

Epiphany Conference on Advances in Heavy Flavour Physics Cracow, Poland

Measurement of the $t\bar{t}\gamma$ production cross section in proton-proton collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

Sara Ghasemi^{*}, on behalf of the ATLAS collaboration *University of Siegen sara.ghasemi@cern.ch

January 11th, 2018

Introduction

- Cross-section measurement of $t\bar{t}\gamma$ probes top-photon coupling.
 - BSMs (composite top, technicolor, ...), top EFT coefficients (O_{tG} , O_{tB} , ...)
- Photons can originate from top quarks, as well as from their decay products and the incoming partons:

- Event selection is optimised to enrich γ radiation from top quarks.
- Cross section is measured within a fiducial volume, using a maximumlikelihood fit.
- First differential cross-section measurement: as a function of p_T and η of photons, within the same fiducial volume.
- Single lepton final state

Data and Signal Simulation Sample

- Data set recorded with the ATLAS detector in 2012 at $\sqrt{s} = 8$ TeV, corresponding to an integrated luminosity of 20.2 fb⁻¹.
- Monte Carlo simulated $t\bar{t}\gamma$ events generated at LO by MadGraph5+Pythia6 and normalised to NLO prediction, using k-factors [PRD 91 (2015) 072007].

Sara Ghasemi (Uni Siegen)

Epiphany 2018

Event Selection / Fiducial Region Definition

- One lepton (e or μ), $p_T > 25 \text{ GeV}$ > 4 jets, $p_T > 25 \text{ GeV}$ > 1 jet tagged as b-jet (70% efficiency)
 e-channel: $E_T^{\text{miss}} > 30 \text{ GeV}$ and $m_T^W > 30 \text{ GeV}$ μ -channel: $E_T^{\text{miss}} > 20 \text{ GeV}$ and $E_T^{\text{miss}} + m_T^W > 60 \text{ GeV}$ One photon, $p_T > 15 \text{ GeV}$, $|\eta| < 2.37$, no isolation requirements $\Delta R(\text{jet}, \gamma) > 0.5$ and $\Delta R(\text{lepton}, \gamma) > 0.7$ $|m_{e_Y} m_Z| > 5 \text{ GeV}$
- → 1256 (1816) candidate events selected in *e*-channel (μ-channel).
- Fiducial phase space is defined for Monte Carlo events at particle level (i.e. before detector simulation).
- By cuts that mimic the selection at the reconstruction level (i.e. after detector simulation).
- To obtain a common fiducial region for *e* and μ -channel, cuts on E_T^{miss} , m_T^W and $m_{e\gamma}$ are not included. $\Delta R = \sqrt{((\Delta \eta)^2 + (\Delta \phi)^2)}$

Analysis Strategy

- P(p_T^{iso} | γ) / GeV After the event selection, three category of ATLAS 1⊨ Prompt γ Template; Simulation events: $\sqrt{s} = 8 \text{TeV}, 20.2 \text{ fb}^{-1}$ $e \rightarrow \gamma$ Fake Template; Data Hadronic Fake Template; Data 1) with prompt photons // /// /// Uncertainty 2) with photons from hadrons, or hadrons misidentified as photons: "hadronic-fakes" 10⁻² 3) with electrons misidentified as photons: 10⁻³ "electron-fakes" 0 2 8 6 10 12 14 16 18 20 p_iso [GeV]
- Total and differential cross sections extracted from maximum-likelihood fit, using three templates, one for each category of events.
- Photon track isolation is used for the templates:

 p_{T}^{iso} = The sum of p_{T} of tracks within a cone of $\Delta R = 0.2$ around the photon.

• Two free parameters in the fit: Number of signal events and number of hadronic-fake backgrounds. The rest of backgrounds are fixed in the fit to their estimated number of events.

 $\Delta R = \sqrt{((\Delta \eta)^2 + (\Delta \phi)^2)}$

Prompt-Photon Template

- Events with prompt photons include both signal events and the background processes with a prompt photon:
 Wγ+jets, Zγ+jets, ...
- Prompt-photon template extracted using photons from $t\bar{t}\gamma$ signal MC sample, after full event selection.

- Reconstructed photons are truth matched to particle level within $\Delta R = 0.1$.
- For differential measurements, template is extracted for each bin of p_T and η .
- Modelling and experimental systematic uncertainties of the template are very small.

Hadronic-Fake Template

- Events with hadronic fakes are the largest background.
- Template extracted from a control region in data, enriched by hadronic fakes:
 - ▶ ≥ 1 photon candidate that fails specific photon identification criteria
 - ≥ 4 jets
 - $\Delta R(e, \gamma) > 0.1$

- Template shape shows dependency on p_T and η of hadronic fakes \Rightarrow Template for fiducial cross-section is a weighted sum of templates in p_T and η bins.
- For differential measurements, template is extracted for each bin of p_T and η .
- Prompt-photon contamination as systematics uncertainty:
 - Template constructed from modified photon candidates, corresponding to less prompt-photon contamination.
 - Difference w.r.t. nominal template taken as systematic.

Electron-Fake Template

- Events with electron fakes are the second largest background.
- Template extracted from control region in data enriched by $Z \rightarrow e + fake \gamma$ events:
 - Back-to-back e and fake- γ
 - ▶ 70 GeV < $m_{e\gamma}$ < 110 GeV
 - $p_{\mathrm{T}}^{\mathrm{e}} > p_{\mathrm{T}}^{\gamma}$
 - $E_{\mathrm{T}^{\mathrm{miss}}} > 30 \mathrm{~GeV}$
- Backgrounds are subtracted, using a sideband fit to $m_{e\gamma}$ distribution.
- Template systematic uncertainty:
 - Variation of $E_{T^{miss}}$ requirement, variation of mass range

Background Estimations

- Hadronic-fake background: Data-driven, free parameter in template fit.
- Electron-fake background: Data-driven.
 - Fake rates are calculated from ratio of number of $Z \rightarrow e+fake-\gamma$ to number of $Z \rightarrow e^+e^-$ events, as functional of p_T and η of photons.
 - The fake rates are applied to a modified signal region (electron replacing photon in *tī*γ selection).
- Backgrounds with prompt photon:
 - $W\gamma$ +jets: MC estimation normalised by datadriven scale factors.
 - $Z\gamma$ +jets, Single top+ γ , Diboson+ γ : MC estimation
 - Multijet+ γ : Data-driven, using matrix method

Process	e- channel	μ -channel	
Electron-fake	317±42	385±42	
$W\gamma$ +jets	65±25	97±25	
$Z\gamma$ +jets	35±19	38±20	
Single top+ γ	13±7	19±10	
Multijet+ γ	7.5±3.6	8.3±5.2	
Diboson+ γ	2.6±1.5	2.5±1.4	

Likelihood Fit

- Events in *e* and μ -channel merged in the fit \rightarrow Common parameter of interest: fiducial cross section σ_i
- For differential measurement σ_i is computed for each *i* bin \rightarrow bin-by-bin unfolding to the particle level

Results: Fiducial Cross Section

- JHEP 11 (2017) 086
- Fiducial cross section: $\sigma_{sl}^{fid} = 139 \pm 7(stat.) \pm 17(syst.)$ fb = 139 ± 18 fb
- Measured fiducial cross section agrees within uncertainties with the Standard Model prediction at NLO.

Source	Relative uncertainty [%]		
Hadronic-fake	6.3		
Electron-fake	6.3		
Jet energy scale	4.9		
$W\gamma$ +jets	4.0		
$Z\gamma$ +jets	2.8		
ISR/FSR	2.2		
Luminosity	2.1		
Statistical uncertainty	5.1		
Total uncertainty	13		

Results: Differential Cross Section

Measured differential cross sections agree within uncertainties with the Standard Model predictions at NLO.

Summary

- Cross-section measurement of $t\bar{t}\gamma$ at $\sqrt{s} = 8$ TeV with ATLAS is presented.
- Fiducial cross section:
 - Dominated by systematics
 - Largest uncertainties from fake photon backgrounds
 - The precision of the measurement is reaching the accuracy of the theoretical calculations
 - Most precise $t\bar{t}\gamma$ cross-section measurement to date
 - In good agreement with theoretical prediction at NLO
- First $t\bar{t}\gamma$ differential cross-section measurement:
 - In good agreement with theoretical prediction at NLO within uncertainties

BACKUP

Fiducial Region Definition

Object level cuts:

Object	Truth-info cut	Kinematic cut	Overlap removal	
Lepton	dresses with photons (that do not originate from hadrons) within ΔR =0.1 cone	$p_{\mathrm{T}} > 25 \mathrm{~GeV}$ $ \eta < 2.5$	μ if $\Delta R(jet, \mu) < 0.4$	
Jet	anti- $k_t(\Delta R=0.4)$; μ/ν are not included		jet if $\Delta R(\text{jet}, e) < 0.2$ or $\Delta R(\text{jet}, \gamma) < 0.1$	
<i>b</i> -jet	if contains a <i>b</i> -hadron with $p_{\rm T} > 5$ GeV within $\Delta R=0.3$	$p_{\rm T} > 25 { m GeV}$ $ \eta < 2.5$		
Photon	not originated from hadrons	$p_{\rm T} > 15 { m GeV}$ $ \eta < 2.37$		

• Event level cuts: Exactly one lepton (*e* or μ) from *W* boson, ≥ 4 jets, ≥ 1 *b*-jet, exactly one photon, ΔR (jet, γ) > 0.5 and ΔR (lepton, γ) > 0.7

Fake Photon Candidates To Extract Hadronic-Fake Template

Control region to extract hadronic-fake template is requiring ≥ 1 photon candidate that fails specific photon identification criteria:

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/EGAMMA/PublicPlots/ 20100721/display-photons/index.html

- At least one of the four identification criteria constructed from showershape variables from the first layer (strip layer) of electromagnetic calorimeter.
- Strong discriminating power between signal and fake photon
- Negligible correlation with photon isolation
- Modified template to estimate systematics due to prompt-photon contamination is constructed from fake photons that fails all of the four specific identification criteria, corresponding to less prompt-photon contamination.

Range	$tar{t}\gamma$	Hadronic fake	$\begin{array}{c} e \to \gamma \\ \text{fake} \end{array}$	$W\gamma$ +jets	$Z\gamma$ +jets	$\begin{array}{c} \text{Single} \\ \text{top} + \gamma \end{array}$	$\text{Multijet} + \gamma$	$\text{Diboson}{+\gamma}$	Data
Total	1060 ± 130	1020 ± 90	710 ± 90	160 ± 40	73 ± 32	32 ± 15	16 ± 6	5.1 ± 2.4	3072
$15 \le p_{\rm T} < 25 { m ~GeV}$	280 ± 40	360 ± 40	240 ± 35	47 ± 13	23 ± 10	7 ± 4	4.4 ± 2.3	1.3 ± 0.7	966
$25 \le p_{\mathrm{T}} < 40 \ \mathrm{GeV}$	309 ± 34	233 ± 26	171 ± 7	37 ± 10	22 ± 10	6.4 ± 3.3	3.8 ± 2.4	1.8 ± 0.9	783
$40 \le p_{\rm T} < 60 { m ~GeV}$	220 ± 40	205 ± 21	111 ± 30	28 ± 8	13 ± 6	10 ± 5	1.6 ± 1.9	0.5 ± 0.3	589
$60 \le p_{\mathrm{T}} < 100 \ \mathrm{GeV}$	160 ± 40	116 ± 16	100 ± 40	24 ± 7	10 ± 5	8 ± 4	3.4 ± 2.1	1.0 ± 0.6	420
$100 \le p_{\rm T} < 300 {\rm ~GeV}$	150 ± 25	71 ± 10	50 ± 20	23 ± 7	4 ± 2	0.9 ± 0.7	0.8 ± 1.0	0.3 ± 0.2	298
$ \eta < 0.25$	246 ± 34	121 ± 21	93 ± 24	18 ± 6	9 ± 4	4.0 ± 2.2	5.2 ± 1.8	1.0 ± 0.6	497
$0.25 \le \eta < 0.55$	260 ± 40	130 ± 20	116 ± 29	29 ± 8	11 ± 6	3.7 ± 2.1	0.0 ± 0.4	1.5 ± 0.8	552
$0.55 \le \eta < 0.90$	180 ± 40	198 ± 27	150 ± 40	31 ± 9	16 ± 7	2.2 ± 1.3	4.0 ± 1.8	0.4 ± 0.2	578
$0.90 \le \eta < 1.37$	200 ± 40	233 ± 33	169 ± 50	35 ± 10	17 ± 8	9 ± 5	5.7 ± 2.1	1.0 ± 0.5	663
$1.37 \le \eta < 2.37$	150 ± 40	344 ± 33	200 ± 12	48 ± 13	19 ± 9	13 ± 6	5.4 ± 2.5	1.4 ± 0.7	782

