forced to be maximally horizontally polarized by being sent through an

adjustable half-wave plate and a polarizing beam-splitter cube. The beam deflected by

the polarizing beam splitter cube is vertically polarized and is analyzed with a photo-

diode. The PM axis of the fiber is then found by heating the fiber and watching fringes

appear on the photodiode as the fiber temperature increases. The fringe contrast should

be minimized when the laser’s polarization is aligned along the PM axis of the fiber.

In addition to finding the PM axis of the fiber, one must also investigate the

balance of power between the six MOT cooling beams. One can see from Fig. 2.1 that

each of the six MOT cooling beams (labelled A-F) can be traced back along the optical

path to several polarizing beam splitter (PBS) cubes and eventually back to the output

of the optical fiber. In this sense, we can identify which PBS cube is splitting which

beams– for example A, F, and D are split from C, B and E on a single PBS cube (labelled

‘AFD’ and ‘CBE’). By measuring the power incident on the MOT cell from each beam

we are able to adjust each respective half-waveplate to make a correct balance of power.

The logical way to make these corrections is by starting at the MOT cell and

working one’s way backward along the optical path, optimizing each PBS cube encoun-

tered. This meant balancing the power 50-50 between beams ‘B’ and ‘E’ and then

balancing the power 1/3− 2/3 between beams ‘C’ and ‘EB’. A similar procedure would

be done balancing ‘F’ and ‘D’, followed by ‘A’ and ‘FD’. Lastly, the sum power of ‘AFD’

and ‘CBE’ should be balanced 50-50 to ensure all beams are of equal intensity when

entering the MOT cell. One should also notice that the repump beam (dotted blue line)

is only sent to the MOT cell along three of the six beam paths. This is due to the fact

that the repump light must only be present and need not be directional .

The results of the entire optimization process are shown in Fig. 2.4. First, the

most notable improvement to the MOT is the condition of the optical molasses phase,

in which the atoms are held quasi-trapped solely by optical forces. Graph (a) shows
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the ∼2 second time the atoms spend in this phase, while graph (b) shows a small, but

discernable, optical molasses being loaded from the background rubidium vapor. Graph

(c) shows the shot-to-shot reproducibility of the size of the trapped cloud following

a short time-of-flight expansion over a thirty minute time period. The size of the

cloud is indicative of its temperature. The closed circles represent data taken before

optimization, while the open circles represent data taken after all of the optimization had

been done. One can see that the optimization had a beneficial effect on the temperature

of the transferred cloud. As a result, the stability of the BEC was found to be much

greater also.

2.2.2 Temperature Acquisition and Stability

Due to the sensitive nature of the experiment, a few key experimental parameters

were temperature stabilized by standard JILA temperature servo electronic circuits.

These parameters were (1) the temperature of the cooling air that continuously blew

over the magnetic trap and (2) the permanent magnet temperatures (each independently

temperature servoed). The cooling air also served to regulate the temperature of the

entire apparatus, due to the fact that it was the only air that entered the enclosing

box. This meant that we were able to work with a magnetic trap whose temperature

varied by only ∼ 0.2 K over the course of a day, and a trap frequency which varied by

less than 0.01% in an entire day of data taking (shown in Fig. 2.5). The temperature

of the permanent magnets and the magnetic trapping frequency were recorded during

the entire data-taking procedure for the data which appears in Ref. [14]. Data points

connected by solid black lines correspond to data taken in a single day.

The atom-surface distance (discussed in greater detail in Chapter 3) may very well

be the most critical parameter of an experiment which directly deals with atom-surface

interactions. Many interactions have power-law spatial dependencies which makes the

stability and reproducibility of the atom-surface distance extremely critical. What com-
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background scattered
light with Repump on

Figure 2.4: MOT stability issues. The data in (a) and (b) are photodiode currents
which measure the fluorescence of atoms from a MOT. Both graphs show data taken
after a significant amount of work was done to create a healthy, power-balanced MOT
(discussed in Sec. 2.2.1). The data in (a) shows the MOT fluorescence after the mag-
netic field was turned off. The long lifetime of the signal indicates a very good optical
molasses, in which the atoms remain semi-trapped due purely to optical forces. Data in
(b) show a weak, but discernable, loading of an optical molasses in which no magnetic-
trapping fields were present. Graph (c) shows the measured size of a cloud of atoms
following the CMOT stage and a short time-of-flight expansion. Here the cloud size is
proportional to the square root of the temperature of the atoms in the magnetic trap.
This data demonstrates the typical behavior of an ailing MOT immediately before sta-
bilizing conditions (closed circles) versus data taken after stabilizing (open circles). It
takes about one minute to take four shots.
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Figure 2.5: Stability of the magnetic trap. This figure shows data demonstrating the
stability of our magnetic trap during ideal operating conditions. The data shown in (a)
corresponds to the normalizing trap frequency ωo/2π which appears in [14]. This data
spans several weeks and illustrates the reproducibility and stability of our magnetic-trap
conditions. The data in (b) shows the measured temperature of our permanent magnets
over the same time period. The magnets heat by less than 0.3oC in an entire day and
are much more stable over a one-hour data set (the mean error bar for one set is equal
to 16 mK). Data points connected by solid black lines correspond to data taken in a
single day.
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plicates this is the fact that the substrate position and the BEC position are independent

of one another; one is determined mainly by the box temperature (the substrate is held

in place by the vacuum chamber, which is held firmly by aluminum mounting blocks),

while the other is determined by the magnet temperature (the BEC’s equilibrium po-

sition is determined by the strength of the magnets, which varies with temperature,

and current servos, which do not have much variation in temperature). Fig. 2.6 shows

the relative position of the substrate’s surface during a typical day of data taking. By

stabilizing the box temperature and the magnet temperatures we are able to limit the

drift of the surface position to less than 3 microns over the course of a day. Most of

this drift is due to the warmup of the apparatus, and settles to less than a micron drift

during actual data taking. Because of the level of control in our experiment, we are able

to accurately determine the atom-surface distance to less than 150 nm typically, which

is reflected in the error bars in Fig. 2.6.

We also found it was necessary to have a great deal of stability of the room

temperature of the laboratory. The room air is controlled by pneumatically regulating

the flow of hot and cold air into the room. The electronics which control various aspects

of the experiment are often large and powerful enough to be considered ‘heat generators’

as well. In order to achieve an equilibrium room temperature by the start of the working

day, most of the heat generating equipment was turned on by a timer in the early hours

of the morning. Fig. 2.7 shows the measured room temperature over the course of

a data-taking day for four different days over the course of one month (The data is

purposely offset by 1oC between sets). This data highlights the stability of the room

temperature over the course of a day and also illustrates the day-to-day reproducibility.

The roughness in the daytime data is due to the presence of rf-interference in the

thermometer circuitry and does not reflect real temperature variations.

The temperatures of various elements around the room and in the experiment were

measured continuously daily, recorded with data acquisition (DAQ) hardware and saved
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Figure 2.6: Stability of the surface position. This figure shows measurements of the
relative position of the fused silica surface (relative to the CCD camera) over the course
of a day (∼10 hours). Following a one-hour warm-up period, the surface drift is less
than ∼ 50 nm/hr over several hours (the error bar, representing the standard deviation
about the mean, is equal to ∼140 nm).



21

0 2 4 6 8 10 12 14 16 18 20 22 24

22

23

24

25

26

27

28

R
o
o
m

 T
e
m

p
e
ra

tu
re

 (
o
C

)

Time of Day (h)

Figure 2.7: Room temperature stability. This figure shows the temperature of our labo-
ratory over the course of the day. Electronics in the room were either left on continuously
or were turned on with a timer (set to 6 AM). During data taking operations the room
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the room-temperature reproducibility.
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into a computer. The temperature measurements were made using K-type thermocouple

junctions, which were fed into a custom electronic circuit to produce a signal with a 10

mV/oC calibration, shown in Fig. 2.8. The data acquisition was done with a National

Instruments DAQ board (NI-6025E), which could take as many as 16 analog input

channels, and data was analyzed using LabView software. We found, in the course

of acquiring temperature measurements, a certain level of ‘cross-talk’ between analog

input channels on this board, which we eliminated by placing a 10 kΩ resistor between

in the input channel and ground. Fig. 2.8 shows a schematic diagram of the temperature

acquisition hardware for two temperature inputs, which can be scaled up to incorporate

16 input channels, if needed.

2.2.3 Adiabatic Rapid Passage in a Large Magnetic Field

In order to perform expansion imaging on the atoms in the presence of a perma-

nent magnetic field, we found it necessary to perform an adiabatic rapid passage (ARP)

of the atoms into an anti-trapped state and image the atoms in a high magnetic field

(bias field of ∼ 90G) after approximately 3 ms of anti-trapped expansion. This was

done by applying fixed microwave frequency radiation (ν = 6653.5 MHz) to the atoms,

jumping the bias field very rapidly to a given magnetic field Bi and ramping the field

through the |F = 1,mF = −1〉 → |2,−2〉 transition to the final magnetic field Bf .

In order to find the exact center of the resonance, data was taken in which the

magnitude of the magnetic field was varied while a number of variables were recorded–

variables such as the radial position and width of the expanded BEC, and the number

of ARPed atoms. The magnitude of the magnetic field was varied in this experiment,

as opposed to varying the frequency of the microwave radiation, for ease in data taking.

Let us define ∆B as the width of the magnetic field ramp and Bc as the ramp center,

∆B = Bf − Bi (2.1)
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Bc = (Bf + Bi)/2. (2.2)

An important detail of the ARPing process is that the equilibrium position of the

BEC is dependent upon the spring constant (or trapping frequency) of the magnetic

trap, due to the presence of gravity. As the magnitude of the magnetic field is increased,

the spring constant is lessened and the equilibrium position of the BEC is shifted down

in space, farther from the substrate’s surface. Therefore the BEC will gain an initial

velocity following the rapid jump of the bias field to Bi.

Fig. 2.9(a)-(c) shows data taken scanning the magnetic field Bc with a fixed ramp

width ∆B = 1.1 G. Fig. 2.9(a) shows the final position of the BEC cloud following a 3

ms ARP sequence and subsequent 2.5 ms expansion. By carefully analyzing the exact

final position of the ARPed atoms, we can determine exactly how the atoms have been

ARPed. The data shows a clear sign of an ARP resonance. Atoms that have been

ARPed late in the process (configuration (1) for example) show up as having travelled

the least amount of distance, whereas atoms that have been ARPed very early in the

process ((7) for example) appear to fall much farther. The variation in the final position

of the BEC indicates exactly when in the sequence the atoms have been ARPed (if at

all) and allows us to reconstruct the ARPing process.

The solid line in (a) represents results from a zero-parameter simulation of the

process, which shows seven unique features, corresponding to the seven diagrams in

Fig. 2.9.

Because the microwave coupling is fixed in frequency, we may think of the ARP

transition as being a large elliptical shell enclosing the BEC which converges upon the

magnetic field minimum as the magnetic field is being ramped up. The presence of

gravity ensures that the bottom surface of the ARP ‘shell’ will reach the atoms before

the top surface does. Therefore, this shell is represented by a solid black line in Fig. 2.9

and the ramping area is indicated by the gray fill. If the atoms cross the shell, either
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Figure 2.9: ARP data. The data in (a) shows the position of atoms following a 3 ms
ARP sequence and subsequent time-of-flight expansion. The atoms obtain an initial
downward velocity, indicated by the arrows in the illustration, following a magnetic
field ‘jump’. The various features in the graph are illustrated on the bottom right with
the heavy black lines representing the beginning and end of the ARP resonance. The
zero-parameter simulation (solid red line) shows good agreement with the data and
allows us to identify the various features (described in Table 2.2.3). Graph (b) shows
the expanded radial size of the BEC. BECs that have been ARPed have a much larger
radial size than BECs that have not. The data in (c) shows the number of atoms that
have been ARPed as a function of the center magnetic field. The solid red line shows a
fit of this data to a Lorentzian profile. The peak number of ARPed atoms corresponds
to the center magnetic-field configuration (5) in the simulation.
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through field ramping or by falling, they will be transferred to the anti-trapped |2,−2〉

state, fly away rapidly and be destructively imaged.

The timing of the ARP sequence is very sensitive. Performing an ARP ramp too

early or too late results in a poor transfer of atoms to the anti-trapped state. Table 2.2.3

outlines 7 various ARP transitions that may be performed, corresponding to (1)-(7) in

Fig. 2.9, which depend on the timing of the ARP sequence. The simulation qualitatively

agrees very well with the data, where discrepancies can be due to the fact that the

simulation has the capability to switch magnetic fields infinitely fast, while in practice

the magnetic-field switching time is limited by inductance and servo bandwidths. Other

discrepancies may simply come from magnetic-field calibration errors. One can see from

the diagram the various ARPing features. The ideal ARP would correspond to number

(5), in which the resonant magnetic field is jumped to just below where the atoms

are in space and slowly ramped up through resonance as the atoms fall down. This

would provide a very controlled method in which the ramping parameters could be

adjusted to maximize the number of ARPed atoms, rather than simply have the atoms

fall uncontrollably through resonance (3), or have resonance race past them (7). A

rapidly passing resonance does not fulfill the ARPing requirement that the time rate of

change of the resonance be smaller than the square of the Rabi frequency.3 .

We can verify that indeed the ARP center is configuration (5), first by analyzing

the modelling program, and also by looking at the number of BEC atoms which are

ARPed and imaged, shown in Fig. 2.9(c). The center of a Lorentzian fit directly corre-

sponds to the ARP center, configuration (5) of the data (which lies below configuration

(6) of the model). Additionally, one would expect a BEC cloud that has been properly

ARPed into the anti-trapped state to have a radial width much larger than a BEC cloud

that has not. This is demonstrated in (b), in which atoms that are not fully ARPed

(Bc < 85 G) never quite expand as much radially.

3 By varying the parameters of the ARP, we estimate the bare Rabi frequency to be ∼2 kHz
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Feature Bc Comment ∼ Ωmin/2π
G Hz

(1) 84.00 never fully reaches resonance n/a
(2) 85.55 just reaches resonance by falling 500
(3) 85.68 ARPs through resonance by falling 300
(4) 85.74 just misses ARP ramp 250
(5) 86.20 ARP ramp centered on BEC 800
(6) 86.85 field jumps to resonance >10000
(7) 88.00 resonance races by too quickly >10000

Table 2.1: Distinct ARP features. This table provides a description of the various
ARP transitions shown in Fig. 2.9. Here Ωmin represents an estimate of the minimum
Rabi frequency needed for the ARP procedure to work properly. Features (6) and
(7) correspond to the ARP resonance speeding through the BEC. A very large Rabi
frequency would be needed for this process to be truly adiabatic.
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Figure 2.10: Testing ARP efficiency. The ARPing procedure begins by rapidly increas-
ing the bias magnetic field. This has the effect of shifting the equilibrium position of
the atoms down from the dotted black line (y=0) to a position ∼0.1 mm lower. Atoms
are ramped through an ARP resonance and fly rapidly away (solid black line) from the
equilibrium position. Atoms which have not been ARPed properly remain trapped and
oscillate down and back along the dash-dotted red line. Upon returning the atoms will
once again see the ARP resonance and fly rapidly away from the equilibrium position
(dashed blue line). By measuring the number of atoms which have and have not been
ARPed, one may estimate the efficiency of the ARPing procedure.
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We performed an additional measurement to test the ARP efficiency (NARPed/NTotal).

In this experiment we allowed the ARP to remain on as usual, while atoms which were

not ARPed passed by the equilibrium position (modified by the presence of the larger

magnetic field Bf ), came to a stop at the classical turning point, and returned back

towards the ARP ‘shell’. A similar fraction of these atoms are then ARPed upon this

return trip. These atoms, in the trapped |1,−1〉 state, oscillate with a very well known

frequency, and return after roughly one trap period. Fig. 2.10 shows data for atoms

that are initially ARPed and fall in anti-trapped expansion (solid black line). Atoms

which are not initially ARPed oscillate along the trapped trajectory4 (dash-dotted red

line), are ARPed upon returning to resonance and also fall in anti-trapped expansion

(dashed blue line). By counting the number of atoms which have returned and are

secondarily ARPed, we can estimate the efficiency of a single pass through the ARP.

We found our microwave-loop antennas to provide an ARP efficiency between 80-95%,

while a microwave waveguide provides nearly 100% efficiency.

Fig. 2.11 shows an image of the two microwave sources used in the course of the

experiments, relative to the science cell (substrates not pictured). The loop antenna was

designed to be forward-broadcasting by attaching a ground plane (copper backplate) to

restrict radiation in the backward direction. A hole is cut in the center of the back

plane which is designed to provide access for imaging (red horizontal beam). The

hole is much smaller than the wavelength of the microwave radiation (λ= 4.5 cm)

and therefore does not pose a problem with back-directed radiation. Also pictured

in Fig. 2.11 is a rectangular microwave waveguide, which provides the best source of

microwave radiation. However, the positioning of the waveguide restricts optical access

down the axis of the science cell. Images taken along this axis provide information

about the x and y-position of the BEC, which is needed when performing systematic

4 Note: the equilibrium position of atoms following the trapped trajectory is roughly 100 µm lower
than that of atoms trapped prior to the ARP sequence, whose equilibrium position is zero.
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tests. For these experiments (detailed in Chapter 4) the waveguide is removed and the

loop antenna provides the sole source of microwave radiation to the atoms.

2.2.4 Imaging in a Large Magnetic Field Gradient

Once the atoms have been ARPed into the |2,−2〉 state and have fallen in anti-

trapped expansion, they are destructively imaged onto a CCD camera with a 20 µs pulse

of collimated probe laser light, resonant with the F = 2 → F ′ = 3 cycling transition.

This transition is sensitive to magnetic fields (dν/dB ≃ 1.4 MHz/G) and the transition

frequency must be found and optimized with an AOM. Fig. 2.12(a) shows the peak

optical depth of the imaged atoms plotted versus the relative detuning of the transition.

The open (blue) circles represent data taken with a BEC, whose peak optical density is

large when compared with that of a non-condensed thermal cloud (closed black circles).

Analysis of the fits to the data in (a) shows a larger width of the transition for the

thermal cloud due to the fact that the thermal cloud is spatially larger than a BEC.

When imaged in a magnetic field gradient (∼510 G/cm), the transition will naturally

be detuned due to the field sensitivity (the Zeeman effect) of the transition. The width

of these two transitions agrees well with calculations of the transition widths in the

presence of a field gradient.

The detuning referred to in Fig. 2.12 is relative to the resonance of the atomic

transition in a ∼ 90 G magnetic field, which is shifted ∼130 MHz from the zero-field

resonance. By locking the −1 order of the first AOM in the probe laser path (see

Fig. 2.1) to the F = 2 → F ′ = 2 − 3 crossover, the zero-order beam is effectively

detuned from the crossover transition by the AOM frequency (∆ν ≈ 275 MHz). This

beam then passes through another AOM which has the effect of detuning its +1 order

back to the crossover transition. What makes this up-and-down setup nice is that the

second AOM frequency can be varied very carefully in order to find the resonance. The

laser frequency is detuned from the 2 → 3′ transition by almost the exact amount the
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Figure 2.11: Microwave loop antenna. Photograph of the loop antenna used to broadcast
microwave radiation to the atoms in the science cell (table and substrates not shown).
The antenna uses a copper ground plate to direct the radiation towards the atoms,
rather than to broadcast in all directions. The hole in the center of the copper plate
provides optical access to the atoms in order to image them (solid black arrow). Shown
also is the microwave waveguide which provides very powerful, direct radiation to the
atoms. The waveguide, however, prevents us from imaging the atoms along the axis of
the science cell (dashed gray arrow). The diameter of the loop is ∼12 mm. For most
measurements, the waveguide was removed.
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atoms are detuned by the magnetic field. The result is that the atoms see the laser light

as being on resonance with the 2 → 3′ transition.

In addition to observing the detuning effects when imaging in a strong magnetic-

field gradient, we also observed an apparent shift of the center-of-mass of the clouds.

Fig. 2.12(b) shows the center position of both the BEC (open blue circles) and thermal

cloud (closed black circles) shift with the laser detuning. This is an artifact of imaging

in a field gradient. When the laser frequency is detuned to the red (blue) side of the

transition, atoms in a slightly larger (smaller) magnetic field will be resonant with the

transition and will appear to have a greater density than the atoms in the center of

the cloud. The lines in (b) are single-parameter fits of the data to the derivative of the

Lorentzian fit-function in (a), where the width and center of the transitions are fixed,

varying only the amplitude of the apparent center-position movement.

A good analogy of this effect is to picture the imaging laser as a spotlight. Detun-

ing the laser moves the spotlight in space, such that resonance occurs when the spotlight

is centered on the atoms. The spatial extent of the spotlight in a magnetic-field gradient

is analogous to the atomic linewidth. If the cloud covers a magnetic field gradient large

enough (like the thermal cloud), the spotlight only shines on a fraction of the atoms

and the apparent center of the cloud shifts greatly. However, if the cloud is very small

spatially (like the BEC), the apparent shift of the center is also small.

2.2.5 Ground State Purification of BEC

In our experiment we desire the entire BEC population to be in the |1,−1〉 state.

However, it sometimes happens that atoms can be trapped in multiple states, like for

instance the |2, 1〉 and |2, 2〉 states (perhaps due to a faulty optical pumping scheme

during the CMOT process). We occasionally found the conditions right (or wrong,

depending on your point of view) to accidentally condense atoms in more than one

state. This was problematic to our experiment due to the fact that these impurities
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Figure 2.12: Imaging in a large magnetic field. The data in (a) shows the peak optical
depth of a BEC (open circles) and a thermal cloud (closed circles) for various detunings
of the probe laser. The presence of a large magnetic-field gradient during the image
widens the transition due to the finite size of the clouds. The presence of the magnetic-
field gradient also adds to an apparent shift of the center position of the atom cloud,
shown in (b). The detuning from resonance of the laser frequency compensates the
detuning of the atomic transition from the field gradient, which results in an apparent
shift in the center position of the atom cloud. The large size of the expanded thermal
cloud leads to very noticeable shift, while this effect is suppressed greatly for a BEC.
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could produce unwanted collisions. The problem could sometimes be resolved by slightly

adjusting parameters in the CMOT setup, or by adding light resonant only with the

impurity state, thus selectively removing the impurity. In the past, this method of

removing impurity states with light was implemented in order to be absolutely certain

of the BEC state-purity. However, the light used in this setup was slightly detrimental

to the BEC due to the fact that the chosen purification light was resonant with the

F = 2 → F ′ = 2 transition. Atoms in the impurity states (|2, 1〉 and |2, 2〉) could absorb

and emit photons, which could lead to the atoms decaying back into the |1,−1〉 state

with a great deal of energy, thus heating the cloud. The atoms could also simply collide

with other atoms upon recoiling from the absorption of a photon, which could also heat

the cloud or lead to a significant loss of atoms.

The solution, we found, was to apply light resonant with the F = 2 → F ′ = 3

transition, and blowing the impurity state atoms out of the trap. This transition is

a closed cycling transition, which means that an atom absorbing a photon up to the

|F ′ = 3〉 state may only decay to the |F = 2〉 state. This method ensures that atoms

have no possibility of decaying back into the |1,−1〉 state and no chance of heating

the cloud in this way. This light was produced by applying an AOM to the unused

zero-order beam of the probe laser (as shown in Fig. 2.1). This light had no adverse

effects on atoms in the |1,−1〉 state.

2.2.6 Shielding an Oscillating BEC

In order to perform experiments which depend on measuring very small changes

in the BEC-trapping frequency, we found it necessary to address the problem of back-

ground gas collisions heating the BEC. This heating becomes a problem in these types

of experiments due to the fact that a nearly pure condensate (NBEC/N > 0.8) will

oscillate at a slightly different frequency than a lower fraction condensate. Fig. 2.13

shows the effect of the BEC number fraction on the measured trap frequency. In order
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to perform high-precision work, the number fraction of the BEC should remain as close

to constant as possible.

Applying constant radio-frequency radiation just above the final evaporation fre-

quency has the effect of shielding the BEC from stray background atoms which are

trapped in other states, known as ‘Oort-cloud’ atoms. The rf-shield used in this exper-

iment is a bit more complicated, due to the fact that the BEC is oscillating in space.

The finite size of the oscillation requires the shield frequency to be increased slightly (a

few kHz) in order to prevent the atoms from becoming untrapped by oscillating through

the shield. In addition, the presence of near-resonant rf-radiation leads to an AC Stark

shift of the potential near the shield position, which can shift the trap oscillation period.

This means a careful examination of the applied power of the shield is necessary as well.

The data in Fig. 2.14(a)-(c) shows the adverse effects of shield power on an oscil-

lating BEC after 500 ms. The data in (a) shows the effect the additional AC Stark shift

adds to the potential. The radial trapping frequency is perturbed greatly with a strong

shield power (0 dBm), while it tends to be unaffected with smaller shield powers (-12

to -18 dBm). Additionally, one can see in (b) the effect the shield has on the size (and

number) of the oscillating BEC. The illustration below (b) demonstrates how higher

shield powers have the effect of biting into the BEC a bit more than weaker shield

powers. The data in Fig. 2.14(c) demonstrates how the presence of the shield affects

the BEC number fraction. Higher shield powers tend to have a detrimental effect on

the BEC number fraction, heating the BEC, while lower powers tend to have the effect

of preserving the number fraction, or even cooling the BEC a bit, creating a higher

number fraction. The solid line represents the mean number fraction at the beginning

of the oscillation (the dashed lines showing the standard deviation in the mean). Other

data (not plotted) show that when the condensate starts with a number fraction > 0.8,

shield powers in the range of -10 to -18 dBm would do a good job preserving that state

of the BEC for the entirety of the oscillation.



36

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

230.05

230.10

230.15

230.20

230.25

230.30

230.35

230.40

230.45

230.50

R
a
d
ia

l 
T
ra

p
 F

re
q
u

e
n
c
y
 (
H

z
)

BEC Number Fraction

Figure 2.13: Trap frequency vs. BEC number fraction. The finite size of a BEC and
thermal cloud in an anharmonic trap leads to a slight change in the trap frequency at
the 0.1% level for various BEC number fractions (NBEC/N). The presence of this effect
requires a constant number fraction be maintained for the duration of an experiment (>1
s). Sec. 2.2.6 deals with the shielding issues used to suppress heating of the condensate.
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Figure 2.14: Effect of shield power. Shown in (a) is data taken varying the power of
rf radiation applied to a BEC for shielding purposes (discussed in Sec. 2.2.6). The
additional shield power adds to an AC Stark shift of the potential, which contributes
to a change in the trap frequency. The data in (b) shows the effect the radiation has
on the number of BEC atoms after 500 ms (indicated by the BEC size). Plotted in (c)
is the BEC number fraction after 500 ms of oscillation time. The solid line corresponds
to the initial number fraction (with error bounds). One can see a heating effect from
high-power radiation, where the number fraction is reduced, and a cooling effect from
lower-power radiation (higher number fraction). One can see the effect the shield has
on the oscillating BEC graphically in the illustration. The stronger the rf power of the
surrounding shield becomes, the wider its spatial extent becomes. The rf knife was held
at 24 kHz above the final evaporation frequency for these measurements.
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2.3 Science Cell Heating Techniques, Procedures and Concerns

This section of Chapter 2 details the various components of the apparatus used

to uniformly heat our substrates and science cell. Resistive heaters, insulating fiber

glass wraps and thermocouple junctions were used to create a temperature-servoed

oven localized around the cell. Also included in this section is a discussion regarding the

degradation of the UHV quality as the oven temperature was raised. The poor vacuum

quality significantly inhibited our progress to make a measurement of a temperature

dependence to the Casimir-Polder force with uniform heating. However, the analysis

performed on the vacuum quality may be of use to others and is documented in this

section.

2.3.1 Uniform Heating Circuitry

Our first attempt at measuring a temperature dependence to the Casimir-Polder

force was done by a uniform heating method in which we raised the temperature of our

science cell by placing resistive heaters in contact with the top and bottom of the cell

(see the illustration in Fig. 2.16).5 The temperature of the science cell was monitored

by two thermocouple junctions. Each thermocouple was glued to a 5 mm × 5 mm piece

of ceramic boron nitride, in order to avoid measuring point-contact ‘hot spots’ on the

pyrex cell walls. The ceramic acts as a good ‘averager’ of the cell-wall temperature.

The circuit used to heat the chamber is shown in Fig. 2.15, in which the thermo-

couple leads are shown as a plus and minus on the left-hand side. The output of this

circuit is meant to be fed into the voltage control of the power supply in order to servo

the cell temperature. The graph in Fig. 2.15 shows the performance of the system over

several hours. Analysis of the data taken from 3:15 AM to 6:00 AM shows a standard

deviation of 76 mK over 165 minutes, which is largely, if not entirely, due to noise in

5 The resistive heaters were powered by a Kepco power supply (model BOP10-10M).
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the temperature acquisition (see Sec. 2.2.2 of this chapter).

2.3.2 Vacuum Degradation While Heating

During the heating experiments described in Sec. 3.3, we encountered a few prob-

lems with the vacuum quality as we heated the chamber. This difficulty had to do with

the fact that we began to see a dramatic decrease in the number of atoms in our mag-

netic trap as we heated our vacuum chamber. This loss was attributed to the increase

in the background pressure inside the chamber. Fig. 2.16(a) shows the effect heating

the pyrex walls has on the magnetically-trapped cloud of atoms. This was, however, ex-

pected and we were able to achieve BEC with a surrounding environment temperature

of ∼190oC.

As the pyrex temperature is increased, a dramatic decrease in the trap lifetime

can be seen. At first we had assumed that the increase in the background pressure

was due to an increase in the outgassing rate of the steel chamber walls, which were

inadvertently heated as the pyrex heated. Fig. 2.16(b) shows that this is, in fact, not the

case. By independently varying the temperature of the steel (by placing it in contact

with a water-cooled copper coil), we could see that the increase in the background gas

pressure was due to the heating of the pyrex walls and not the steel! This is indicated

in Fig. 2.16(b) with two red arrows. The two outlying data points disagree significantly

with the rest of the data (with the red-dotted line providing a guide to the eye).

The solid (red) lines in (a) and (b) are fits of the data. The two outlying points

in (b) were masked during the fitting to illustrate the point that was made. The fit

function that was used was obtained by assuming that there exists a background gas

pressure that depends on the rest of the vacuum chamber and does not depend on the

pyrex cell wall temperature or the temperature of the adjacent steel (as illustrated in the

figure). This background (BG) pressure gives us a steady-state lifetime of atoms in the

magnetic trap of τBG at room temperature, whose loss rate is given by γBG = 1/τBG.
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Figure 2.15: Uniform-heating circuit. Shown is a schematic diagram of the circuit used
to provide uniform heating to the science cell. Resistance values are in Ω, while the
capacitance value is in µF. Shown in the graph is the temperature of the science cell over
several hours. The cell temperature was programmed to heat to 140oC at 3 AM. One can
see a short ‘rise-time’, slight overshoot and damped oscillation of the temperature on the
several-minute time scale. From 3:15 AM to 6 AM the temperature was maintained to a
steady value with a 76 mK variation (most likely due electrical noise in the temperature
acquisition).
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The increase in pressure due to heating (H) would then come from an additional term

γH = 1/τH , which is exponentially dependent on temperature. The two loss rates would

add together to produce a functional form of the lifetime that behaves like

τtotal(T ) =
1

γBG + γHe−To/T
. (2.3)

where To is a characteristic temperature associated with the ‘turn-on’ of the temperature-

dependent loss. By fitting the data in (a) we find that the background lifetime τBG =

121.3(9)s, τH = 0.53(49)ms, and To = 5830(420)K. The dashed (blue) horizontal line at

40 seconds in (a) is an estimate of the minimum lifetime needed in the magnetic trap

to produce a BEC. This means that we would be limited to a science cell temperature

of roughly 225oC to make a small BEC, and an even smaller temperature to make a

healthy, robust BEC.

The permeability of the glass vessel walls has been documented in a number of

other sources, many of them dealing with light-bulb technology. The idea behind this

loss mechanism is that the pyrex walls become more porous as they are heated and, in

fact, become fairly permeable to helium gas. We can estimate the flux of atoms that

make their way into the cell through the pyrex walls by analyzing the results of the fit

earlier.

Since we believe the majority of the pumping of the gas in the science cell is done

by ion pump #2 (a 40 L/s pump, see Fig. 2.3) and since we can estimate the background

gas pressure (∼ 10−11 torr), we can obtain a value for the throughput for the ion pump

QP = PBG SP , where QP is the throughput of the pump, SP is the pumping speed,

and PBG is the background pressure. The throughput is a quantity in vacuum science,

analogous to current in electronics, which is a conserved quantity everywhere along the

vacuum chamber. In steady-state, therefore, we can assume that the throughput being

pumped is equal to the throughput created by the chamber walls, getters, etc. We

estimate this quantity to be QBG = (40 L/s)×(10−11 torr) = 4×10−10 L torr s−1. This
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Figure 2.16: Vacuum issues while heating. Graphs (a) and (b) show the lifetime of
magnetically trapped atoms taken inside the pyrex science cell. The lifetime of the
atoms is a good indicator of the background gas pressure inside the chamber. Data was
taken varying the temperature of the pyrex chamber walls with resistive heaters placed
above and below the science cell. The temperature of the steel walls were found to
increase due to thermal conduction and were varied with water cooling contacts. The
data in (a) shows a very strong dependence of the lifetime on the temperature of the
pyrex chamber walls (described in the text), while the data in (b) shows the same data
plotted versus the steel temperature. Two red arrows point to two measurements that
were made with the water cooling off. The change in the temperature of the steel led to
no distinguishable change in the lifetime of the trapped atoms. The conclusion drawn
from this is that the pyrex walls seem to be more permeable at hotter temperatures and
led to a significant vacuum degradation. The dashed line in (a) represents the minimum
lifetime needed to create a BEC and puts an upper limit on the hottest possible pyrex
temperature. The image is of a BEC created while the science cell was heated to 190oC.
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quantity should be proportional to the background loss rate γBG and therefore inversely

proportional to τBG. I’ll call this proportionality constant a and write it as,

QBG =
a

τBG
, (2.4)

and a = 5.1 ×10−8 L torr.

We can then estimate the throughput through the pyrex wall QH by analogously

associating it with the additional loss mechanism. The constant of proportionality

should be roughly the same and we can say that,

QH(T ) =
a

τH
e−To/T , (2.5)

which gives a value of QH(T ) = 9.7(90)×10−5 Exp(-To/T ) L torr s−1, where To =

5800(420)K. Additionally, we can estimate the atomic flux Φ through the 1 mm thick

pyrex walls at room temperature by dividing the throughput by the surface area of the

pyrex chamber (∼35.2 cm2),

ΦH ≈ 2.4(21) × 1010m−2s−1. (2.6)

In order to minimize the effects caused by heating the pyrex walls, one could

imagine using thicker pyrex, limiting the surface area of the pyrex, or eliminating the

helium gas surrounding the cell. The latter would take a fair bit of effort, but one could

imagine having a constant flow of an ultrapure, inert gas pass over the cell as it heats.

2.4 Laser-Heating Techniques, Procedures and Simulations

This section of Chapter 2 details the technique of heating our substrate with a

high-power laser. The substrate is painted black with a graphite paint, which absorbs

a significant fraction of the incident laser power, and heated to several hundred Kelvin.

This section also outlines the finite-element analysis of the temperature profile across

the substrate’s surface and describes the calibration of the surface temperature to the
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heating-laser power. This calibration uses a non-invasive, interferometric measurement

to determine the substrate temperature.

2.4.1 Substrate Laser Heating

In this section, I discuss the methods used in heating a glass substrate with a

high-power laser for the purpose of measuring a temperature dependence to the Casimir-

Polder force.

The top side of the glass substrate was painted black with a colloidal graphite

paint (Aquadag E) in order to absorb the light from the heating laser. This paint is

composed of solid graphite particles (roughly 0.5–2 µm in size), NH3OH, H2O and a

polysaccharide cellulose material (sugar). The sugar, we are told, acts as a glue to

hold the graphite particles to the substrate and breaks down into solid carbon following

a high-temperature bake. The company that develops the paint, Acheson Industries,

recommends the following baking procedure, which we amended to meet our needs.

This procedure worked very well and allowed us to heat our substrate to temperatures

of 600 K while maintaining UHV conditions.

First, an unpainted substrate is slightly heated by placing it under a heat lamp

on a glass table (a replica of the pyrex holder in Fig. 2.17) which is heated to ∼60oC

and painted. The elevated temperature of the substrate helps the paint settle almost

instantaneously when applied, and does not allow it to spread over the substrate’s entire

surface area. The substrate(s) and glass table are placed into an off-line vacuum chamber

and heated to 150oC for 1–2 hours. This stage of the bake is primarily intended to drive

out all the water from the paint before a high-temperature bake. The presence of water

during a high-temperature bake would have the effect of boiling the paint too rapidly

and would create a cratered surface. At this point the vacuum temperature is raised

slowly to 300oC and baked for several hours. The temperature of the vacuum system is

then raised once again to 450oC for 1–2 hours. This last step in the bake-out procedure
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is done primarily because we intend to heat the surface to temperatures in this range

with the heating laser. It is advantageous to do this extremely hot-bake stage in an

off-line vacuum chamber, rather than bake the piece at high-temperatures in the science

cell. The paint was found to remain intact following a vacuum bake at 600oC for three

hours, but was found to disintegrate slightly at ∼700oC.

The bake leaves a very smooth painted graphite surface and also allows for place-

ment of the painted substrate in a UHV chamber. The remaining solid graphite layer

was found to absorb the power of the laser light with a remarkable efficiency. Ide-

ally solid graphite will absorb ∼60% of 860 nm laser light, while we estimate that the

graphite paint absorbs ∼50% of the applied light.

The heating laser used for this purpose was a high-power diode laser with a center

wavelength of 860 nm, with a broad 2 nm laser linewidth. This diode, properly cooled,

is capable of producing greater than 7 W of laser-light power (for our purposes, we

only ever used 0-2 W of power). The laser produces an output of laser light which

requires an variety of optics in order to get the beam semi-collimated. This beam was

then manipulated with various optics to produce an incident beam profile whose spatial

extent nearly matched that of our glass substrate.

A large laser spot was chosen in order to achieve near-uniform temperatures

across the surface. Fig. 2.21 shows the results of a finite-element modelling program

(described in Sec. 2.4.3) in which either a tightly-focused laser beam (a) or a broad-focus

laser beam (b) are incident on the surface. The tightly focused beam produces a large

temperature gradient across the surface, which would make interpreting the results of

a Casimir-Polder experiment difficult. For this reason the broad-focus beam (analyzed

in Fig. 2.21(b)) was used for the experiment.

Fig. 2.17 shows an illustration of our science cell apparatus with the applied

heating laser. The laser is sent through the top side of the pyrex vacuum chamber

walls, and strikes the graphite-painted side of the substrate. The substrates are set
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Figure 2.17: Laser heating of the substrate. Shown is a to-scale drawing of the science
cell with the heating laser. The heating laser passes through the pyrex chamber wall
and strikes the top-painted surface of one of the four substrates. The substrates are
supported by a pyrex holder which allows the BEC to be formed beneath. Also shown
in the figure is the coordinate axes referred to throughout this thesis.
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in place on a pyrex table, which elevates the surfaces for BEC studies (the BEC is

shown beneath the surface in the inset). The table and substrates have a small area

of contact with one another, due to the surface roughness of the table. This lack of

contact provides a great deal of thermal isolation to the substrate. When the heating

laser is applied, the substrate’s primary means of cooling is limited to radiative cooling

and is not dominated by conductive cooling. This allows for substrate temperatures to

exceed 600 K while the pyrex vacuum chamber remains at ∼300 K. This is important

in the context of non-equilibrium Casimir-Polder forces, discussed further in Chapter 3.

When the experiment, detailed later on in this thesis, was conducted with a hot

substrate (600 K) the heating laser was left on continuously, even during the imaging

process, in order to avoid temperature instabilities. The presence of the high-power

laser light led to a great deal of light being scattered about the apparatus. In order to

accurately image the BEC onto the CCD camera without observing interference from

the heating-laser light, a pair of filters were added to the camera to extinguish the

high-power 860 nm light on the CCD and allow the 780 nm imaging light to remain.

An edge-pass filter was used for this purpose, which transmits 85% of 780 nm light,

while transmitting only 0.01% of 860 nm light. The high intensity of the heating laser

required us to use two filters in order to nearly extinguish the heating-laser light.

2.4.2 Interferometric Measurement of Substrate Temperature

In order to accurately determine the temperature of the substrate in the vacuum

chamber, an off-line experiment was performed in which the temperature of the substrate

was calibrated to the incident power of the heating-laser beam. The off-line experiment

was set up to be nearly identical to the main apparatus. The only geometric detail that

differed between the two setups was the addition of two reflective gold layers to the

off-line substrate (see Fig. 2.18). The gold layers were patterned onto the substrate by

vapor deposition, thick enough to provide a nearly 100% reflective surface.
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The temperature of the substrate was determined by measuring an interferometric

signal which is proportional to temperature changes. The basic idea of the interferometer

is that a laser beam is split by a 50-50 beam splitter (a semi-reflective gold mirror coated

to be 50% reflective at the wavelength of the laser), with one of the two beams of the

interferometer passing through the glass substrate, reflecting from the back surface

and returning along its path to be recombined with the other interferometer beam on

a photodiode. The second interferometer beam reflects from the front surface of the

substrate and acts as a reference beam to provide an interference effect. The difference

in phase between the two paths determines the interferometric signal on the photodiode.

Because one of the beams passes through the material and one beam does not, the

interference signal is dependent on the material properties and substrate thickness,

which themselves are dependent upon temperature.

More specifically, the interferometric signal recorded on the photodiode will look

like a sine wave, whose phase depends upon the temperature change of the substrate.

The number of fringes ∆N recorded on the photodiode is proportional to the change in

temperature ∆T and depends upon the index of refraction of the material n, the thick-

ness of the material t, the linear coefficient of thermal expansion α, and the wavelength

of the interferometer laser λ.

The interferometric signal comes from the addition of two effects: (1) thermal

expansion as the material is heated and (2) the change in the material’s index of re-

fraction with temperature dn/dT . It is important when calculating the interferometric

signal that one accounts for both effects. For instance, the latter of these two effects is

the more dominant by a factor of 15 for fused silica, due to the fact that fused silica’s

thermal expansion coefficient is very small, while the two effects are nearly equal for

crystalline sapphire.

One can derive an equation for the number of interferometric fringes recorded as

a function of the change in temperature by looking at Fig. 2.18. The path difference
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between the two interferometer beams will be equal to some free-space path difference

∆L, due to the fact that one of the beam paths is longer (this does not vary with

temperature), and a path difference due to the presence of the substrate 2nt, which

does vary with temperature. We can write the relation between the path length and

the number of fringes,

Nλ = 2nt + ∆L. (2.7)

To see an interference effect, the path difference must depend on temperature. There-

fore, if we take the derivative of this equation with respect to temperature, we will have

a relation for the number of interferometric fringes for a change in temperature dT ,

d

dT
(Nλ) =

d

dT
(2nt + ∆L). (2.8)

The only parameters that depend upon temperature are the index of refraction

n, the thickness of the substrate t and the number of fringes N ,

dN

dT
=

2

λ

d

dT
(nt). (2.9)

By applying the chain rule, we may write the above equation as,

dN

dT
=

2

λ
(t

dn

dT
+ n

dt

dT
). (2.10)

Looking at this equation, we can relate the change in the thickness of the substrate

with temperature to the thermal expansion coefficient, dt/dT = αt, and write the change

in index of refraction with temperature dn/dT as n′, a constant of the material.6

We can then write the equation for the number of interferometric fringes ∆N for

a change in temperature ∆T as,

∆N =
2t

λ
(n′ + nα)∆T, (2.11)

where dN/dT has been written as a finite difference ∆N/∆T .

6 This term is not necessarily a constant, but a known value which depends upon the laser wavelength
and the temperature range. It can be found by searching through volumes of optical constants.
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Fig. 2.18(b) shows an interferometer signal (∼30oC/fringe) recorded on a pho-

todiode as the substrate was heated over 300 K above room temperature. The signal

shows that the photodiode records a flat signal from 0-2 minutes, at which point the

heating laser is slowly turned on. The substrate was heated slowly for the calibration

and was found to maintain a very steady temperature for long periods of time (t =

10-22 minutes in (b), for example).

It should also noted that the terms dn/dT and dt/dT have been approximated

as constants. This approximation is very accurate for temperature differences of a few

hundred Kelvin. Second order terms were used in our estimation of the temperature,

just to be safe.

Fig. 2.18(a) shows the results of our off-line calibration. The filled (blue) circles

show data taken, in which the temperature of the substrate is determined interferomet-

rically, while the power of the laser is measured with a power meter. The solid (red)

line is a power-law fit to the data, while the dotted (red) lines are the error bounds

of the calibration (used in estimating our uncertainty in the substrate temperature).

This calibration shows a power-law dependence of the substrate temperature with laser

power and allows us to accurately determine the substrate temperature in the main

experiment by applying a known laser power to that substrate.

The open circles in Fig. 2.18(a) are estimates of the substrate temperature based

on a finite element modelling (FEM) program, described below in Sec. 2.4.3, where the

error bars represent the range between the maximum and minimum substrate temper-

ature.

This interferometric technique provides a precise way to measure a substrate’s

temperature without the perturbative effect of a physical-contact thermometer which

may provide an unwanted source of heating or cooling. While it is possible for other

temperature measurements to be made without physical contact, our technique pro-

vides an unambiguous measurement of the substrate temperature and does not rely on
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Figure 2.18: Interferometric temperature measurement. Shown in this figure is an
illustration of the interferometric measurement that was made to infer the substrate
temperature. The substrate is patterned on the top surface with gold and half-patterned
on the bottom surface to allow one arm of the interferometer access through the material.
As the material heats, it changes in length and also changes its index of refraction.
The combination of the two effects leads to an interference signal proportional to the
substrate temperature as it heats (shown in (b)). This procedure can be repeated,
varying the power of the incident heating laser. The filled blue circles in (a) represent
a calibration of the substrate temperature to the incident power of the heating laser.
The open circles represent similar results from a finite-element-modelling program.
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measurements of absolute blackbody radiation intensities, which could be corrupted by

an intermediate material.

To test the accuracy of our interferometric method, an additional off-line exper-

iment was conducted in which uniform heat was provided to both the substrate and

the vacuum chamber. Resistive heater tape surrounded the chamber in order to ensure

uniform temperatures. The temperature of the chamber was measured with a ther-

mocouple junction and raised very slowly over a period of several hours. We raised

the chamber temperature very slowly in the hope that a measurement of the chamber

walls would be a good indicator of the substrate’s temperature. We could then test the

accuracy of our method by measuring the interferometric signal on our photodiode as

a function of the known substrate temperature and compare the results.

Fig. 2.19 shows the results of this test. The interferometric signal is plotted in (a)

as a function of the measured substrate temperature, and shows very nice, high-contrast

fringes. The temperature of the substrate is then calculated by extracting the phase of

the interference fringe from a fit to the photodiode data. A running window (shown in

(a) as a red dotted-line box) fits the enclosed data to a sine wave and records the phase

of the fit as a function of the substrate temperature. The phase of the fringe directly

gives a measurement of the substrate temperature and is plotted in (b).

The data shows agreement between the measured and calculated substrate tem-

perature. The dashed black line in (b) shows the expected substrate temperature. The

disagreement between the two at temperatures larger than 150oC is most likely due to

time lags in the heating, where the substrate temperature and chamber temperature

are not fully in equilibrium.

2.4.3 Finite Element Analysis of the Substrate Temperature

In order to properly understand the variation in temperature across our substrate,

we designed a finite element modelling (FEM) program to analyze the surface temper-
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Figure 2.19: Interferometer test. The data shown in (a) shows similar interference
fringes to Fig. 2.18(b). This data, however, was taken with uniform heating of the
entire glass cell in order to compare the temperature inferred from the interference
effect to the known temperature surrounding the cell. The temperature of the substrate
was calculated by fitting one period of the fringe to a sine wave and extracting its phase,
which is proportional to its temperature. The fit window (dotted red box) was then run
across the data, which gave a running measurement of the substrate temperature. The
results, shown in (b), agree very well with the measured temperature up to ∼150oC.
The decrease in the fringe contrast is due to a systematic drift in the position of the
interference signal on the photodiode.
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ature. The FEM program essentially breaks up the surface into an Ny × Nz array of

tiny surfaces, where the number of ‘pixels’ in the k-direction Nk is equal to the size

of the substrate Lk divided by the size of the pixel ds. The program then calculates

the temperature of each pixel by analyzing its heating and cooling mechanisms with its

nearest neighbors and the environment.

Illustrated in Fig. 2.20, each surface is able to (1) conduct and receive heat from

its nearest neighbor, (2) radiate and absorb blackbody radiation, and also (3) absorb

laser radiation. If we look at the (i, j)th pixel of the surface, we can write down an

equation for both the power going into the substrate and also the power going out. The

power absorbed through both blackbody radiation and through laser radiation is equal

to

Pabs = (ǫu + ǫd) σB ds2 T 4
o + PL;i,j , (2.12)

where each pixel, with area ds2, absorbs power according to the Stefan-Boltzmann Law.

Here To is the temperature of the surrounding environment, usually room temperature,

σB is the Stefan-Boltzmann constant, and ǫ is the emissivity of the surface for the upper

side u and the down side d. PL;i,j is the power absorbed from laser radiation and will

be dependent upon i and j for a non-uniform heating-laser beam profile.

The power radiated by each surface is similar in form,

Prad = (ǫu + ǫd) σB ds2 T 4
i,j , (2.13)

where the radiated power depends upon the temperature Ti,j of each element. Also we

will abbreviate the total emissivity for the upper side and the down side to be ǫ = ǫu+ǫd.

The heat conducted between neighboring pieces is a bit more difficult. For each

surface there will be four terms coming in (one for each neighbor) and four terms going

out. The heat conducted out is given by Fourier’s Law of conduction,

Pcond = 4 κ
Axs

ds
Ti,j , (2.14)
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where κ is the thermal conductivity of the material, Axs is the cross-sectional area of

the material (ds × t).

Similarly, the equation for the power received is equal to,

Prec = κ
Axs

ds
(Ti+1,j + Ti−1,j + Ti,j+1 + Ti,j−1). (2.15)

for the sake of brevity we will refer to the term in parenthesis as the sum over nearest

neighbors and refer to it by writing Σnn.

Putting all of the powers in and out together,

Pin = ǫ σB ds2 T 4
o + κ t Σnn Tnn + PL;i,j (2.16)

Pout = ǫ σB ds2 T 4
i,j + 4 κ t Ti,j . (2.17)

In order to analyze the system in equilibrium we must set the power in to be equal

to the power out. Additionally, one should notice that the power in for each surface will

be a constant, independent of the surface temperature Ti,j . The resultant equation will

be a fourth-order polynomial in Ti,j of the form,

Ti,j(T ) = a T 4 + b T + c = 0, (2.18)

where a = 2 ǫ σB ds2, b = 4 κ t and c can be broken up into three terms: the

term dependent upon the laser power c1 = −PL;i,j , the absorbed-power term c2 =

−2 ǫ σB ds2 T 4
o = a T 4

o , and the received-power term c3 = −κ t Σnn Tnn = −b/4 Σnn Tnn.

The solution to this equation is quite complicated and is solvable by a program

such as Mathematica and will depend on a, b, c1, and c2. The idea of the FEM is to solve

this equation for each Ti,j on the surface for a number of iterations until convergence

(equilibrium) is reached.

The results of the FEM analysis are shown graphically in Fig. 2.21, in which the

temperature profile of the substrate is shown across the surface for (a) a very intense

heating beam (1 W of power focused to an e−2 diameter of 200 µm), and (b) a less
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Figure 2.20: Finite element model (FEM) of the surface temperature. This figure
illustrates the FEM technique of calculating the temperature at every point on the
substrate’s surface. The surface is divided up into an Ny ×Nz array of pixels. Shown in
the inset are the various heating and cooling processes that may happen to the i × jth

element. This element may conduct heat to and from its nearest neighbors and also
absorb and emit radiation. The elliptic profile on the surface represents the profile of the
heating laser. This laser profile adds a heterogeneous heating pattern to the substrate.
The results of the FEM calculation are shown in Fig. 2.21.
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Figure 2.21: Finite element modelling result. These 3-D images show the temperature
profile across the substrate for (a) a focused heating laser beam (1W of power focused
to 200 µm), and (b) a broad laser beam with the same power (1W, 4 mm focus). The
broad laser profile acts to heat the substrate more uniformly than a focused beam. The
FEM process calculates the temperature for each surface element 5000 times in order
to reach equilibrium. The profile in (b) matches the conditions used in measuring the
temperature dependence of the Casimir-Polder force, discussed in Chapter. 3.
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intense beam with the same total power (1 W, 4 mm focus). The dramatic difference

between a focused heat source (a) and a broad, uniform heat source (b) is quite apparent.

The temperature range across the surface in (a) is ∼170 K compared to a ∼35 K range

in (b). The profile in (b) is our most accurate estimation of our substrate’s temperature

profile for the 605 K scenario in Chapter 3.

Our FEM program takes into account edge effects for elements on the sides and

corners of the substrate, and conductivity effects from the substrate holder (which

explains the cooler corners in Fig. 2.21).

The results of the FEM analysis agreed very well with the temperature calibration

described earlier in Sec. 2.4.2 with only slight disagreements. The disagreement between

the measured substrate temperature and the temperature estimate from the FEM could

be attributed to an uncertainty in the heat conductance across the point contacts at

the substrate corners, or the uncertainty in how much power is lost or convected away

from atmospheric contact with the pyrex vacuum chamber walls.

One would expect to find an average substrate temperature that has a P 1/4 depen-

dence on the laser power (from the Stefan-Boltzmann relation) instead of a power-law

dependence of P 0.38, as measured from the calibration data. This discrepancy may be

due to a poorly calibrated power meter, or may be due to a temperature dependent

heat-loss mechanism, like a convective heat-loss process such as air-cooling of the cham-

ber walls. Whatever the discrepancy, the calibration remains accurate at determining

substrate temperature due to the fact that the same power meter measures both the

laser power in the off-line calibration measurement and the laser power in the main

chamber.

Additional analysis was performed on the variation in the substrate temperature

from top to bottom. Fig. 2.22 shows the average surface temperature for the top surface

of a 2 mm thick substrate (black solid line), and bottom surface (green dotted line).

The difference in temperature between the two surfaces comes from the fact that heat



59

from laser power is absorbed by the top surface, which then conducts down through

the substrate. Additionally, the bottom surface has a much higher emissivity, which

means it loses more heat to radiation than does the top surface. The difference between

the two surface temperatures leads to some ambiguity about the characteristic temper-

ature of the blackbody fields affecting the atoms near the surface. Radiation coming

from material further than a skin depth inside the material is absorbed and reradiated.

Therefore only emission within a few skin depths of the material should contribute to

Casimir-Polder forces. However, these skin depths may be large, and the temperature

difference between the top and bottom surface of the substrate contributes to the error

bar in our estimate of the characteristic temperature of the substrate’s radiation.

2.5 Comments and Concerns on Metal Selection and Deposition

This final section of this chapter deals with the techniques and concerns regarding

the patterning of metal onto our substrate’s surface. Three metals were used in this

experiment in an attempt to measure the temperature dependence of the Casimir-Polder

force over a metal (as opposed to that already measured over glass), and also to measure

the properties of adsorbed rubidium atoms on metals. The experiments performed over

metals are shown in Chapter 4. Significant problems were discovered regarding the

quality of the metals and are described in Sec. 2.5.2.

2.5.1 Metal Selection

Following the measurements described in Chapter 3, we decided to perform similar

measurements over a metallic surface in order to learn more about the Casimir-Polder

force between an atom and a metal (specifically its temperature dependence). We

decided to prepare a number of substrates, each with its own unique coated metal

layer. We investigated the following metals: hafnium (Hf), yttrium (Y), lutetium (Lu)

and zirconium (Zr). These metals were chosen from a large number of possible metal
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Figure 2.22: Substrate temperature gradient. This figure shows the effect laser heating
the top surface (solid black line) of the substrate has on the bottom surface’s tem-
perature (dotted green line). The difference between the two temperatures is inversely
related to the thermal conductivity of the material. Because it is relatively unclear from
where in the material most of thermal radiation originates, the difference between the
two temperatures is added to the uncertainty in the substrate temperature in Chapter 3.
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Metal WF Magn. Susc. Melt. Pt. Skin Depth (µm)

(eV) (µ/µo-1)×106 (oC) @ 500 nm @ 20 µm @ 6.8 GHz

Hf 3.9 75 2230 0.012 0.08 3.62
Y 3.1 191 1530 0.016 0.10 4 .71
Lu 3.3 1 1650 0.016 0.10 4.66
Zr 4.1 -122 1850 0.013 0.08 3.93

Table 2.2: Metal selection chart. This chart shows the important parameters used
in selecting metals with which to study the Casimir-Polder force. These parameters
include the material’s work function WF, magnetic susceptibility µ, melting point, and
skin depths for various radiation, all of which can be found in the CRC Handbook. In
the end, the three metals with the lowest work functions were selected (Hf, Y, and Lu).

candidates for a number of reasons (see Table 2.2).

First, the metals listed in the table all have properties conducive to UHV en-

vironments, in that they all have vapor pressures orders of magnitude lower than our

background pressure in the science cell (∼ 10−11 torr), and they all have melting points

much higher temperatures than our experiment could possibly attain.

Second, each of the four metals listed has a work function (WF) which is slightly

lower in energy than the ionization energy of rubidium (IE = 4.177 eV). This is impor-

tant when probing atom-surface interactions with alkali metal BECs– the low ionization

energy of the gas-phase alkali atom implies that its valence electron finds it energetically

favorable to reside in the solid metal, supposing the work function of the material is

the larger of the two quantities. It is therefore conducive to atom-surface interaction

measurements that a low-work function material be chosen to reduce these problems.

This is discussed further in Chapter 4.

Another criteria in the search for metals to study is the requirement that the metal

be ‘invisible’ to microwave and radio-frequency radiation. This requirement comes from

the fact that atoms near the metal surface will need to be uniformly shielded with rf-

radiation to maintain a stable BEC for ∼1 second (see Sec. 2.2.6). Additionally, atoms

near the surface will need to be ARPed with microwave radiation in order to be imaged
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(see Sec. 2.2.3). The parameter that determines whether or not an object is ‘visible’ or

‘invisible’ to radiation is the ratio of the skin depth of the material to the material’s

thickness– a parameter which varies from material to material and has a functional

dependence on radiation frequency. The skin depth δ of a material is given by the

following equation,

δ =

√

2εoc2ρ

ω
, (2.19)

where ρ is the resistivity of the material, and ω is the frequency of the radiation. If the

material is thicker than the skin depth, we would say that the material is ‘visible’ because

the radiation can be absorbed or scattered by the material. Likewise, if the material is

thinner than the skin depth, the material is virtually invisible to that radiation.

Table 2.2 shows the skin depth of the four materials for 500 nm radiation (cor-

responding to visible light), 20 µm radiation (corresponding to infrared (IR) light or

thermal radiation), and 6.8 GHz microwave radiation (for ARPing). A material thick-

ness must be chosen to be thinner than the skin depth for the microwave radiation,7 but

greater than the skin depth for IR radiation. The reason we require the material to be

greater than the IR skin depth is that measurements of the Casimir-Polder force depend

greatly on the interaction of visible and IR radiation with the surface and atoms. If the

material were transparent to visible and IR radiation, the material would behave like

the vacuum and the Casimir-Polder force would have no contribution from the metal at

these wavelengths.

One can see from this table that by choosing a material thickness much greater

than 0.1 µm and much less than 3.6 µm one may eliminate any ill effects on the mi-

crowave and radio-frequency radiation, yet still maintain a ‘proper’ surface to visible

and IR radiation. Similarly by choosing thicknesses smaller than a few µm, we may

eliminate any ill effects from Johnson-noise on magnetically trapped atoms that have

7 The skin depth for radio-frequency radiation is much higher than that of the microwave and
therefore does not pose a constraint.
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been seen before with this apparatus [15].

In addition, the fact that we work with magnetically trapped atoms means that

we are sensitive to magnetic-field distortions. Listed in the table are values for the

magnetic susceptibility of the four materials. It is preferable that the chosen materials

have a relatively small magnetic susceptibility and thus a small sensitivity to magnetic

fields. All four of these values are relatively small and did not pose a problem.

All four elements in Table 2.2 lie adjacent to one another as Group III and IV

elements. The final three materials chosen were Hf, Y and Lu. Their preparation and

characterization are discussed below.

2.5.2 Metallic Vapor Deposition Concerns

We investigated the quality of the two metal deposition processes used to create

the metallic layers studied in Chapters 3 and 4. Each metal individually coated a

5 × 8 mm2 fused silica substrate (1 mm thickness) with a ∼ 1 µm thick metal layer,

with the opposite face of the substrate coated with a painted graphite layer as described

in Sec. 2.4.1. A concern arose that dealt with whether or not the deposited metal had

the same properties as bulk metal. The metal layers studied in our experiment were

yttrium (Y), lutetium (Lu) and hafnium (Hf) (see Sec. 2.5.1 for the selection criteria).

The lutetium was patterned onto the fused silica substrate with a vapor deposition

technique in which the metal was oven-heated to temperatures hot enough for the metal

to sublimate to a vaporous state. The hot metallic vapor then condensed onto the glass

substrate, which thus created an appreciable lutetium layer. The yttrium metal was

patterned onto the glass substrate with a electron-beam providing the required energy

to vaporize an yttrium target, allowing it to condense onto the substrate, while the

hafnium substrate was produced by sputtering. It was unclear whether these techniques

produce a homogeneous crystalline metallic structure on the substrate or if they produce

a heterogeneous metallic layer in which the vapor condenses into tiny metallic clusters
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on the surface.

We measured the resistivity of the metal layers to test the properties of deposited

metal. If the resistivity measurements disagreed significantly with the known value for

the bulk metal resistivity, we would know the metal sample was not homogeneous and

could not be used to perform a quantitative test of an atom-surface-interaction theory.

The resistivity of a hafnium sample (prepared in an identical fashion to the piece

in our UHV vacuum chamber) was deduced by performing a four-wire measurement with

the device shown in Fig. 2.23(c). The device was machined to small tolerances (∼ 2× 4

inches) in order to have it fit into a small vacuum chamber. The vacuum chamber was

necessary in this off-line experiment in order to be certain that the resistivity of the

sample was not the resistivity of an oxide layer, which might accumulate on the sample

when heated in atmosphere.

The device was constructed with two copper-beryllium electrodes providing a

small current to be passed through the material. The combination of the material resis-

tance and the reference current provides a measurable voltage proportional to the ma-

terial resistance. By measuring the applied current and the resultant voltage, one may

deduce the material’s resistance. The voltage V between these two points should be pro-

portional to the distance between the two probes L and the reference current I, and will

be inversely proportional to the cross-sectional area of the sample (thickness×width).

Putting this all together the resistivity ρ looks like,

ρ =
V

I

t w

L
. (2.20)

where t and w are the material thickness and width of the sample, respectively, while

V is the voltage measured between the probe wires.

Fig. 2.23(a) shows the results of a test experiment with a piece of aluminum foil.

The resistivity measurement for the foil agrees very well with the known resistivity

of bulk aluminum (solid black line). The temperature of the device is also heated
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while making resistivity measurements, with a well-placed thermocouple providing a

measurement of the temperature. The data at hotter temperatures also agree very

well with the known temperature dependence of the resistivity for aluminum, giving us

confidence that the resistivity measurements are quite accurate.

Fig. 2.23(b), however, shows the same measurement performed with the metallic

hafnium layer, showing a gross disagreement with the known value of the resistivity of

hafnium (solid black line). The thickness of the hafnium layer was measured with an

atomic force microscope (AFM) and was found to be ∼ 1.4 µm thick. This thickness

corresponds to thousands of monolayers of hafnium, which is thick enough to constitute

a bulk metal layer. The disagreement with the known resistivity values suggests that,

indeed, the metallic hafnium layer is quite heterogeneous and was most likely formed

irregularly during the deposition process. The uncertainty in the material composition of

the metal layers led to our departure from making a Casimir-Polder force measurement

with deposited metals.
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Figure 2.23: Resistivity measurements of Hf and Al. This figure shows the 4-wire resis-
tivity measurements made with the pictured apparatus. This apparatus was constructed
to be operated in a vacuum chamber whose temperature could be varied with heater
tape and measured with a well-placed thermocouple. Electrical feedthroughs were used
to provide current through the sample and to measure the voltage between the probe
wires. Graph (a) shows the results of the experiment performed with aluminum foil.
The agreement between the measured resistivity and the known value is very good and
provides confidence in the performance of the apparatus. The data in (b) shows the
result of the experiment performed with a deposited hafnium layer (1.4 µm thick). The
disagreement between the measured value and the known value for this metal led us to
conclude that the deposited hafnium does not behave like bulk hafnium.



Chapter 3

Temperature-Dependent Casimir-Polder Force Measurement [16]

In this chapter of the thesis we report on the first measurement of a temperature

dependence of the Casimir-Polder force. This measurement was obtained by positioning

a nearly pure 87Rb Bose-Einstein condensate a few microns from a dielectric substrate

and exciting its dipole oscillation. Changes in the collective oscillation frequency of the

magnetically trapped atoms result from spatial variations in the surface-atom force. In

our experiment, the dielectric substrate is heated up to 605 K, while the surrounding en-

vironment is kept near room temperature (310 K). The effect of the Casimir-Polder force

is measured to be nearly 3 times larger for a 605 K substrate than for a room-temperature

substrate, showing a clear temperature dependence in agreement with theory.

3.1 Introduction

The Casimir force and its molecular cousin, the van der Waals force, are not only

fascinating scientifically but also important technologically, for example in atomic force

microscopy and microelectromechanical (MEMS) systems. Like the tension in a rubber

band, the Casimir force is a conservative force arising from microscopic fluctuations.

The Casimir force is also the dominant background effect confounding attempts [6, 7,

8, 9] to set improved limits on exotic forces at the 10−8 m to 10−5 m length scale;

progress towards a deeper understanding is valuable in that context. Typically one uses

“Casimir” [17] to refer to the force between two bulk objects, such as metallic spheres
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or dielectric plates, and “Casimir-Polder” (CP) [1] to describe the force between a

bulk object and a gas-phase atom. The underlying physics [18] is largely the same,

however, and, particularly in the limit of separations exceeding one micron, it can be

more convenient to study the latter system due to ease in rejecting systematic errors

such as electrostatic patch potentials [19, 20].

The Casimir force arises from fluctuations of the electromagnetic field and is

usually thought of as being purely quantum mechanical. However, at nonzero temper-

atures, the fluctuations also have a thermal contribution, which was investigated by

Lifshitz [4]. Precise theoretical modelling of Casimir forces takes into account effects

such as surface roughness, finite conductivity, substrate geometry, and nonzero temper-

ature, but the latter term has never before been unambiguously observed experimentally

(see [5] and references therein). In earlier Casimir [6, 21, 22, 23, 24, 25] and Casimir-

Polder [20, 26, 27, 28, 29, 30, 31, 32] experiments, thermal effects were predicted to

be on the order of experimental uncertainties or less because (a) the temperature of

the apparatus could not be varied over a large range and (b) the experiments worked

over small separations compared to the wavelength of thermal radiation, where thermal

corrections are small.

To review the main regimes in surface-atom forces: For a surface-atom separation

x much less than the wavelength of the dominant resonances in the atom and substrate,

the potential U scales as 1/x3 (van der Waals-London regime). At longer distances,

retardation effects cause a crossover to U ∼ 1/x4 (Casimir-Polder). At still longer

distances when x is comparable to the blackbody peak at temperature T , temperature

effects become important, and in thermal equilibrium (T = TS = TE , as defined below),

there is a second crossover, back to U ∼ T/x3 (Lifshitz).



69

3.2 Non-Equilibrium Thermal Casimir-Polder Force

In this chapter of the thesis, I describe the first measurement of a temperature

dependence of the Casimir-Polder force, indeed the first conclusive temperature depen-

dence of any Casimir-like system. A key feature of this work is that the apparatus

temperature is spatially nonuniform. This allows for an experimental confirmation of

an appealing theoretical insight: The thermal electromagnetic-field fluctuations that

drive the CP force can be separated into two categories — those that undergo inter-

nal and those that undergo external reflection at the surface (see Fig. 3.1). These two

categories of fluctuations contribute to the total force with opposite sign; in thermal

equilibrium, they very nearly cancel, masking the underlying scale of thermal effects.

Working outside thermal equilibrium, we observe thermal contributions to the CP force

that are 3 times as large as the zero-temperature force.

Recent theoretical work [11] has shown that thermal corrections to the Casimir-

Polder force are separable into those arising from thermal fluctuations within the sub-

strate at temperature TS [33] and those arising from radiation impinging from presumed

distant walls at an environmental temperature TE . At TS 6=0, electromagnetic fluctu-

ations from within the surface have an evanescent component that extends into the

vacuum with maximum intensity at the surface, giving rise to an attractive AC Stark

potential (Fig. 3.1). External radiation at TE , impinging at different angles, reflects from

the substrate surface, giving rise to a field distribution whose intensity falls smoothly

to a minimum at the substrate surface. The resulting Stark shift from the external

radiation then pulls the atom away from the surface, contributing a repulsive term to

the potential.1

Antezza et al . [11] recently predicted that the nonequilibrium contribution to the

CP potential asymptotically scales as UNEQ ∼ (T 2
S −T 2

E)/x2 in the long-range limit. As

1 Here we assume that the atom does not absorb radiation (TE and TS are small with respect to
atomic resonances).
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Figure 3.1: Radiation. Cartoon drawing of thermal fluctuations near the surface of a
dielectric substrate (shaded region). (a) Internal radiation striking the surface at angles
less than the critical angle θC does not contribute to the Casimir-Polder force. However,
internal radiation impingent at larger angles (b) undergoes total internal reflection (c)
and contributes to an overall AC Stark shift by creating evanescent waves in free space
(d). Surrounding the atom (red circle) is radiation from the environment (e) which
contributes to the CP force by creating standing waves at the surface. The force does
not arise from radiation pressure but rather from gradients in intensity. The surface-
atom force becomes more attractive for TS > TE and more repulsive for TS < TE .
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they describe in their paper, the total nonequilibrium thermal Casimir-Polder force can

be written as a sum of contributions from vacuum fluctuations and thermal fluctuations

of the electromagnetic field,

Fneq
tot (TS , TE , x) = Fvac(x) + Fneq

thl (TS , TE , x). (3.1)

We can also write the nonequilibrium force above as a sum of the equilibrium thermal CP

force, at temperature T , and an extra term that one obtains by allowing the substrate

and environment to be at different temperatures. The above equation may then be

written as,

Fneq
tot (TS , TE , x) = F eq

thl(T, x) + F extra(TS , TE , x). (3.2)

The temperature T in the above equation is yet to be defined as TS or TE .

As pointed out by Henkel et al . [33] thermal fluctuations from the surface and fluc-

tuations from the environment are incoherent with respect to one another. Therefore,

we may write the contribution to the force from thermal fluctuations as an incoherent

addition of the two effects,

Fneq
thl (TS , TE , x) = Fneq

thl (TS , 0, x) + Fneq
thl (0, TE , x). (3.3)

The first term above describes the contribution to the force from thermal radiation from

the surface with no radiation from the environment, while the second term describes

only thermal radiation from the environment and no radiation from the surface.

Rewriting the thermal equilibrium contribution (from Eq. 3.2) as the sum of two

nonequilibrium forces with temperature T gives us,

F eq
thl(T, x) = Fneq

thl (T, 0, x) + Fneq
thl (0, T, x). (3.4)

If we combine the above four equations and cancel terms we come to an important

relationship,

Fneq
thl (TS , 0, x)+Fneq

thl (0, TE , x) = Fneq
thl (T, 0, x)+Fneq

thl (0, T, x)+F extra(TS , TE , x). (3.5)
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If we define T to be equal to the surface temperature TS , we may cancel similar terms

in Eq. 3.5 to arrive at the equation for the extra force,

F extra(TS , TE , x) = Fneq
thl (0, TE , x) − Fneq

thl (0, TS , x), (3.6)

which describes the extra force as being a difference between the force from an en-

vironment temperature of TE and the force from an environment temperature of TS .

This expression for the extra force is valid and may be used for calculational purposes,

but turns out to be very difficult to express analytically and quite hard to compute

numerically, according to Antezza et al . [11].

If instead we define the temperature T to be equal to the environment tempera-

ture, we may arrive at a similar form for the extra force which is much easier to work

with. This expression for the extra force, first obtained by Antezza et al ., can be written

as,

F extra(TS , TE , x) = Fneq
thl (TS , 0, x) − Fneq

thl (TE , 0, x). (3.7)

This expression describes the additional force seen by the atoms which comes about by

maintaining a temperature difference between the environment and the surface. This

representation requires only one expression Fneq
thl (T, 0, x) to describe the extra force on

the atoms,

Fneq
thl (T, 0, x) = −

~αo

c4

∫

∞

0
dω

ω4

e~ω/kT − 1

∫

∞

1
f(q, x, ω, ǫ(ω)). (3.8)

Here k is the Boltzmann constant, αo is the static polarizability of the atom and

f(q, x, ω, ǫ(ω)) is a complicated function which takes into account the interaction of

light with a dielectric material, ǫ(ω), for all radiation wavelengths (shown in Fig. 3.2).

The potential energy of this extra force scales like UNEQ ∼ (T 2
S − T 2

E)/x2, which tends

to zero when TS = TE .

This novel scaling dependence dominates at long range. One can thus temperature-

tune the magnitude of this long-range force and, in principle, even change the sign of
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Figure 3.2: Optical properties of fused silica. This figure (a) shows the real and imagi-
nary parts of the dielectric constant of fused silica for a range of radiation wavelengths.
The skin depth of fused silica is plotted in (b), where the dashed red line indicates
the thickness of the material. This shows that the skin depth of fused silica is much
smaller than its size in the spectral range of thermal radiation (λ > 4µm). This data
was obtained from H. R. Phillip [34].
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the overall force. Fig. 3.3 shows the predicted fractional frequency shift γx (Eq. 3.9

below) for a cool surface - warm environment scenario in which the substrate is cooled

to liquid nitrogen temperatures (∼80 K), while the environment is heated to an ex-

perimentally achievable temperature of 600 K. Positive frequency shifts correspond to

attractive forces, while negative shifts correspond to repulsive forces. The graph in (b)

shows a repulsive force (inset) for x > 4µm, which results in a negative frequency shift

for x > 5.5µm (see Antezza et al . for details [35]). This force, however, is not repulsive

for all x, and indeed becomes attractive nearer to the surface, as seen in (a).

The interaction of the atom with a dielectric material becomes very complicated

for atom-surface separations on the order of 0-2 µm. Fig. 3.4(a) and (b) show the

spectral contribution to the nonequilibrium force for atom-surface separations of 1 µm

and 15 µm and for radiation wavelengths λ which range from 1-500 µm. One can see

that the force on atoms 1 µm from the surface (a) comes largely from the influence of

material resonances (see the imaginary part of the dielectric constant in Fig. 3.2(a)),

while the total force on atoms 15 µm from the surface (b) comes largely from the dc

component of the dielectric constant. The spectral contribution to the force in (b)

looks fairly smooth and only has a small contribution from material resonances. If

we approximate the functional form of the dielectric constant ǫ(ω) as the dc dielectric

constant ǫ(0), we find a very good agreement between the actual total force and the force

calculated from the approximation. Fig. 3.5(a) shows an agreement which becomes no

worse than six percent for atom-surface distances larger than 0.5 µm. The temperature

used in this calculation were TE=300 K and TS=600 K.

The agreement between the actual force and the force computed with the dc di-

electric constant also allows us to look at the dependence of the nonequilibrium force on

the dc dielectric constant ǫ(0). Antezza, et al . describe the dependence of the nonequi-

librium force on the dielectric constant as (ǫ(0) + 1)/
√

ǫ(0) − 1 (Eq.(12) in Ref. [11]).

This scaling of the force with dielectric constant does not accurately predict the behav-
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ior of the force in the limit of a metal surface (ǫ(0) = ∞, i.e. no evanescent waves) or

in the limit of no surface (ǫ(0) = 1, i.e. no surface). Fig. 3.5 shows the strength of the

extra force on atoms 1 µm from a 300 K surface, when the environment radiation is kept

at 0 K. One can see the correct limiting behavior of the force for the limits discussed

above.

3.2.1 Experiment

We observe the temperature dependence of the Casimir-Polder force between a ru-

bidium atom and a dielectric substrate by measuring the collective oscillation frequency

of the mechanical dipole mode of a Bose-Einstein condensate (BEC) near enough to a

dielectric substrate for the CP force to measurably distort the trapping potential. This

distortion of the trap results in changes to the oscillation frequency proportional to the

gradient of the force:

γx ≡
ωo − ωx

ωo
≃

1

2mω2
o

〈∂xFCP 〉, (3.9)

where m is the mass of the 87Rb atom, and γx is defined as the fractional frequency

difference between the unperturbed trap frequency ωo and ωx, the trap frequency per-

turbed by the CP force FCP .

The use of a BEC in this work is not conceptually central. The force between

the substrate and the condensate is the simple sum of the force on the individual atoms

of the condensate. For our purpose, the condensate represents a spatially compact col-

lection of a relatively large number of atoms whose well-characterized Thomas-Fermi

density profile facilitates the spatial averaging and the inclusion of nonlinear effects in

the oscillations, necessary for the quantitative comparison between theory and experi-

ment [20, 35].

The data in Fig. 3.6(a) shows the method of controllably placing the BEC into a

dipole oscillation (see Ref. [10] for more details). An external magnetic field is applied,
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which effectively shakes the equilibrium position of the BEC,

x0(t) ∝ e−(t−t0)2/σ2

cos(ωot + φ). (3.10)

The resultant displacement of the atoms δx is described as,

δx(t) =
Ax

2
(Erf(

t − t0
σ

) + 1) cos(ωot + φ). (3.11)

where Ax is the amplitude of the resulting oscillation. It is essential in this experiment

that the amplitude of this oscillation be repeatable and very carefully calibrated in order

to make precise measurements of atom-surface forces.

Fig. 3.6(b) shows a to-scale illustration of an oscillating BEC (dark-gray, inverted

parabola) at its closest trap-center-to-surface position (typically ∼7 µm). The illustra-

tion shows that careful calibration, not only of the amplitude of the oscillation, but also

of the BEC size (and therefore BEC number fraction) must be taken into account for

measurements of forces which are very dependent on atom-surface separations, like the

Casimir-Polder force. The light-gray inverted parabolas show the oscillating BEC at

its classical turning points. A BEC placed at 7 µm may have constituent atoms which

reach as close as 1.8 µm to the surface.

Experimental details, surface-atom measurement and calibration techniques, along

with a detailed discussion of measurements of stray electric and magnetic fields appear

in [15, 19, 20]. In brief, the experiment consists of 2.5×105 87Rb atoms Bose-condensed

(condensate purity > 0.8) in the |F = 1,mF = −1〉 ground state. The condensate is

produced ∼1.2 mm below a dielectric substrate in a Ioffe-Pritchard-style magnetic trap

(trap frequencies of 229 Hz and 6.4 Hz in the radial and axial directions, respectively),

resulting in respective Thomas-Fermi radii of 2.69 µm and 97.1 µm.

The dielectric substrate studied consists of uv-grade fused silica ∼ 2×8×5 mm3 in

size (x, y, z directions, respectively) sitting atop a monolithic pyrex glass holder inside

a pyrex glass cell which composes the vacuum chamber (Fig. 3.7). The top surface
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Figure 3.6: Finite cloud size and oscillation amplitude. The data in the graph show the
atoms being carefully placed into a dipole oscillation by an external magnetic field which
oscillates with a Gaussian time envelope (Eq. 3.11). The illustration below shows a to-
scale drawing of the finite size (RTF ) of the BEC along with its oscillation amplitude.
The dark gray cloud shows the position of the BEC at rest, while the light-gray clouds
show the BEC at its classical turning points. A BEC placed 7 µm from the surface will
have constituent atoms which get as close as 1.8 µm.



81

Heating
Laser

x

zy

Pyrex
Chamber

x

BEC

1mm

25 mµ

Pyrex
Holder

Figure 3.7: Apparatus. Side view of the apparatus. Shown is a scale drawing of the
fused silica substrate (left-most of the four substrates) with a top layer of graphite. The
graphite absorbs the light from the laser, heating the substrate. The pyrex holder is
isolated enough from the substrate to allow a hot substrate – cool environment scenario.
The enlargement in the inset shows the BEC at a distance x from the surface.
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(−x̂ face) of the substrate is painted with a ∼100 µm thick opaque layer of graphite

and treated in a high-temperature oven prior to placement in the vacuum chamber

(see Sec. 2.4.1 for details). The observed lifetime of the BEC places a strong, robust,

upper bound on the total pressure of residual gas just below the substrate surface of

∼ 3× 10−11 torr, even at TS = 605 K. A more detailed calculation of surface adsorbate

effects appears in Sec. 3.4.

The fused silica substrate was heated by shining ∼1 W of laser light (860 nm) on

the graphite layer. The rough texture of the pyrex holder creates near point contacts

with the substrate corners, providing good thermal isolation between the holder and

the substrate. This technique allows us to vary the temperature of the substrate while

maintaining near room temperature vacuum chamber walls and only slightly elevated

holder temperatures.

The temperature of the fused-silica substrate as a function of the heating laser

power was determined in an offline calibration apparatus, constructed to be a near-

identical version of the main vacuum chamber, except with improved optical access for

a temperature probe laser (see Sec. 2.4.2 and Sec. 2.4.3 for more details). The probe

laser is coherently split between two arms of a Michelson interferometer (Fig. 2.19). The

resulting fringe shifts are proportional to changes in substrate temperature. A finite-

element numerical model of the thermal system agreed with our measurements and

contributed to our confidence that the temperature of the substrate and the environment

were understood. Residual systematic uncertainties in temperature are reflected in the

error bars in Fig. 3.8(b).

The experiment, described in detail in [20], begins with an adiabatic displacement

of the atom cloud to a distance x from the bottom surface (+x̂ face) of the substrate via

the addition of a vertical bias magnetic field. The cloud is then resonantly driven into

a mechanical dipole oscillation by an oscillatory magnetic field,2 shown in Fig. 3.6(a).

2 The amplitude of the oscillation is carefully calibrated to be 2.50(2) µm in the x̂ direction.
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After a period of free oscillation the relative position of the cloud is determined by

destructive imaging after ∼5 ms of anti-trapped expansion. This process is repeated

for various times in the free oscillation. The center-of-mass position is recorded at

short times to determine the initial phase of the oscillation and at later times (∼1s) to

precisely determine the oscillation frequency. Data is taken consecutively alternating

the trap center position between a distance x, close to the surface, and a normalizing

distance xo = 15 µm. The distance xo is sufficiently far from the substrate to avoid

surface perturbations, yet close enough to provide a local oscillator ωo with which the

data taken at x can be compared. Data sets are then taken at a number of surface-atom

positions (between 7–11 µm) and for various substrate temperatures (310, 479 and 605

K, taken in random order, several times, and averaged in Fig. 3.8).

The results in Fig. 3.8(a) show the fractional change in the trap frequency γx

plotted as a function of the trap center to surface position x. The blue squares show the

measured effect of the room-temperature Casimir-Polder force (TS=310(5) K) on the

trap frequency. The increase in the strength of the CP force due to thermal corrections

becomes obvious when the substrate is heated to 479(20) K (green circles) and even

more pronounced when it is at 605(28) K (red triangles). These measurements were

all done maintaining a room temperature environment for which the pyrex vacuum

chamber walls were measured to be TE = 310(5) K. The curves in Fig. 3.8(a) represent

the theoretical predictions [11] for corresponding substrate-environment temperature

scenarios, showing excellent agreement with the measurements.

For statistical clarity in data analysis, the average value of γx can be computed

for each substrate temperature (using trap center to surface positions 7.0, 7.5, and 8.0

µm only). These values, plotted in Fig. 3.8(b), clearly show a significant increase in

the strength of the Casimir-Polder force for hotter substrate temperatures; they also

distinguish the nonequilibrium theory (solid) curve from the equilibrium (dash-dotted)

curve, for which a much smaller force increase is predicted.
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Figure 3.8: Data. (a) Fractional change in the trap frequency due to the Casimir-Polder
force. Pictured are three sets of data and accompanying theoretical curves with no ad-
justable parameters for various substrate temperatures. The blue squares represent
data taken with a 310 K substrate; green circles, a 479 K substrate; and red triangles, a
605 K substrate. The environment temperature is maintained at 310 K. The error bars
represent the total uncertainty (statistical and systematic) of the measurement. (b)
Average values of γx from (a) (for trap center to surface positions 7.0, 7.5, and 8.0 µm)
plotted versus substrate temperature, demonstrating a clear increase in strength of the
CP force for elevated temperatures. The solid theory curve represents the nonequilib-
rium effect (corresponding 7–8 µm average), while the dash-dot theory curve represents
the case of equal temperatures.
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3.3 Equilibrium Thermal Casimir-Polder Force

Following the measurements that were made of the nonequilibrium temperature

dependence of the Casimir-Polder force, we set out to show that the overall strength

of the Casimir-Polder force decreased by raising the temperature of the environment,

such that the surface temperature TS was equal to the environment temperature TE .

An attempt was made to achieve this equilibrium scenario with the addition of resistive

heaters placed above and below the science cell (shown in Fig. 2.16). With this setup

of the apparatus we were able to achieve an average cell temperature of ∼ 125oC over

long periods of time. Data was taken in the hopes of discerning a difference between

the strength of the CP force in a ‘hot’ scenario and that in a ‘cool’ room-temperature

scenario. Sec. 2.3 details the issues that were encountered which limited the heating of

our science cell to only 395 K.

Fig. 3.9(b) shows raw data of the Casimir-Polder force taken in the equilibrium

scenario for an apparatus temperature of 310 K (light-blue circles) and 395 K (red

triangles). The averaged data is shown in (a) in which the error bars represent both

systematic and statistical errors. The theoretical predictions for both scenarios are

shown as solid lines.

One can clearly see a larger force being measured in the ‘hot’ scenario than that

measured in the ‘cool’ scenario. However, the agreement with theoretical predictions

does not seem to match the expected measurement. Fig. 3.10 shows a comparison of

this data to the non-equilibrium measurements made earlier (see Fig. 3.8 in Sec. 3.2.1

in which the data points at 7.0, 7.5 and 8.0 µm were averaged and placed in the graph).

The data points from Fig. 3.9 are shown by their respective symbols (red triangles for

the 395 K scenario and light-blue circles for the 310 K case). The data points clearly

show a discrepancy between the measurement and the theoretical predictions. It is clear

that one of the following systematic effects is present: either there exist forces which
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discrepancy between the measured data and the theoretical predictions. The tempera-
ture variations of the pyrex chamber were significant enough to describe the discrepancy,
but made interpretation of the data difficult.
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are acting on the atoms which are unaccounted for (not likely), or we have misjudged

the temperature of surface or the temperature of the surrounding environment.

Measurements of the cell temperature were made at several locations around

the pyrex cell. Of particular interest was a measurement which indicated that the

temperature of the top and bottom of the science cell were significantly hotter than the

rest of the pyrex chamber. This measured temperature was roughly 470 K and indicated

that the heating elements were not distributing heat evenly enough about our chamber

to make an equilibrium measurement. We found that we could keep the pyrex chamber

temperature uniform close to room temperature. However, efforts to increase the walls

to other temperatures resulted in very patchy heating. We needed to have large areas

exposed to room temperature air for optical access and the uneven cooling effect of the

convection overwhelmed the limited heat conductivity of pyrex. We considered various

chamber redesigns to permit uniform heating of the pyrex chamber, but in the end

decided to abandon our efforts to take data with a non-room-temperature chamber and

publish the heated-substrate/room-temperature chamber data only.

3.4 Ruling Out Systematic Effects

The killer systematic in Casimir force experiments is often stray electric fields

caused by poorly characterized surface properties. We put great care into in situ charac-

terizing, for the 605 K and 310 K temperature scenarios in Fig. 3.8, stray magnetic fields

and gradients3 of stray electric fields, using techniques we developed in Ref. [19, 20, 36].

From the magnitude of near-surface dc electric fields, we estimate the surface density

of adsorbed alkali atoms to be much less than 1/1000 of a monolayer at all measured

temperatures, far too low to change the optical properties of the substrate by the factors

of nearly 3 that we see the Casimir-Polder force change by. In addition, the substrate

is optically flat at visible wavelengths. Therefore, at the much longer relevant length

3 A dilute gas’ lack of electric monopoles means it feels no force from uniform fields.
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scales of our experiment any residual surface roughness will be negligible. We can also

rule out that the measured increase in strength of the CP force comes from a change in

the dielectric constant with increasing temperature, or mechanical effects on the atoms

from the heating laser.

One also must consider the quality of the blackbody radiation emitted by the

environment. While the pyrex walls of the chamber are transparent at visible and near-

infrared wavelengths, at 5–10 µm wavelengths the walls are opaque, with an emissivity

> 0.8. Fig. 3.2 shows the dielectric constant of the material for various radiation wave-

lengths λ. The skin depth of the glass can be calculated from the dielectric constant

and is plotted in (b), where the size of the glass substrate is shown as a dashed red

line (2 mm). This shows that the material is larger than its skin depth for radiation

wavelengths greater than ∼4 µm, making the substrate a good blackbody radiator.

We should also consider the radiation from the surface which is reflected by the

pyrex chamber (shown in Fig. 3.11). The radiation from the fused silica substrate

(large green arrows in the illustration) looks very much like the radiation from a perfect

blackbody emitter (compare the dashed green line with the gray background). This

radiation then strikes the bottom of our pyrex chamber and is reflected back towards the

bottom face of the substrate (small purple arrows). The amount of radiation that reflects

back is negligible compared with the radiation coming from the surface. Compare the

area under the solid purple line in the graph with the area under the dashed green line.

The solid purple line in this figure is actually an upper limit of the power reflected back

towards the atoms. Ideally one would compute the reflected spectral irradiance from

a pyrex surface instead of that from a fused silica surface, which is depicted by the

solid purple line. The material properties of pyrex, however, are not well documented

for a large range of wavelengths. The peak of the 10 µm radiation which is reflected

from pyrex would be significantly less than that reflected from fused silica. Luckily

this reflected power is also low, which makes systematic effects from these reflections
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Item Cold Warm Hot

310 K 479 K 605 K

Thomas-Fermi Radius: x̂ (µm) 2.64(6) 2.71(3) 2.69(4)
Oscillation Amplitude (µm) 2.47(11) 2.50(4) 2.52(4)

BEC Number Fraction N0/N 0.84(3) 0.82(2) 0.81(2)
Trap Frequency ωo/2π (Hz) 229.24(4) 229.36(8) 229.36(9)
Minimum Damping Time (s) 3.9 3.8 3.3

Table 3.1: Systematics. This table lists various parameters in our experiment which may
contribute to systematic shifts of the measured data. These parameters were measured
for all three non-equilibrium scenarios in Sec. 3.2 and show no significant differences.

negligible.

Table 3.1 details the measured values of a number of parameters which might

affect a measurement of the temperature dependence of the Casimir-Polder force for all

three temperature scenarios reported in Sec. 3.2. None of these parameters showed any

significant variation with temperature and can therefore be ruled out as candidates for

potential systematic errors.



91

-8 -7 -6 -5 -4

0.0

0.2

0.4

0.6

0.8

1.0
Perfect Blackbody600K

600 K Fused Silica

Above Reflected from Fused Silica

R
e
la

ti
v
e
 S

p
e
c
tr

a
l 
In

te
n
s
it

y

Log ( (m))10 λ

Figure 3.11: Reflected radiation issues. The illustration above addresses the concern
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perfect blackbody radiator, while the green dashed line shows the spectrum radiated
from the fused silica. The spectral intensity of the reflected radiation is shown by the
solid purple line.



Chapter 4

Measurement of Electric Fields Using Neutral Atoms [37]

In this chapter of the thesis we demonstrate a technique of utilizing magnetically

trapped neutral 87Rb atoms to measure the magnitude and direction of electric fields

emanating from surface contaminants. We apply an alternating external electric field

that adds to (or subtracts from) the surface field in such a way as to resonantly drive

the trapped atoms into a mechanical dipole oscillation. The growth rate of the oscilla-

tion’s amplitude provides information about the magnitude and sign of the surface field

gradient. Using this measurement technique, we are able to vectorially reconstruct the

electric field produced by surface contaminants. In addition, we can accurately measure

the electric fields generated from adsorbed atoms purposely placed onto the surface and

account for their systematic effects, which can plague a precision surface-force mea-

surement. We show that baking the substrate can reduce the electric fields emanating

from adsorbate, and that the mechanism for reduction is likely surface diffusion, not

desorption.

4.1 Introduction to Field Sensory with Neutral Atoms

The advent of cold-atom technology has brought to light a significant amount of

knowledge of the physical world, and has also contributed significantly to technology

such as time standards and global synchrony. Many precision measurements and ex-

perimental realizations have taken advantage of the extremely slow nature of ultracold
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atoms, which has resulted in such phenomena as Bose-Einstein condensation (BEC),

quantized vortices, ultracold molecules, and atomic parallels to laser optics, to name

a few. Recently, the scalability and high level of precision of ultracold atomic systems

have led to an increase in their use as precision tools to measure forces and fields at

both large [38, 39, 40, 41, 42] and small [14, 15, 19, 20, 27, 43, 44, 45] length scales.

What makes ultracold atomic systems so attractive for precision use is the purity

of the actual measurement device, the atoms. One may think of a collection of ultracold

atoms as being a large sample of extremely small, yet sensitive, devices that connect

to the outside world through trapping fields and narrow linewidth lasers only, with no

physical contacts to transfer heat or mechanical and electrical noise. The sensitivity

of the device can be tuned by selecting the correct atomic species and desired internal

electronic state to meet one’s specifications. An atomic ensemble therefore is a tunable

system, whose sensitivity (or insensitivity) is well characterized and changeable at the

microsecond time scale.

In this chapter of the thesis, we further develop a method of measuring small

electric fields near bulk materials with a magnetically trapped BEC of 87Rb atoms [19,

20]. As a test of our ability to measure these electric fields, several clouds of ultracold

atoms were purposely adsorbed onto a surface to generate a sizeable field. By measuring

the strength of the fields in all three spatial directions, we are able to fully account for

the resulting systematic frequency shifts of mechanical dipole oscillations, such as those

reported in other experiments [14, 19, 20], and estimate the dipole moment per atom

adsorbed onto the surface. In addition, the ability of our magnetic trap to translate

along the surface of a bulk substrate allows us to measure electric fields at various surface

locations. From these measurements we can fully reconstruct a three-dimensional vector

plot of the electric fields that emanate from the surface, with micron-scale resolution

of the field. Lastly, we investigate the ability to reduce the strength of surface electric

fields by diffusing adsorbates across the surface with heat and find reasonable agreement
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with theoretical results.

4.2 Principle of the Surface Electric Field Detection

Since the surface ideally emits fairly weak electric fields, we create measurable

fields by purposely depositing ultracold rubidium atoms onto the metal layer, as de-

scribed in [19]. Briefly, a rubidium atom adsorbed onto the surface changes its atomic

level structure in such a way that its valence electron partially resides inside the metal.

The resulting charge separation (∼ 1Å) effectively creates a dipole aligned normal to

the surface; the dipole’s strength is related to the electronegativities of the involved sub-

stances. To minimize this effect for our studies of atom-surface interactions, we chose a

metal with a low work function for our surface (see Sec. 2.5.1).

Although the motion of neutral atoms is insensitive to uniform electric fields, field

gradients will create forces that cause significant perturbations to the atoms’ trapping

potential. Even during ideal operations, it is unavoidable to deposit rubidium atoms

onto the surface; these atoms produce small, uniform field gradients. Since this type of

electric field is one of the major systematics in precision surface-force experiments [14,

19, 20], purposely depositing atoms gives us the best tool to account for such errors.

When depositing atoms, we magnetically push low-density noncondensed atom

clouds with dimensions (∼ 10µm radially) larger than our BEC dimensions into the

surface. The larger spatial extent of the deposited atoms provides more uniform field

gradients across the cloud. Immediate analysis of the resultant electric field shows that

significant desorption or diffusion of adatoms at room temperature does not occur on

timescales of minutes, but rather several days. Atom diffusion and desorption will be

discussed further in Section 4.8.

Our method of measuring electric field gradients, partially described in [20], in-

volves the application of an electric field via two conducting plates mounted above and

below the science cell, as shown in Fig. 4.1. The plates consist of a thin layer of trans-
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Figure 4.1: Cross section of the science cell. Shown in this figure is a cartoon illustration
of an end-on view of our science cell (top) along with a side-view (bottom). The inset
shows a magnified view of the relative position of the BEC to the substrate and surface
adsorbates (pictured as a red mound with emanating electric fields). Two transparent
conductors are placed on top and bottom of the science cell in order to provide an
external electric field to the system (shown as dashed green arrows). The applied electric
fields add to (or subtract from) the surface electric fields and perturb the trapping
potential. By varying the electric field at the trap frequency ωo the atoms are resonantly
driven into a dipole oscillation.
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parent indium-tin-oxide (ITO) on 1×10×35 mm3 glass plates electrically connected to

leads with a conductive epoxy. The use of ITO allows optical access to the cell from the

vertical direction, which is necessary for our laser heating method [14], and also leaves

open the possibility of imaging through the plates.

Previous studies have shown that an oscillating external electric field will drive

a dipole oscillation of trapped neutral atoms if an electric field gradient is present [14,

20]. An atom in an external electric field experiences an energy shift equal to UE =

−(αo/2)| ~E|2, where αo is the ground state static polarizability, and a force ~F equal to

−~∇UE . Spurious forces that must be measured and accounted for to make claims of

accuracy in precision surface-force measurements therefore stem from field gradients:

~F (t) =
αo

2
~∇| ~E(t)|2. (4.1)

If an external ac electric field is applied at the trap frequency ωo, then the system

will act as a high-Q resonantly driven oscillator. The electric field from surface con-

taminants ~E∗ and the applied external field ~Eext(t) = Eext
x cos(ωot)x̂ act in tandem to

resonantly drive the trapped atoms’ motion with a time-varying force,

~F (t) =
αo

2
~∇( ~E∗ + ~Eext(t))2. (4.2)

If one assumes that the applied electric field is much greater than the field to be

measured (Eext
x >> E∗

i ) and invoking ~∇× ~E∗ ≃ 0, the total forces on the atoms can be

written as

Fi(t) ≃ αoE
ext
x cos(ωot)∂xE∗

i , (4.3)

for i = x, y, z. The center-of-mass oscillation will then resonantly grow, as seen in

Fig. 4.2, as

qi(t) = ȧi t cos(ωt), (4.4)

where qi is the spatial coordinate in the i-direction. The amplitude growth rate in the
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i-direction can then be expressed as

ȧi =
αoE

ext
x ∂xE∗

i

2mωo
, (4.5)

where m is the mass of the atom and the ± refers to the phase of the oscillation (see

Fig. 4.4). Fig. 4.3 shows the amplitude growth rate ȧx measured at a distance of

x = 10µm from the surface for a number of different applied electric fields Eext. This

data demonstrates that Eq. 4.5 is valid for a large range of field strengths (0 < Eext <

180 V/cm).

We measure this growth rate by first transferring the atoms to an anti-trapped

state and letting them expand for ∼ 5 ms. Two horizontal-imaging beams along ŷ and

ẑ simultaneously image the atom cloud, giving us information about the center-of-mass

position of the atom cloud in all three dimensions. Thus, by measuring the resulting

amplitude growth rate, we have a method to measure the gradients of small electric

fields from a surface. Fig. 4.2 shows the resulting oscillation of the resonantly driven

atom cloud (filled circles) in which the amplitude of the oscillation grows linearly with

time. As seen in Eq. 4.5, this growth rate is proportional to the field gradient and

becomes much smaller far from the surface or over a clean swath of surface, where field

gradients are small.

4.3 Complex Behavior of Resonantly-Driven Oscillator

The underlying principle of the electric-field detection, described in Sec. 4.2, is

that atoms starting from rest are resonantly driven into a dipole oscillation by the

application of an external electric field. This experiment, however, is just a limiting

case of a broad range of experiments which can be performed on such a high-Q system.

As Eq. 4.5 suggests, there is more information in a resonantly driven oscillator than

just the magnitude of the amplitude growth rate ȧ, there is also information about the

phase of the oscillation, where changing the polarity of the electric field changes the
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Figure 4.2: Resonantly-driven oscillator. Data showing the relative position of the atoms
in a resonantly driven mechanical oscillation (closed black points) with a fit to the data.
The rate of growth of the oscillation is directly proportional to the electric-field gradient
from surface contaminants. The ability to determine the sign of the field gradient can
be seen when the polarity of the electric field is switched (or if the electric field is driven
out-of-phase by π). This corresponds to the open (red) circles, showing a clear π-phase
change in the oscillation. As expected, no significant growth rate in the z-direction was
observed (not shown).
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Figure 4.3: Amplitude growth rate vs. applied field. This figure illustrates the linearity
of the amplitude growth rate ȧx with the applied electric field Eext

x . This data shows
that the additional electric field does not significantly perturb the surface dipoles for
field strengths up to ∼180 V/cm. At some point one would expect a breakdown in this
assumption and the strength of the surface dipoles would tend to be very dependent
upon the applied field. The black line in this figure is a linear fit of the data. The slight
offset at zero applied field could be due to the presence of a pre-existing oscillation.
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polarity of ȧ, shown in Fig. 4.2 as dashed red lines. Fig. 4.4(a) also demonstrates this

principle, where atoms which have been purposely placed into a dipole oscillation with

a 1 µm amplitude are shown to either grow or shrink in amplitude over time, depending

on the polarity of the electric field, which is to say, its phase with respect to the initial

oscillation.

A interesting bit of classical dynamics was uncovered in this system (shown in

Fig. 4.4(b)) when the external electric field was left on long enough to nearly quench

the initial oscillation. What we found was that the oscillation never fully came to a halt

and, in fact, showed an interesting phase-change (c) when the oscillation’s amplitude

approached zero. Näıvely one would expect the amplitude of the oscillation to pass

through zero and grow linearly from there in time (dashed red line in (b)). This,

however, is not the case and required a great deal of thought about how to analyze

these results. Further experiments were done investigating this change in phase of the

oscillation (shown in Fig. 4.5).

In this set of experiments the ac-electric field ~Eext(t) was left on while the initial

phase φi of the dipole-oscillation was varied (see Eq. 3.11). The phase of the resultant

oscillation was measured after several periods of oscillation (∼30 ms). The results,

shown in Fig. 4.5(b), show that the initial growth rate of the oscillation’s amplitude

ȧx depends upon the initial phase of the dipole oscillation. This data corroborates the

data shown in Fig. 4.4(a) in which the polarity of the applied electric field determined

the growth or decay rate of the oscillation.

In essence, there are two phases that define the entire system: φi the initial phase

between the applied electric field and the phase of the dipole oscillation and φf the phase

of the oscillation at some future time relative to its initial phase. The illustration in

Fig. 4.4 shows these two phases graphically in the complex plane of the BEC’s position.

The axis along which the red arrow lies corresponds to the axis of the applied electric

field. For atoms starting from rest, the oscillation’s amplitude grows linearly with time,
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Figure 4.4: Phase evolution during resonant drive. The data in (a) shows the result of
applying an electric field after the atoms are purposely placed into a controlled dipole
oscillation, described in Sec. 3.2.1. By switching the polarity of the applied electric field,
we are able to verify the polarity of the amplitude growth rate ȧi and determine the sign
of the adsorbate’s electric field. The data in (b) shows an electric field drive that has
been left on long enough to nearly kill the oscillation amplitude. One might expect the
amplitude to tend to zero (dashed red line). However, the oscillation never fully comes
to rest. Analysis described in the text details how the phase of the oscillation must
be matched to the phase of the electric field drive in order to get this fully resonant
behavior. When the two phases are not matched, the phase of the oscillation changes
over time (c), resulting in the solid line in (b), which better matches the data.
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where the solid blue line shows the expected behavior of the driven-oscillator.
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like ȧ t, along this axis, and traces out a spiral pattern. The axis along which the blue

arrow lies corresponds to the axis of the initial dipole oscillation’s phase. This blue

arrow is denoted by the label ao. For no applied electric field, this vector rotates about

the origin with an angular frequency ωo and traces out a circular pattern.

If the electric field is applied while the atoms are in oscillation, as in the cases

of Fig. 4.4 and Fig. 4.5, vector analysis in the complex plane shows that the position

of the atoms can be found by finding a functional form of the resultant vector a(t).

This analysis, detailed in Appendix B, can be written as follows. For a resonant driving

force, of the form,

F (t) = Fo sin(ωot + φi), (4.6)

applied to atoms in oscillation, described by xo(t) = ao cos(ωot), the resultant functional

form of the position of the atoms will look like,

x(t) = a(t) cos(ωot + φf (t)), (4.7)

where ωo is both the trap frequency and the frequency of the driving force. The ampli-

tude a(t) of the oscillation can be written as

a(t) =
√

a2
o + (ȧt)2 + 2aoȧt cos(φi), (4.8)

where ȧ is defined as the amplitude growth rate,

ȧ =
−Fo

2mωo
, (4.9)

and the phase of the oscillation can be written as

φf (t) = cos−1(
ao + ȧt cos(φi)

a(t)
). (4.10)

The solid blue line in Fig. 4.4(b) shows a fit of the data to the Eq. 4.7. The

agreement between the fit and the data is quite remarkable and shows a thorough

understanding of the resonantly driven oscillator. The solid red line in (c) shows the
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phase φf (t) of the oscillation in (b). The fact that the phase becomes more negative

in time implies that the oscillation’s frequency appears to be smaller than the natural

trap frequency over this time period.

Additionally, this analysis helps us describe the data shown in Fig. 4.5(d), in

which the measured amplitude growth rate is plotted as a function of the measured

phase difference. The magnitude of ȧ is greatest when the phase difference is zero. This

scenario would correspond to the two axes in Fig. 4.4 being parallel or anti-parallel.

When the two axes are π/2 out of phase, the amplitude growth rate is very small at

short times. The solid blue line in Fig. 4.5(d) corresponds to the initial amplitude

growth rate as a function of the phase difference φf − φi.

4.4 Electric Field Modelling Program and Simulation

A single-particle simulation was created to help gain a deeper understanding of

the BEC’s interaction with surface electric fields. Data was first taken measuring the

electric-field gradient at a number of atom-surface distances (as shown in Fig. 4.6(a)).

The data was fit to a single or double power-law dependence to obtain a functional

form of the electric-field gradient. This fit function was then integrated in order to fully

describe the surface electric field. This functional form of the electric field was then

added to the single-particle simulation in an attempt to describe the dynamics of the

resonantly-driven BEC.

Incorporating the anti-trapped expansion (described in Sec. 2.2.3) into the sim-

ulation, we found excellent agreement between the measured dynamics of the BEC’s

position and the zero-parameter simulations shown in Fig. 4.6(a) as solid lines through

the data points. The anti-trapped expansion adds a bit of complexity to the simulation,

due to the fact that atoms ballistically expanding in an anti-trapping potential fall away

from the surface very rapidly. In that respect, the expansion time was slightly adjusted

and carefully calibrated to have the simulation match the dynamics of the expansion.
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This calibration included carefully measuring the amplitude and phase of an

atom’s oscillation in-trap versus the amplitude and phase following expansion. The

amplitude of the oscillation appears ∼20 times larger following ∼5 ms of anti-trapped

expansion than it does in trap. Additionally, the relative position of the BEC during

the oscillation is roughly π/2 out of phase with the BEC position following expansion.

This is due to the fact that the atom’s momentum, as opposed to its in-trap position,

is mapped into its position following expansion.

By adding all of these features together, we are able to determine not only the

magnitude of the electric field in space, but also the sign of the field. This technique

allows us to accurately map out the full three-dimensional surface electric field in free

space (detailed in Sec. 4.5) and adds to our confidence and understanding in our mea-

surements of these fields.

4.5 Mapping Out Electric Field Vectors From Surface Adsorbates

While Stark shifts are only sensitive to the magnitude of an electric field, our

method can also determine the field gradient’s direction (as was discussed in Sec. 4.3).

When we drive the oscillating electric field, the oscillation begins with the field initially

pointing in a known direction. If the initial field polarity is switched, however, the

amplitude growth rate changes sign. For atoms starting from rest, the absolute value

of the growth rate remains unchanged, and the phase of the driven oscillation shifts by

π, as shown by the open (red) circles in Fig. 4.2. This dependence on the phase of the

applied electric field allows us to directly determine the direction of the field gradient

in the x, y, and z directions at every measured point in space and thus to reconstruct

the vector fields.

Fig. 4.6 shows the process of reconstructing the surface electric field created by

7×107 adsorbates. Data is taken directly below (∆y = 0µm, right column) and 40

µm from (∆y = −40µm, left column) the deposited atoms (red mound in (d)). The
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Figure 4.6: Recreating a vector field. The process of reconstructing the vectors from
surface electric fields is described here. (a) First, data is taken measuring the amplitude
growth rate ȧ for the x and y-directions for a number of different locations along the
surface (along ŷ). The amplitude growth rates (b), proportional to the electric field
gradients, are then fit to a functional form, which is described in the text (blue solid line
and circles and red dashed line and triangles, respectively) as a function of the distance
to the surface. By integrating the functional form of the electric-field gradients, we are
able to reconstruct the electric field below that spot on the surface, (c) and (d).
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amplitude growth rate, described by Eq. 4.5, is measured at a number of distances from

the surface (x = 20, 25, and 30 µm for ∆y = 0µm and x = 7, 12, and 25 µm for ∆y =

−40µm) and recorded in (b), where the circles and triangles represent data taken in the

x̂ and ŷ directions, respectively. The amplitude growth rate is directly proportional to

the gradient of the surface electric field ∂x
~E∗. The electric field emanating from surface

contaminants may be described in the vicinity of the atoms as

E∗

i = Cix
−pi , (4.11)

where Ci and pi are both adjustable parameters. The gradient of this field may then be

written as

∂xE∗

i = −piCix
−pi−1, (4.12)

By integrating a fit (solid lines in (b)) of this functional form of the field gradient, one

obtains a functional form of the surface electric field ~E∗(x), shown in (c), which can be

plotted vectorially in (d). This process can be repeated for a number of surface locations

to obtain more detailed vector fields. The solid lines in (a) correspond to simulations

performed with our modelling program, described in Sec. 4.4.

The solid black arrows in Fig. 4.7(a) and (b) show the reconstruction of the

vector field following the adsorption of ∼7×107 atoms onto the yttrium surface (thick

blue line). The dashed gray arrows in (a) indicate the calculated electric field from a

thin line of dipoles oriented along x̂, extending in and out of the page, whose surface-

adsorbate density is represented by the pink layer-cake structure. For any localized

dipole pattern, the expected field disagrees significantly with the measured field in both

direction and magnitude.

However, if we allow for variability in the number, center position, and spatial

width σy of the adsorbate pattern, we find qualitative and quantitative agreement with

an electric field produced by a similar number of adsorbates to that in (a), but spread

more diffusely across the surface (σy = 26 µm) than the pattern of adsorbates initially
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placed onto the surface. The results of a fitting routine are shown in Fig. 4.7(b), where

the more diffuse pattern of dipoles used to model the electric field is shown smeared

across the surface.

4.6 Estimating the Dipole Moment per Adatom

The precise characterization of the electric field lets us determine certain prop-

erties of the surface. As mentioned earlier, the adsorption of a rubidium atom onto

a metal surface creates a surface dipole adsorbate whose strength depends upon the

work function of the metal and the ionization energy of the rubidium atom. Previous

studies have shown that electric fields from these dipoles can be very large on metals,

which prompted the use of glass for our Casimir-Polder force studies [19, 20]. To repeat

Casimir-Polder experiments over metal surfaces, metals with work functions lower than

the ionization energy of the probe atom would be beneficial to study. By carrying out

our electric-field studies, we can determine the dipole moment of an individual rubidium

atom adsorbed onto yttrium and compare it to those from other surfaces.

To determine the dipole moment of a single adsorbed atom, we use a modelling

program to match the measured field gradient with a calculated field gradient. Our

model creates a distribution of N surface dipoles oriented normal to the surface; the

physical parameters of the distribution match those of the atom cloud. We then calculate

the resulting fields and field gradients that emanate from the surface and compare them

with the measured values. The only variable in this model is the dipole moment of one

adsorbed atom, which is varied to match calculated and measured field gradients. We

neglect to add any surface diffusion process into the modelling program because the

measurements to which we compare were made rapidly with respect to surface diffusion

times.

Fig. 4.8(a) shows the measured electric-field gradient versus the number of atom

clouds adsorbed onto the surface. The linearity of the measured field gradient (0–10
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Figure 4.7: Electric-field vectors. Measurements of the electric-field gradients at various
positions along the yttrium surface let us reconstruct this 2-D vector plot (solid black
arrows) of the electric field generated by adsorbed rubidium atoms (pink layer-cake
structure). Analysis was performed in which the measured field was fit to the field of
(a) a relatively localized pattern of dipoles and (b) a spatially diffuse pattern of dipoles.
The results of the fits are shown as dotted (gray) arrows. The layered structure in (a)
indicates the approximate location, spatial extent and surface density of atoms adsorbed
onto the surface. The peak surface density of adatoms is much less than one monolayer
and would not form a structure extending from the surface. The height of the cake
indicates the local surface density of dipoles. The axial (ẑ) size of the applied atoms is
a few hundred microns. Fields measured along this axis were negligibly small and are
not shown. In this figure, the longest vector represents a field of ∼19 V/cm.
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Figure 4.8: Electric fields vs. adsorbate number. (a) A plot of the measured electric-
field gradient versus number of clouds adsorbed onto the yttrium surface. The linearity
breaks down eventually, possibly due to surface effects such as adatom-adatom interac-
tions. (b) Measured fractional frequency shift data (closed red circles) with the expected
fractional frequency shift (open circles) obtained by processing the measured data in
(a). The solid lines (red) in (a) and (b) correspond to linear and quadratic fits for
data in the 0-15 cloud regime, respectively, illustrating the dependencies of each on the
number of adsorbates [Eqs. 4.5 and 4.17, respectively]. The number of atoms in a single
cloud is ∼ 1.7 × 106. This data was taken at x = 10 µm from the surface.
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clouds) allows us to assume that the field generated from one adsorbed atom is identical

to the field generated by one cloud of atoms divided by the number of atoms in that

cloud. From this, we find a relation between the electric-field gradient and the number of

atoms deposited. Using the procedure described above, we find that the dipole moment

per Rb atom adsorbed onto our yttrium surface is ∼35 Debye1 (corresponding to the

valence electron residing ∼ 1 Åwithin the surface, roughly one metallic bond length).

We also measure a dipole moment of ∼3.2 Debye for Rb on fused silica, ∼5.4 Debye for

Rb on a metallic hafnium surface, and ∼19 Debye for Rb on a metallic lutetium surface.

These results are reported in Table 4.1.

The fact that the work functions of the materials are smaller than the ionization

energy of rubidium would imply that adsorption of atoms onto the surface would be

due purely to van der Waals forces, and would not involve any atom-surface chemistry.

This adsorption is referred to as ‘physisorption’ and would not result in a surface dipole

moment from the adsorbate. The fact that a dipole moment is measured on these three

surfaces implies that the surfaces are not pure, single-crystal metals, but heterogeneous

metals with dissimilar properties. This analysis agrees with the analysis performed in

Sec. 2.5.2 and also suggests that this technique of measuring the unit surface-dipole

moment is a good indicator of surface quality and character.

4.7 Accounting for Systematic Shifts from Electric Fields

With our knowledge of electric fields from surface contamination, we can accu-

rately account for frequency shifts of dipole oscillations, like those made in [14, 19, 20]

that make precision measurements of surface forces. The additional forces from surface

contaminants perturb the trapping potential near the surface in such a way that the

perturbations result in an unwanted systematic shift of the data. To rule out this sys-

1 The surface structure that results from our yttrium deposition techniques could cause adsorption
dipoles to be different from dipoles on single crystal yttrium.
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Surface ∆E po Preparation
(eV) (D) Method

Hf -0.3 5.40 sputtering
Y -1.1 34.5 e− beam
Lu -0.9 19.1 oven heating

Glass ? 3.24 N/A

Table 4.1: This chart shows the measured dipole moment per atom adsorbed onto each
respective surface. The theoretical values for the desorption energies are shown in the
second column. These values are negative due to the fact that each metal’s work function
(WF) is lower than the ionization energy (IE) of rubidium. These values may not be the
true desorption energies of the materials, because one would expect no surface dipole
moment from materials with negative desorption energies. The fact that one measures
a dipole moment at all suggests the materials are not quite single-crystal, homogeneous
materials. Their preparation methods are shown in the fourth column and are described
in Sec. 2.5.2.
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tematic shift, one may carefully measure field gradients from the surface and calculate

the expected frequency shift as follows:

Atoms trapped in a quadratic potential will see perturbations to the trapping

frequency that are proportional to the curvature of the perturbing potential,

∆γx ≈
−∂2

xUE

2mω2
0

, (4.13)

where γx is the change in trap frequency in the x-direction, normalized to the unper-

turbed trap frequency ωo,

γx = 1 −
ωx

ωo
. (4.14)

We can define ∆γx as the contribution to the fractional frequency shift due to the

additional surface adsorbates, UE = −(αo/2)| ~E∗|2. Eq. 4.13 then becomes

∆γx =
αo

2mω2
o

∑

i

((∂xE∗

i )2 + E∗

i ∂2
xE∗

i ). (4.15)

If we choose a convenient fitting form of the electric field that approximates the

field generated by electrostatic patches, points, and lines for a restricted range of x,

E∗

i = Cix
−pi , (4.16)

Eq. 4.15 then becomes,

∆γx =
αo

2mω2
o

∑

i

(2pi + 1 )piC
2
i x−2 (pi+1 ). (4.17)

We can then extract Ci and pi from measurements of the amplitude growth rate ȧi at

various displacements from the surface. The Ci coefficients can then be written as

Ci =
2mωiȧi

αoEext
x pi

, (4.18)

where ωi, the frequency of the applied electric field, is chosen to be the trap frequency

in the i-direction.

As shown in Fig. 4.8(a), the measured electric-field gradient increased linearly

with the number of adsorbed atoms. If we assume that the power-law dependence of
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the electric field does not change significantly with the number of applied atoms, we can

then deduce that the coefficient Ci is proportional to number of applied atoms. This

implies, from Eq. 4.17, that the trap frequency a fixed distance from the surface will

vary quadratically with the number of adsorbates as well, since it is proportional to C2
i .

Fig.4.8(b) shows data verifying that indeed the fractional change in trap frequency from

the adsorbates ∆γx varies quadratically with the number of adsorbed atoms. The open

circles in (b) show the results of the above analysis on the data in (a) and agree well

with measured values.

With these calculations in hand, we can accurately predict the systematic frac-

tional frequency shift by directly measuring the electric field gradient. The results in

Fig. 4.9 show the fractional frequency shift as a function of distance to the surface for two

separate locations on the surface. The open triangles were taken over a clean area, where

we measured a negligible electric field; the filled circles were taken over a surface location

in which we purposely adsorbed ∼ 7 × 107 atoms. The solid black line represents the

theoretical fractional frequency shift predicted by Eq. 4.17, corresponding to measure-

ments made of the electric field emanating from that surface location. The agreement

between data and theory illustrates that we can accurately account for frequency shifts

from electric fields. For the purpose of characterizing systematic errors to surface-force

measurements, our method of characterizing the surface quality of the patch of surface

in which small force measurements are made is more directly relevant than canonical

surface-science techniques that involve AFM and scanning electron-microscope surface

imagery.

4.8 Reducing Electric Fields Strengths with Heat

Apart from characterizing the atoms on a surface and their resulting electric

fields, one might also like to demonstrate a way to lessen the strength of the electric

fields and their undesirable effects. We achieve this by applying heat to our substrate
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Figure 4.9: Accounting for systematic shifts from electric fields. (a) The measured frac-
tional frequency shift for two separate surface locations. The filled circles are data taken
directly below 7 ×107 adsorbed atoms, and the solid black line is the shift predicted
from electric-field measurements, with measured-error bounds (gray dashed). The open
triangles are data taken over a ‘clean’ surface location (no adatoms) where the electric-
field correction is consistent with zero (solid red line in (b)). The correction to data
taken over a clean spot is frequently small enough to exhibit a two-component power
law dependence for which the correction may, in fact, be slightly negative. The expected
Casimir-Polder shift is shown with a green dotted line.
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via a high-power laser. The back surface of the fused silica substrate is coated with

a ∼ 100µm thick layer of graphite, which is opaque to an infrared heating laser (λ =

860 nm). Heating the surface provides enough thermal energy for surface contaminants

to redistribute themselves across the surface or to desorb entirely. The temperature of

the metallic surface is calibrated versus the power of the heating laser using the same

methods as in [14]. This technique should not be confused with light-induced atomic

desorption, in which adatoms absorb ultraviolet light and desorb from the surface; in

our case, no laser light directly impinges on the adatoms.

The exponential decay time of an electric field emanating from the surface can

come from either a desorption process, in which the adatoms escape from the surface-

binding potential, or a diffusion process, in which the atoms overcome a smaller hopping

energy and hop from site to site, redistributing themselves across the surface. The

time scale τ for desorption and diffusion events to take place is characterized by the

temperature of the surface T , the energy of activation EA, and an attempt rate γo that

depends upon the surface process,

τ(T ) = γ−1
o eEA/kT . (4.19)

The results of this and a similar study over a fused silica surface can be seen

in Fig. 4.10. The similar fits to the data suggest that rubidium has similar activation

energies on fused silica and yttrium (EA ≈ 0.42 eV on each) and also reveal γo to be ap-

proximately 15–25 s−1. This measured attempt rate is ∼10 orders of magnitude smaller

than what one would expect for a desorption process and seems more characteristic of

a surface diffusion process that results from numerous random-walk hops. Fig. 4.10

also shows that it is indeed possible to lessen the undesired systematic effects of electric

fields on surfaces by baking.
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4.9 Possible Extension to Surface Magnetic Field Detection

An appealing feature of this technique is the electric neutrality of the electric-field

probe (the ultracold atom cloud). While this specific experiment works with magneti-

cally trapped atoms with non-zero magnetic moments, one could imagine using atoms in

the electronic ground state with no inherent magnetic moment (mF = 0). The spherical

symmetry of the atom’s electron cloud ensures no self-electric fields to disrupt the field

being measured, while the lack of a magnetic moment (to first order) similarly ensures

a lack of a self-magnetic field. This tandem could provide an extremely neutral electro-

magnetic probe to study surface fields. In this way one can, in fact, use the technique

described in this thesis to measure small surface magnetic fields, as well as small electric

fields, with a spatial resolution on the micron scale. In the case of magnetic fields, the

forces on the atoms would analogously come from field gradients, due to the fact that

the potential energy behaves quadratically with magnetic field:

UM =
αM

2
| ~B|2, (4.20)

where one can associate a magnetic polarizability arising from the second-order Zeeman

shift. Here we define the magnetic polarizability to be

αM =
(gJ − gI)

2µ2
B

2EHF
, (4.21)

where µB is the Bohr magneton, EHF is the ground-state hyperfine splitting, gJ is

the electronic g-factor and gI is the nuclear g-factor. By inserting the above magnetic

polarizability into Eq. 4.5, and applying modest magnetic fields (∼100 G), one may

obtain measurements of magnetic-field gradients as small as ∼3 mG/cm.



Appendix A

Experiments with Ultracold Atoms

This chapter of the thesis describes two sets of experiments that, for one reason or

another, were never fully carried out. As atom-surface interaction measurements were

being made (reported in Ch. 3 and Ch. 4), future experiments were being thought-out

and designed. Hence, the work presented in this chapter represents a great deal of

thought and effort in the design of new experiments.

The first set of experiments described in this chapter deals with measurements

of atom-surface interactions performed with atom interferometry. The first of these

two experiments takes advantage of the coherence of BEC to create an atom-laser in-

terferometer to study both atom-surface interactions and gravitational bound states.

The latter experiment exploits the second-order Zeeman shift to create a double-well

potential, in which one well is closer to a surface than the other, in order to make

atom-interferometric measurements of atom-surface forces.

The second set of experiments outlined in this chapter revisits precision spec-

troscopy of the nuclear magnetic moment of alkali atoms. This section describes how

measurements similar to those made with atomic-beam experiments can be done in

ultracold magnetically-trapped atomic clouds achieving competitive precision and ac-

curacy. This measurement would represent a parallel means of measuring nuclear prop-

erties of atoms, and may avoid the various systematic effects of previous experiments.



120

A.1 Atom-Surface Interactions with Atom Interferometry

Laser-light interferometry has proved to be a most useful tool in making preci-

sion measurements. However, because of light’s insensitivity to electric and magnetic

fields, laser-light interferometry not useful for studying electro-magnetic fields near sur-

faces. However, one may exploit the interactions of atoms with electro-magnetic fields

in order to make such measurements. In this section of Appendix A the use of atom

interferometry as a tool for making precise atom-surface interaction measurements is

investigated.

A.1.1 Gravitational Bound States of an Atom Laser

Following years of atom-surface interaction measurements, an idea arose for an

experiment that would not only study atom-surface interactions, but also study grav-

itational effects due to both the force of gravity and the boundary condition placed

on a BEC wavefunction by a surface. In the absence of atom-surface interactions, a

surface presents an impenetrable barrier through which atoms cannot tunnel and allows

for experiments measuring gravitational bound states, which have only previously been

seen in one other experiment [46].

If we were to reconfigure our experiment to place a BEC above, rather than below,

a glass surface, we could study the bound states of a gravitational potential of the form,

V (x) = mgx for x > 0 and V (x) = ∞ for x ≤ 0, where the Casimir-Polder potential is

temporarily being ignored here.

The time-independent Schrödinger equation (TISE) can be written for this po-

tential as,

∂2
xψn(x) = a3(x − xn)ψn(x), (A.1)

for x > 0, where ψn(x) is the wavefunction of the nth bound state and xn = En/mg is
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the classical turning point of the atom with energy En. The constant a can be written,

a3 =
2m2g

~2
, (A.2)

where m is the mass of a single atom, g is the local acceleration of gravity and ~ is

Planck’s constant divided by 2π.

The solutions to the TISE are Airy functions Ai(x) and Bi(x), and the general

solution to Eq. A.1 can be written as

ψn(x) = c1Ai(a(x − xn)) + c2Bi(a(x − xn)). (A.3)

The two boundary conditions for this experiment are that the wavefunction must ter-

minate to zero at x = 0 and at x = ∞. The second boundary condition forces c2 to be

zero, due to the divergent nature of the Bi function. The first boundary condition then

quantizes these solutions under the condition that Ai(−axn) = 0. The roots of the Airy

function Ai(y) are well studied and are very well approximated by the function

yn = (
3π

2
(n −

1

4
))2/3. (A.4)

The approximate energy of the nth state can then be written as

En = (
9mg2h2

32
)1/3(n −

1

4
)2/3. (A.5)

for n > 0.1

Fig. A.1 shows the first 9 bound states ψ2
n(x) of a Rb BEC for a gravitational

potential. The wavefunctions are offset by their respective energy En. The dashed red

line indicates the addition of the Casimir-Polder force to the gravitational potential.

The idea of the experiment is to bring an 87Rb BEC several micrometers from

the surface of the glass substrate (shown in the illustration in Fig. A.1). The BEC

would be magnetically trapped in the |1,−1〉 state and positioned a fixed distance from

the surface. Microwave radiation (ν ∼ 6.8 GHz) would couple the |1,−1〉 state to the

1 The characteristic energy of the system is (mg2h2)1/3, which equals ∼2.8 kHz for 87Rb.
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Figure A.1: Gravitational bounds states. This figure shows the idea of the proposed
experiment. A BEC is placed several µm above a surface. Atoms are out-coupled
from the BEC into the untrapped |2, 0〉 and fall under the influence of gravity. The
surface provides an impenetrable boundary, leading to the potential shown in the graph
below. Several bound states (n = 1-9) are shown with their respective energies offsetting
them from one another. When atoms are out-coupled from the BEC at distances not
sufficient to create a bound-state, the BEC will remain intact. Only when quantum-
mechanical conditions are met, will the atoms be allowed to out-couple. The red dotted
line corresponds to the combined potential consisting of the gravitational force and
Casimir-Polder force.
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untrapped |2, 0〉 state. This state is very insensitive to magnetic fields and atoms in

this state would fall under the influence of gravity, essentially creating an ‘atom laser’.

Because the atoms sit in a slight magnetic-field gradient (due to gravitational sag),

microwave radiation could then very selectively address atoms within the BEC which

are a fixed distance from the surface. The out-coupling of these atoms to the untrapped

state would only occur if the microwave radiation addresses atoms which sit at xn from

the surface (atoms with energy En). Atoms which are not specifically located at xn

would out-couple to states which destructively interfere and the BEC would remain

unchanged. The spatial selectivity of the microwave radiation would depend upon the

magnetic-field gradient in which the atoms sit, the Zeeman energy shift of the state,

and the Rabi frequency of the radiation (assuming the Rabi frequency is larger than

the linewidth of the radiation).

Fig. A.2(a) shows the out-coupling spectrum (solid black line) expected for a

BEC positioned ∼ 5µm from a glass substrate. Atoms positioned at xn from the sub-

strate satisfy the condition for a gravitational bound state and are out-coupled to the

untrapped state with unit probability. The inverted-parabola shape of the out-coupling

spectrum corresponds to the relative BEC atom density at that position. The out-

coupled atoms would essentially be defined as an atom laser whose ‘wavelength’ would

be given by the characteristic length scale λa = 1
a (∼ 0.3 µm for 87Rb). Here we use

the term ‘wavelength’ loosely, due to the fact that the periodicity of the wavefunction

changes with velocity (see Fig. A.1).

In addition to possibly being the second experiment to measure gravitational

bound states, this experiment would also have the possibility of measuring atom-surface

interactions using atom-laser spectroscopy. An atom-surface interaction potential Ui(x)

would act as a perturbation to the gravitational potential and would shift the energy of

the bound states accordingly. To first order, this energy shift would be proportional to
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Figure A.2: Out-coupled BEC spectrum. The graph in (a) shows a BEC placed ∼5
µm from a surface. Only when boundary conditions are met, will the BEC be allowed
to out-couple atoms to the untrapped |2, 0〉 to form gravitationally bound states. The
spectrum has an inverted-parabolic shape due to the fact that the number of out-coupled
atoms at a given distance will be proportional to the atomic-density within the BEC.
The graph in (b) shows the first three identifiable bound states (corresponding to n =
2, 3, and 4). The presence of an atom-surface interaction, like the Casimir-Polder force,
would shift the spectra by a small, yet measurable amount ∆E. This method provides
a means of using an atom-laser to perform atom-surface interaction studies.
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the interaction energy,

∆En = 〈ψ0
n|Ui|ψ

0
n〉. (A.6)

where ψ0
n represents the unperturbed wavefunctions.

Problems with this analysis arise, however, when the atom-surface interaction en-

ergy scales like a power-law whose potential energy becomes much larger than the bound-

state energy near to the surface. For instance, the potential energy of the Casimir-Polder

force is roughly equal to the bound-state energies for atom-surface separations less than

0.5 µm. This size scale is roughly the same size scale as the atom-laser wavelength

λa. When these size scales become comparable quantum reflectivity becomes a great

concern.

A great amount of research has been done by other groups detailing the nature

of quantum reflections [27, 47, 48, 49, 50]. Essentially, the quantum reflection process

occurs only when the potential energy of an attractive surface force changes suddenly

(on a length scale small compared to the size scale λa of the wavefunction). The length

scale β, associated with the Casimir-Polder force, can be written as,

β =

√

2mC4

~2
, (A.7)

where C4 is related to the strength of the Casimir-Polder force by UCP ∼ −C4x
−4 [48].

If we look at the condition that β ≪ λa we find the condition that,

C4 ≪ C4,max = (
~

10

32m7g2
)1/3, (A.8)

in order to see an appreciable quantum reflection. For 87Rb this requires C4 ≪ C4,max =

3.5 × 10−57 Jm4. However, C4 for 87Rb is about 25 times larger than C4,max, making

quantum reflection extremely unlikely.

Solutions exist, however, that would make this experiment feasible (even for

87Rb). As Eq. A.8 implies, we may do one of the following to increase quantum re-

flection. We may reduce the mass of the quantum object that’s being reflected from
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the surface. In the case of alkali-atom BEC, this would mean working with hydrogen

(H), meta-stable helium (He∗), lithium (Li) or even sodium (Na) BEC. Because C4,max

scales like m−7/3, one would benefit a great deal by reducing the mass of the atom by

factors of ∼4–87. Indeed for H, He∗ and Li, reflection probabilities approach unity.

Lighter-mass alkali atoms also tend to have much larger ionization energies (the

smallest of the bunch is that of Na, 5.1 eV). Such low work functions are very desirable

when working with atom-surface interactions for reasons described in Sec. 2.5.1. Essen-

tially, atoms with higher work functions have lower propensities for sticking to surfaces

and generating unwanted electric fields. This makes working with lighter atoms highly

desirable.

In addition, we may increase the quantum reflectivity of the atom laser by decreasing

the C4 coefficient. This may be done by lowering the mass density of the material, as

was done by Pasquini, et al . [50], or by adding an additional potential that would cancel

the Casimir-Polder potential. The latter may be done by adding a blue-detuned evanes-

cent wave via total internal reflection of an externally applied laser. One may vary the

intensity of the laser to explore the interesting competition between the Casimir-Polder

force and the force from the evanescent waves, as has been done in similar experiments

by Landragin et al . [27]. It would be interesting to see how the bound-state energies

would depend upon this intensity.

Fig. A.2(b) shows the would-be measured atom-laser spectra of the gravitational

bound states (n = 2, 3, 4) for no atom-surface interaction (solid black line) and for an

atom-surface interaction equal to the Casimir-Polder potential. If we (wrongly) assume

that the perturbed bound-state energy En + ∆En is equal to the unperturbed bound-

state energy plus UCP (xn), then we would expect to see the atom-laser spectra shift due

to the atom-surface interaction (red dashed line). Our wrong assumption becomes more

correct for weaker atom-surface interactions where the length scale of the interaction β

becomes much smaller than the atom-laser wavelength λa.
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A.1.2 Two-State Surface Probe

Another experiment was investigated which also takes advantage of atom inter-

ferometry to study atom-surface interactions. In this experiment an atom is put into a

superposition of two atomic ground states, one of which is closer to a surface than an-

other. The phase of the state which is closer to the surface will evolve at a slightly faster

rate than the state which is further, and may be measured with Ramsey spectroscopy.

The additional rate of change in the quantum-mechanical phase evolution will appear

as a change in the measured Ramsey frequency.

The key idea of the experiment is to find two nearly identical states whose spatial

overlap may be controlled very precisely via an external variable. In the case of this

proposed experiment the two states of interest are the |1,−1〉 and |2, 1〉 states of 87Rb

and the external variable is an applied magnetic field. The magnetic moments of these

two states are nearly identical, and only differ to second order. The Breit-Rabi formula

(Eq. A.16) describes how both energy levels behave with applied magnetic fields.

The externally-applied magnetic field in this experiment comes from the field of

our permanent magnets as well as from a variable bias field Bo. The magnitude of the

total field can be written as,

| ~B(x)| =
√

B2
o + γ2x2, (A.9)

where γ is the magnetic-field gradient from the permanent magnets (∼510 G/cm). This

field is shown in the illustration in Fig. A.3.

The potential energy experienced by these two states can be written as a sum of

the magnetic-field potential UM (x) and the gravitational potential −mgx, where m is

the mass of the atom and g is the local acceleration of gravity,

U(x) = UM (x) − mgx. (A.10)

The magnetic potential energy is a combination of Eqs. A.16 and A.9.
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Figure A.3: |1〉 and |2〉 gravitational sag. The illustration in this figure shows the
relative position of a BEC in the magnetic trapping field. The force of gravity pulls the
BEC away from both the substrate and the minimum of the magnetic field (labelled
Bo). The graph below shows the total potential energy U(x) for both the |1,−1〉 and
the |2, 1〉 state of 87Rb. When the bias magnetic field is 80 G, the gravitational sag is
slightly different for these two states. The |1,−1〉 is trapped more weakly (solid blue
line) and is pulled about 10 µm further from the surface than the |2, 1〉.
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The presence of gravity in this experiment is crucial to the interferometric scheme

used to measure surface interactions. The illustration in Fig. A.3 shows the position of

the BEC relative to the minimum of the magnetic field Bo. This displacement is referred

to as the ‘gravitational sag’ and can be approximated very well by replacing the Breit-

Rabi formula with the linear Zeeman effect UM = mF gF µBB. Here mF gF = 1/2 for

both the |1,−1〉 and |2, 1〉 states (hereafter referred to as |1〉 and |2〉, respectively),

and µB is the Bohr magneton. The gravitational sag xs for both states can then be

approximated to first order as,

xs(Bo) =
Bo

γ
(ψ−2 − 1)−1/2 ≈

Boψ

γ
, (A.11)

which is equal to 1.17 µm/G for our magnetic trap. Here

ψ =
mg

mF gF µBγ
. (A.12)

Fig. A.4(a) shows data verifying the gravitational sag position as a function of

the bias magnetic field. Because the magnetic moments of |1〉 and |2〉 are not quite

equal, their sag positions are also not quite equal and differ slightly depending on the

applied magnetic field. The graph in Fig. A.3 shows the potential energy experienced

by the |1〉 and |2〉 with an applied magnetic field of 80 G. The gravitational force pulls

the |2〉 ∼90 µm from the minimum magnetic field and pulls the |1〉 approximately 10

µm farther.

This difference in sag positions is the key focus of this experiment and provides a

spatial separation of the two states which is dependent upon the applied magnetic field.

This spatial separation ∆xs is difficult to determine analytically and was estimated by

dimensional analysis of the Breit-Rabi formula,

∆xs(Bo) ∝
mg

γ2Ehfs
(Bo − Bms)

2. (A.13)

This suggests that ∆xs is proportional to xs (from Eq. A.11). In fact numerical analysis
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large oscillation. When the compensation field is applied, the atoms remain at rest.
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confirms the following equation to be nearly exact for ∆xs,

∆xs(Bo) = χx∗

s(Bo)
(Bo − Bms)

Ξ
(A.14)

where Ξ is the characteristic magnetic field for second-order energy shifts (Ξ = 2438 G

for 87Rb),

Ξ =
Ehfs

(gJ − gI)µB
, (A.15)

here x∗

s is the mean gravitational sag position of the |1〉 and |2〉 (approximately given

by Eq. A.11), and Bms is the ‘magic spot’ magnetic field, described in Sec. A.2.1. The

dimensionless parameter χ was found numerically to be ∼3. This gives a separation of

∼1.4 ×10−3µm/G2 for our magnetic trap.

With this formalism in hand, we are able to fully account for the spatial separation

of the |1〉 and |2〉 as a function of magnetic field. In order to get any reasonable

separation (∼0.1 µm) between the two states, we must work at a ∼10 G magnetic field.

The gravitational sag of both states is roughly 12 µm at this field and would hinder

atom-surface interaction measurements. However, this sag may be compensated for by

the application of a bias magnetic field.

Fig. A.5(a) and (b) show the difference between applying and not applying a

compensation field to the system. By compensating for the gravitational sag of the

|1〉, the |2〉 is allowed to move slightly closer ∆xs to the surface. The experiment (b)

would look at follows: atoms begin in either the |1〉 or |2〉 (filled red circle) and are

placed into a superposition state (red and white filled circle) by the application of a π/2

pulse (time progresses rightward in the illustration). Once the atoms are placed into a

superposition the bias magnetic field (dashed green line) is slowly ramped up (slow with

respect to collective oscillations). The compensation field (dotted black line) is applied

in tandem with the bias field in order to prevent the |1〉 from moving. The atoms are

then recombined in space by ramping the fields back to their original values and a π/2

pulse is applied. The relative phase between the two states is measured by recording the
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final state population as a function of time. The frequency of the population’s oscillation

(Ramsey frequency) should be equal to the relative energy difference between the two

states. Changes in this frequency should be proportional to additional potential energies

from atom-surface interactions.

By applying a compensation field, the bias field may be varied much more rapidly

than collective oscillation time scales using this method. This allows for very short

interaction times, which is useful when measuring rapid Ramsey frequencies. Fig. A.4(b)

shows the results of applying a very rapid magnetic field pulse to atoms in the magnetic

trap. The solid black line shows the results of the experiment without a compensation

field being applied. The atoms see the field pulse as a ‘kick’ and oscillate in-trap. When

the compensation field is applied, the atoms are prevented from oscillating, as seen with

the open circles (dotted red line).

A number of challenges immediately confront this experiment. First, as the two

states separate in space, the coherence time between them falls rapidly to zero (as shown

with the data in Fig. A.6(b)). The coherence time is largest near the magic spot (3.23

G) and decreases to nearly 10 ms with a 10 G field [12, 51]. In essence, there exists

a competition for the experiment: the larger the spatial separation between states,

the smaller the coherence time. Additionally, the relative Ramsey frequency difference

between the two states becomes larger for larger spatial separations (shown with the

data in Fig. A.6(a)). This obstacle may be overcome by detuning the frequency of the

applied π/2 pulses in order to observe several periods of a Ramsey oscillation within

the coherence-time window.

As if these challenges weren’t enough to overcome, there exists a density-dependent

frequency shift of the Ramsey frequency. This suggests that low-density thermal clouds

be used to measure the atomic interference. However, a thermal cloud may only get

so close to the surface before its density changes (from mechanical surface evaporation)

and an apparent frequency shift is recorded.
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Figure A.5: Two-state surface probe. The time sequence in (a) shows the problem
encountered when a compensation field (dotted black line) is not applied to the exper-
iment. As the bias magnetic field Bo (dashed green line) is ramped up, the atoms are
pulled away from the surface by gravity, making atom-surface measurements difficult.
However, when a compensation field is applied, the atoms remain at the surface to
perform measurements. The sequence shows the interferometric measurement. Atoms
starting in one state (red) are placed into a superposition state (red and white) by a
π/2 pulse. As both the bias field and compensation field are increased the two states
separate spatially, allowing the |2〉 to probe the atom-surface interaction. The atoms are
recombined spatially and a subsequent π/2 pulse reads out the relative population in
each state. The acquired phase should be proportional to the atom-surface interaction
potential.
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Figure A.7: Density shift and results. The data in (a) show the results of the experiment,
in which the measured Ramsey frequency increases as the two-state probe (shown in
Fig. A.5) approaches the surface. The results are a bit misleading. The increase in the
Ramsey frequency is most likely due to the increase in the thermal cloud density and not
due to an atom-surface interaction. The Casimir-Polder force, for instance, would give a
signal orders of magnitude lower than the signal measured here. The data in (b) clearly
show the density-dependent shift for two partially-condensed clouds (black square and
blue circles). For a low-density thermal cloud (red triangles), the density-dependent
shift appears to be nearly zero.
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Fig. A.7(b) shows the density dependent frequency shift recorded for three differ-

ent atomic ensembles. The red triangles correspond to the relative Ramsey frequency

measured across a low-density thermal cloud (No/N ∼0.02). For a higher-density cloud

(No/N ∼0.17) a frequency shift of a few tens of Hz can be seen with the black squares.

For a very dense BEC (No/N ∼0.56) the frequency shift becomes more apparent, as

seen with the blue circles.

An interesting effect can be seen with the black-squares data: despite having

partially condensed, the cloud does not appear to have a spatially bi-modal nature to its

frequency profile. This is due to the fact that while the cloud may have a bi-modal nature

in its density profile, it also has a bi-modal nature to its density-dependent shift [12, 51].

BEC atoms tend to possess exactly half the frequency shift that non-condensed atoms

would have with similar densities. This results in a spatially-continuous energy shift

across the cloud. A non-continuous shift would result in infinite forces within the

ensemble (∂xU < ∞).

The misleading results of the experiment, shown in Fig. A.7(a), show an apparent

shift in the measured Ramsey frequency as the atom-surface distance tends to zero. This

apparent shift is most likely due to the explanation given earlier in which low-density

thermal clouds undergo mechanical evaporation by slightly contacting the surface. The

increased atom density gives rise to an apparent signal. This effect may, however, be

avoided in other experiments by exploiting the lack of a density-dependent shift in

certain fermionic atomic ensembles.

A.1.3 Versatile Double-Well Potential

The system discussed above in Sec. A.1.2 may also be of interest in creating a

versatile double-well potential. Fig. A.3 shows the trapping-potentials for the |1〉 and

|2〉 of 87Rb with a bias magnetic field of 80 G. For a large bias field like this, the

two potentials separate in space, described by Eq. A.14. By applying a very specific
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microwave-coupling frequency, one may couple the two potentials together to create a

double-well potential, like that shown in Fig. A.8(a). When the microwave radiation

is tuned to specifically couple the two potentials at the mean position between the

two minima, one finds the resulting double-well potential to be symmetric about the

center (solid black line in (a)). By varying the power of the coupling, one may round

the intersection of the two potentials and effectively vary the barrier height (shown

as a faint gray line). By detuning this microwave coupling slightly, one may create a

potential imbalance between the two wells: a positive detuning (b) would raise the right

well, while a negative detuning (c) would raise the left.

This system is also very robust, due to the fact that both the barrier height and the

potential imbalance are controlled by the power and frequency (both very controllable

variables) of the microwave coupling, respectively, and the separation between the wells

is controlled by an externally applied magnetic field.

This double-well potential may also be used as an interferometric tool to study

rotations and accelerations gyroscopically. The key ingredient in experiments such as

these is to create an enclosed area with the two atomic states. If, instead of running

time rightward in Fig. A.5, we run space rightward, we create an enclosed area. This

may be accomplished by physically translating the atoms in space as they separate. The

enclosed area would be equal to the product of the separation ∆xs and the translational

distance.

A.2 Measuring the Nuclear Magnetic Moment of Trapped Atoms

Once, while working with the Breit-Rabi formula, I happened to stumble upon

an interesting method of measuring the nuclear magnetic moment µI = gIµB of alkali

atoms through the comparison of two separate hyperfine transitions in the ground state

manifold, where µB is the Bohr magneton and gI is the nuclear g-factor.

The Breit-Rabi formula describes the energy shift of a ground state atom for a
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(a)
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Figure A.8: Designer double-well potential. This figure shows the ability to create a
unique double-well potential from the |1,−1〉 and |2, 1〉 of 87Rb. As shown in Fig. A.3(b),
the force of gravity spatially separates the trapping potentials by several µm by applying
a modest magnetic field (∼ 80 G). By applying a specific microwave coupling, the
combined potential would look like the solid black line potential to the right. The
illustration in (a) shows a symmetric double well potential whose height may be adjusted
by varying the power of the microwave radiation (the potential is rounded near the
overlap, shown as a gray line). By detuning the microwave coupling the symmetry of
the double-well is broken, leading to an imbalance in the double-well ((b) and (c)).
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given magnetic field B and can be written as

U(mF , B) = gIµBmF B +
Ehfs

2
(±(1 +

4mF x

2I + 1
+ x2)1/2 −

1

2I + 1
), (A.16)

where the ± is used for the F = I ± J state, respectively, and

x ≡
(gJ − gI)µBB

Ehfs
. (A.17)

The zero-field hyperfine energy splitting is written as Ehfs, I is the total nuclear angular

momentum, J is the total electronic angular momentum and gJ is the Landé g-factor.

We can write the equation for the field dependence of a rightward, σ+ transition,

in which the atom receives a photon which drives it from an |mF 〉 to |mF + 1〉 state as,

UR(mF , B) = U+(mF + 1, B) − U−(mF , B), (A.18)

where the (+) or (–) convention indicates the higher or lower energy state, respectively.2

We can then write the functional form of this transition’s energy as

UR(mF , B) =
Ehfs

2

(

√

1 +
4(mF + 1)x

2I + 1
+ x2 +

√

1 +
4mF x

2I + 1
+ x2

)

+ gIµBB. (A.19)

Similarly, we can define a leftward transition arising from a σ− transition,

UL(mF , B) = U+(mF , B) − U−(mF + 1, B) (A.20)

and

UL(mF , B) =
Ehfs

2

(

√

1 +
4mF x

2I + 1
+ x2 +

√

1 +
4(mF + 1)x

2I + 1
+ x2

)

− gIµBB. (A.21)

See Fig. A.9(a) and (b) for an illustration of the transitions.

The interesting physics lies in the energy difference Υ between these two transi-

tions,

Υ(B) = UR(B) − UL(B) = 2gIµBB, (A.22)

2 One should use caution with this convention when dealing with 40K, which has an inverted hyperfine
structure (AJ < 0).



140

where here we assume similar mF states are being used. This energy difference Υ is

exactly equal to twice the product of µI and B and corresponds to the energy cost

of flipping the nuclear magnetic moment in a magnetic field.3 Since Υ(0) = 0 and no

higher-order terms exist, one may define the nuclear gyromagnetic ratio gI to be exactly

equal to

gI =
Υ(B)

2µBB
. (A.23)

Fig. A.9(a) illustrates the concept of measuring two very similar transitions (which

cross to form an ‘X’). In the absence of a nuclear magnetic moment these two transitions

behave identically. However, the presence of the nuclear magnetic moment makes these

transitions slightly different. The energy level diagrams of the ground state manifolds of

40K and 87Rb are shown in (b), with crossing arrows showing candidate states in which

a nuclear magnetic moment measurement might be made.

Fig. A.9(c) illustrates the two transitions UL(B) and UR(B) for a quartet of

states in 87Rb (|1,−1〉 → |2, 0〉 and |1, 0〉 → |2,−1〉, shown in (b)). The graph in

this figure shows the field dependencies of both transitions and demonstrates how they

both come to minimum values very near to one another (marked by the dashed vertical

lines). These minima have been dubbed ‘magic spots’ in the past due to the fact that

there is exactly no magnetic field dependence of the transition at these field values [12].

If one were to accurately measure both curves in Fig. A.9, one would have a precise

determination of the nuclear magnetic moment, determined by Eq. A.23.

We can look at the feasibility in making this measurement for all three naturally

occurring potassium isotopes (39K, 40K, and 41K), as well as both rubidium isotopes

(85Rb, and 87Rb), for instance. If we look at the error in measuring gI we find that

(
δgI

gI
)2 = (

δΥ

Υ
)2 + (

δµB

µB
)2 + (

δB

B
)2 (A.24)

3 Unfortunately for me, and unbeknownst for several weeks, this technique has actually been outlined
decades ago [52]. This technique, however, was never applied to trapped, ultracold atoms and still
remains an important experimental study.
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Figure A.9: Left vs. right transition. The illustration shows the rightward UR and
leftward UL transitions described in the text with two sets of candidate transitions
shown in blue. The energy difference between the left and right transitions is directly
proportional to the energy cost in flipping the nuclear magnetic moment µI . The idea
of the experiment is to measure the two transition frequencies as a function of magnetic
field near a ‘magic-spot’ resonance in order to discern the nuclear magnetic moment.
The dotted arrow indicates the transition with the largest magnetic-field sensitivity, a
transition used to calibrate the magnetic field.
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where the fractional uncertainty in the Bohr magneton is ∼ 4× 10−8. One may assume

that with proper technique and apparatus one might achieve < 1 Hz resolution of Υ,

which may be on the order of a few hundred kHz (see the tables in Sec. A.2.1), giving

a fractional uncertainty of ∼ 4 × 10−6. It seems the leading source of uncertainty in

making this measurement might be the calibration of the magnetic field.

Measurements in the past have measured nuclear magnetic moments very well

with atomic beam experiments [53]. However, these experiments relied on spatial uni-

formity and calibration of magnetic fields over large distances (several tens of centime-

ters) and were sensitive to interactions with the vacuum chamber walls [54, 55]. The

method presented here of measuring nuclear magnetic moments relies on the calibration

of the magnetic field in a region of space orders of magnitude smaller and is completely

insensitive to interactions with chamber walls. If it would become possible to calibrate

a magnetic field of a few hundred gauss to < 10 mG precision (δB/B ∼ 2 × 10−5), it

would be possible to improve measurements of the nuclear magnetic moment of 40K,

whose current uncertainty is 2 × 10−4, by a factor of ten.

The possibility exists to calibrate the magnetic field using alkali atoms to such

precise levels that the uncertainty in the field would be largely dominated by servo

electronics. This method of calibrating the magnetic field relies on measurements of the

transition within the ground-state manifold that is maximally sensitive to the magnetic

field. This transition, depicted in Fig. A.9(b) as a dotted arrow, would have field

sensitivities on the order of the Bohr magneton (µB ≈1.4 MHz/G). If it would become

possible to measure this calibration frequency (νc = Uc/h) to the 1 Hz level as well, one

would be able to ascertain the magnetic field to incredibly precise levels (1 Hz/µB ≈

10−6G)! At this level, the uncertainty in the field calibration would be dominated by such

systematic errors as electronic noise, ambient field drifts, and temperature instabilities,

to name a few. With such a precise calibration process in place, it would be possible

to make measurements of nuclear magnetic moments that compete with or surpass
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measurements that have been done in past atomic-beam experiments [53].

Additionally, these experiments relied on the natural abundance of the various

isotopes of each element, which made the measurement with 40K relatively poor due to

its low, 0.01% natural abundance. The method presented here offers a way of measuring

a pure sample of a specific isotope, free from possible systematics caused by isotopic

contamination and interactions with the chamber walls.

In addition to making a more precise measurement of the nuclear magnetic mo-

ment of 40K, one would also gain a great deal more insight into the nuclear structure

of potassium. Despite the difference between ‘bosonic’ or ‘fermionic’ labels, every iso-

tope of a given atomic species should share a common nuclear factor, AJ/gI , where AJ

is the hyperfine splitting constant AJ = Ehfs/(2I + 1). This nuclear factor is ideally

equal between all isotopes with point-like nuclei. We may define a constant, called the

hyperfine anomaly constant ∆hf , to be the fractional difference from unity between the

nuclear factors of differing isotopes and write it as,

∆hf =
AJ,1

AJ,2

gI,2

gI,1
− 1, (A.25)

where the (1) and (2) labels are attached to two different isotopes. This hyperfine

anomaly is usually <0.007. The nature of this anomaly was first elucidated by A. Bohr

and V. Weisskopf [56]. Their theory explains how the anomaly can be attributed to

interactions of the electron with a finite-size nucleus. In addition, the magnitude of the

anomaly describes the distribution of neutrons within the nucleus [57]. In other words,

this table-top experiment would allow one to probe the distribution of neutrons within

the nucleus simply by probing an ultracold sample of atoms with microwave radiation!

A similar measurement has been made with 5 isotopes of francium [58].

Neither the nuclear magnetic moment, nor the hyperfine splitting of 40K have been

measured in over 55 years. The poor measurement of the nuclear magnetic moment, in

particular, leads to a large uncertainty of the hyperfine anomalies between 39K -40K, and
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40K-41K (current fractional errors in the hyperfine anomaly are < 5%). By increasing

the accuracy of such measurements, a significant amount of knowledge of the potassium

nucleus might be obtained.

One last selling point that should be mentioned is that the potassium atom is

unique to alkali atoms, in that it has three readily available isotopes with which to work

(39K,40K, and41K), which give three measurements of hyperfine anomalies. Other alkali

atoms, in which a significant amount of work has been done measuring hyperfine con-

stants (like Rb, Cs, Li, Na, and H), have only one or two readily available isotopes with

which to work in ultracold systems, which would give one or zero hyperfine anomalies

per atom.4 This makes potassium a very desirable atom with which to work. By increas-

ing the accuracy of the nuclear magnetic moment in 40K, one would have measurements

of three hyperfine-anomaly constants with accuracies of < 0.1%.

A.2.1 Determining ‘Magic Spots’

The term ‘magic spot’ refers to the magnetic field at which a transition’s magnetic-

field sensitivity is exactly zero. In other words, the field at which the first derivative

of the transition energy with respect to magnetic field is zero (∂BU(B)|Bms=0). The

detuning of the transition frequency ν from the zero-field hyperfine splitting νhfs can

be written as,

∆(B) = ν(B) − νhfs, (A.26)

This detuning can be approximated as second-order polynomial near the magic spot

(Bms) as,

∆(B) = −∆ms + B
′′

(B − Bms)
2. (A.27)

A table of values of ∆ms, B
′′

and Bms are given below for 87Rb and 40K. These ‘magic-

spot’ magnetic-field values span several thousand Gauss and are extremely well known

4 Hydrogen has three isotopes, but I’m not sure how readily available tritium is: Dr. Octopus killed
people in order to obtain it in Spiderman 2!
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F=7/2

F=9/2

-9/2 9/2-7/2 7/2

Figure A.10: Single-photon transitions in 40K. The green line represents the zero-field
transition Ehfs.

quantities.

A.2.2 Issues with the AC Stark Shift

For experiments which trap neutral atoms in optical dipole traps, the ac Stark

shift of the energy levels must be taken into account in order to make accurate mea-

surements of the nuclear magnetic moment. The fact that one of the two ground state

hyperfine manifolds being studied is closer in energy (∼ GHz) to the excited state tran-

sition (λ ∼ 800nm) gives rise to a systematic shift between transition frequencies. This

shift comes from the presence of the intense trapping lasers (λ ∼ 1000 nm; maximum

intensity ∼20 MW/m2).5 The intensity of the trapping lasers has the following form:

I(x, y, z) =
2P

πw2(1 + (z/zR)2)
Exp(

−2(x2 + y2)

w2(1 + (z/zR)2)
), (A.28)

where P is the total power in the beam (∼300 mW), w is the 1/e2 waist of the beam and

zR is the Rayleigh length of the focused laser. This spatial variation in intensity leads

to a slight systematic shift between energy levels. The potential energy experienced

5 The trapping-laser parameters used for studying the ac Stark shift are taken from groups here at
JILA which trap atoms in optical dipole traps.
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Transition BMS -∆MS B′′

|92 ,mF 〉 → |72 ,mF 〉 (G) (kHz) (Hz/G2)

1/2 → −1/2 0.04095 0.00506 3015.83
1/2 → 1/2 50.983 7961.62 3072.56
1/2 → 3/2 103.269 32553.1 3094.34
3/2 → 1/2 103.349 32604.2 3094.35
3/2 → 3/2 152.949 73535.6 3238.76
3/2 → 5/2 207.095 136146. 3375.83
5/2 → 3/2 207.168 136248. 3375.85
5/2 → 5/2 254.916 216682. 3672.41
5/2 → 7/2 312.955 336264. 4121.19
7/2 → 5/2 313.015 336418. 4121.28
7/2 → 7/2 356.882 477620. 4858.14

−1/2 → 3/2 53.584 8355.83 2921.80
3/2 → −1/2 53.753 8408.86 2921.83
1/2 → 5/2 161.938 77956.0 3093.27
5/2 → 1/2 162.097 78116.0 3093.42
3/2 → 7/2 275.240 235811. 3606.83
7/2 → 3/2 275.377 236083. 3607.28

Table A.1: Table of relevant ‘magic spots’ in 40K. The double line separates single-
photon transitions from two-photon transitions.

F=7/2

F=9/2

-9/2 9/2-7/2 7/2

Figure A.11: Two-photon transitions in 40K. The green line represents the zero-field
transition Ehfs.
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F=2

F=1

2

-2

Figure A.12: Magic Spots in 87Rb.

Transition BMS -∆MS B′′

|1,mF 〉 → |2,mF 〉 (G) (kHz) (Hz/G2)

0 → 0 0 0 575.146
0 → −1 651.895 231977. 558.394
−1 → 0 654.389 233797. 558.460
−1 → −1 1218.78 915674. 664.122

−1 → 1 3.22892 4.49731 431.360

Table A.2: Table of relevant ‘magic spots’ in 87Rb. The double line separates single-
photon transitions from two-photon transitions. The green line represents the zero-field
transition Ehfs.
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by a neutral atom in this intense field is proportional to the intensity field and can be

written as follows:

Udip(x, y, z) =
−3πc2Γ

2(ωo + ∆)3
(

1

ωo + ∆ − ω
+

1

ωo + ∆ + ω
)I(x, y, z), (A.29)

where Γ is the natural linewidth of the optical transition ωo, ∆ is the hyperfine splitting

Ehfs/~, ω is the frequency of the trapping laser and c is the speed of light. While the

total shift of a given hyperfine manifold is on the order of 100 kHz, the differential shift

between manifolds is only on the order of 1 Hz. This shift is, however, common to both

UR and UL and should not contribute greatly to systematic errors.



Appendix B

Detailed Calculations

This appendix shows the details of calculations which are beyond the scope of the

above discussions and which require several pages of exciting algebra. In this sense, the

following sections provide an archive of the behind-the-scenes work which accompanies

the above discussions.

B.1 Resonantly Driven Oscillator Calculations

This section of Appendix B details the algebra and geometry needed to calculate

the functional forms of the position of atoms in a resonantly-driven oscillator (Eqs. 4.6 -

4.10).

Fig. 4.4 shows the geometry of the driven oscillator. The red arrow indicates the

amplitude of the oscillation ȧ t due to the application of an external electric field, while

the blue arrow indicates the amplitude ao of the initial dipole oscillation. The resultant

vector a(t) can be found geometrically be decomposing ȧ t into its projection along âo

and the other axis which completes the basis of the plane (call it what you like).

Its projection along âo is equal to ȧt cos(φi), while its other projection is equal

to ȧt sin(φi). By the Pythagorean theorem,

a2(t) = (ao + ȧt cos(φi))
2 + (ȧt sin(φi))

2, (B.1)

and,

a(t) =
√

(a2
o + (ȧt)2 + 2aoȧt cos(φi), (B.2)
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In order to find the phase φf (t) of the oscillation, we must use the Law of Cosines,

cos(φf (t)) =
a2

o + a2(t) − (ȧt)2

2aoa(t)
. (B.3)

From this we recover Eq. 4.10,

φf (t) = cos−1(
ao + ȧt cos(φi)

a(t)
). (B.4)

The resulting equation for the position of the atoms as a function of time (Eq. 4.7)

was verified to be a solution to the differential equation which describes the system,

ẍ + ω2
ox =

Fo

m
sin(ωot + φi). (B.5)

B.2 Frequency Shifts From Electric-Field Contaminants

A single-power law electric field was sometimes inadequate in describing the func-

tional form of small fields near the surface. One can see that the measured field gradient

(proportional to the amplitude growth rate in Fig. 4.6(b)) occasionally needed to be de-

scribed by a double-power law in order to fully describe the nature of the electric field

near the surface. A double-power law of the form

Ei = Ci1(qi − qo)
−pi1 + Ci2(qi − qio)

−pi2 (B.6)

was found to best describe the electric field in the i-direction for a small range of atom-

surface distances. Here qi is the spatial coordinate in the i-direction for i = x, y, and

z.

The contribution of the fractional frequency shift ∆γ arising from this specific

electric field can be written as,

∆γ = ∆γ11 + ∆γ22 + ∆γ12 (B.7)

where the above has been split into three terms to fit the document.

∆γ11 = C2
i1pi1(2pi1 + 1)(qi − qio)

−2(pi1+1) (B.8)
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∆γ22 = C2
i2pi2(2pi2 + 1)(qi − qio)

−2(pi2+1) (B.9)

∆γ12 = Ci1Ci2(2pi1pi2 + pi1(pi1 + 1) + pi2(pi2 + 1))(qi − qio)
−(pi1+pi2+2) (B.10)

Eq. B.7 is similar to, but more complicated than Eq. 4.17. The key difference be-

tween Eq. 4.17 and Eq. B.7 is that the latter may, in fact, become negative (as seen in

Fig. 4.9(b)). This is due to the cross term upon the expansion of Eq. B.6 in Eq. 4.15 .
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