

Measurement of the $\bar{t} \gamma$ production cross section in proton-proton collisions at $\sqrt{ } s=8 \mathrm{TeV}$ with the ATLAS detector

Sara Ghasemi*, on behalf of the ATLAS collaboration
*University of Siegen
sara.ghasemi@cern.ch

Introduction

- Cross-section measurement of $\bar{t} \gamma$ probes top-photon coupling.
- BSMs (composite top, technicolor, ...), top EFT coefficients ($O_{t G}, O_{t B}, \ldots$)
- Photons can originate from top quarks, as well as from their decay products and the incoming partons:

- Event selection is optimised to enrich γ radiation from top quarks.
- Cross section is measured within a fiducial volume, using a maximumlikelihood fit.
- First differential cross-section measurement: as a function of \boldsymbol{p}_{T} and $\boldsymbol{\eta}$ of photons, within the same fiducial volume.
- Single lepton final state

Data and Signal Simulation Sample

- Data set recorded with the ATLAS detector in 2012 at $\sqrt{ } s=8 \mathrm{TeV}$, corresponding to an integrated luminosity of $20.2 \mathrm{fb}^{-1}$.
- Monte Carlo simulated $\bar{t} \bar{t} \gamma$ events generated at LO by MadGraph5+Pythia6 and normalised to NLO prediction, using k-factors [PRD 91 (2015) 072007].

Event Selection / Fiducial Region Definition

- One lepton (e or μ), $p_{\mathrm{T}}>25 \mathrm{GeV}$
- $\geqslant 4$ jets, $p_{\mathrm{T}}>25 \mathrm{GeV}$
, $\geqslant 1$ jet tagged as b-jet (70% efficiency)
- e-channel: $E_{\mathrm{T}^{\text {miss }}}>30 \mathrm{GeV}$ and $m_{\mathrm{T}}{ }^{W}>30 \mathrm{GeV}$
- μ-channel: $E_{\mathrm{T}^{\text {miss }}}>20 \mathrm{GeV}$ and $E_{\mathrm{T}^{\text {miss }}}+m_{\mathrm{T}}{ }^{W}>60 \mathrm{GeV}$
- One photon, $p_{\mathrm{T}}>15 \mathrm{GeV},|\eta|<2.37$, no isolation requirements
- $\Delta R(\mathrm{jet}, \gamma)>0.5$ and $\Delta R($ lepton, $\gamma)>0.7$
- $\left|m_{e \gamma}-m_{Z}\right|>5 \mathrm{GeV}$

$\Rightarrow 1256$ (1816) candidate events selected in e-channel (μ-channel).
- Fiducial phase space is defined for Monte Carlo events at particle level (i.e. before detector simulation).
- By cuts that mimic the selection at the reconstruction level (i.e. after detector simulation).
 not included.

Analysis Strategy

- After the event selection, three category of events:

1) with prompt photons
2) with photons from hadrons, or hadrons misidentified as photons: "hadronic-fakes"
3) with electrons misidentified as photons: "electron-fakes"

- Total and differential cross sections extracted from maximum-likelihood fit, using three templates, one for each category of events.
- Photon track isolation is used for the templates:

$$
p_{\mathrm{T}}{ }^{\mathrm{iso}}=\text { The sum of } p_{\mathrm{T}} \text { of tracks within a cone of } \Delta R=0.2 \text { around the photon. }
$$

- Two free parameters in the fit: Number of signal events and number of hadronic-fake backgrounds. The rest of backgrounds are fixed in the fit to their estimated number of events.

$$
\Delta R=\sqrt{ }\left((\Delta \eta)^{2}+(\Delta \phi)^{2}\right)
$$

Prompt-Photon Template

- Events with prompt photons include both signal events and the background processes with a prompt photon: $W \gamma+$ jets, $Z \gamma+$ jets, ...
- Prompt-photon template extracted using photons from $\bar{t} \bar{\gamma} \gamma$ signal MC sample, after full event selection.

- Reconstructed photons are truth matched to particle level within $\Delta R=0.1$.
- For differential measurements, template is extracted for each bin of p_{T} and η.
- Modelling and experimental systematic uncertainties of the template are very small.

Hadronic-Fake Template

- Events with hadronic fakes are the largest background.
- Template extracted from a control region in data, enriched by hadronic fakes:
- $\geqslant 1$ photon candidate that fails specific photon identification criteria
- $\geqslant 4$ jets
- $\Delta R(e, \gamma)>0.1$

- Template shape shows dependency on p_{T} and η of hadronic fakes \Rightarrow Template for fiducial cross-section is a weighted sum of templates in p_{T} and η bins.
- For differential measurements, template is extracted for each bin of p_{T} and η.
- Prompt-photon contamination as systematics uncertainty:
- Template constructed from modified photon candidates, corresponding to less prompt-photon contamination.
- Difference w.r.t. nominal template taken as systematic.

Electron-Fake Template

- Events with electron fakes are the second largest background.
- Template extracted from control region in data enriched by $Z \longrightarrow e+$ fake- γ events:
- Back-to-back e and fake- γ
- $70 \mathrm{GeV}<m_{e \gamma}<110 \mathrm{GeV}$

- $p_{\mathrm{T}}{ }^{\mathrm{e}}>p_{\mathrm{T}}{ }^{\gamma}$
- $E_{\mathrm{T}^{\text {miss }}}>30 \mathrm{GeV}$
- Backgrounds are subtracted, using a sideband fit to $m_{e \gamma}$ distribution.
- Template systematic uncertainty:
- Variation of E_{T} miss $r e q u i r e m e n t$, variation of mass range

Background Estimations

- Hadronic-fake background: Data-driven, free parameter in template fit.
- Electron-fake background: Data-driven.
- Fake rates are calculated from ratio of number of $Z \rightarrow e+$ fake $-\gamma$ to number of $Z \rightarrow e^{+} e^{-}$events, as functional of p_{T} and η of photons.
- The fake rates are applied to a modified signal region (electron replacing photon in $t \bar{t} \gamma$ selection).

- Backgrounds with prompt photon:
- W $\gamma+\mathrm{jets}: \mathrm{MC}$ estimation normalised by datadriven scale factors.
- $Z \gamma+$ jets, Single top $+\gamma$, Diboson $+\gamma$: MC estimation
- Multijet+ γ : Data-driven, using matrix method

Process	e-channel	μ-channel
Electron-fake	317 ± 42	385 ± 42
$W \gamma+$ jets	65 ± 25	97 ± 25
$Z \gamma+j e t s$	35 ± 19	38 ± 20
Single top $+\gamma$	13 ± 7	19 ± 10
Multijet+ γ	7.5 ± 3.6	8.3 ± 5.2
Diboson $+\gamma$	2.6 ± 1.5	2.5 ± 1.4

Likelihood Fit

$$
\mathcal{L}=\prod_{i, j} P\left(N_{i, j} \mid N_{i, j}^{s}+\sum_{b} N_{i, j}^{b}\right) \cdot \prod_{t} G\left(0 \mid \theta_{t}, 1\right)
$$

Differential: 5 bins
Fiducial: 1 bin

$$
L \cdot \sigma_{i} \cdot C_{i} \cdot f_{i, j}=N_{i, j}^{s}
$$

Ratio of the reconstructed events to the generated events in the fiducial region in bin i of $p_{\text {T }}$ or $\boldsymbol{\eta}$

Fraction of events in bin j of $p_{\text {T }}{ }^{\text {iso }}$ of bin i from signal template

Post-fit $p T^{\text {iso }}$ distribution for inclusive measurement

- Events in e - and μ-channel merged in the fit \rightarrow Common parameter of interest: fiducial cross section $\boldsymbol{\sigma}_{i}$
- For differential measurement $\boldsymbol{\sigma}_{i}$ is computed for each i bin \rightarrow bin-by-bin unfolding to the particle level

Results: Fiducial Cross Section

- Fiducial cross section: $\sigma_{\mathrm{sl}}^{\text {fid }}=139 \pm 7$ (stat.) ± 17 (syst.) $\mathrm{fb}=139 \pm 18 \mathrm{fb}$
- Measured fiducial cross section agrees within uncertainties with the Standard Model prediction at NLO.

Source	Relative uncertainty $[\%]$
Hadronic-fake	6.3
Electron-fake	6.3
Jet energy scale	4.9
$W \gamma+j e t s$	4.0
$Z \gamma+j e t s$	2.8
ISR/FSR	2.2
Luminosity	2.1
Statistical uncertainty	5.1
Total uncertainty	13

Results: Differential Cross Section

- Measured differential cross sections agree within uncertainties with the Standard Model predictions at NLO.

Summary

- Cross-section measurement of $\bar{t} y$ at $\sqrt{ } s=8 \mathrm{TeV}$ with ATLAS is presented.
- Fiducial cross section:
- Dominated by systematics
- Largest uncertainties from fake photon backgrounds
- The precision of the measurement is reaching the accuracy of the theoretical calculations
- Most precise $t \bar{q} \gamma$ cross-section measurement to date
- In good agreement with theoretical prediction at NLO
- First $\bar{t} \gamma$ differential cross-section measurement:
- In good agreement with theoretical prediction at NLO within uncertainties

BACKUP

Fiducial Region Definition

- Object level cuts:

Object	Truth-info cut	Kinematic cut	Overlap removal
Lepton	dresses with photons (that do not originate from hadrons) within $\Delta R=0.1$ cone	$p_{\mathrm{T}}>25 \mathrm{GeV}$ $\|\eta\|<2.5$	μ if $\Delta R(\mathrm{jet}, \mu)<0.4$
Jet	anti- $k_{t}(\Delta R=0.4) ; \mu / \nu$ are not included		
b-jet	if contains a b-hadron with $p_{\mathrm{T}}>5 \mathrm{GeV}$ within $\Delta R=0.3$	$p_{\mathrm{T}}>25 \mathrm{GeV}$ $\|\eta\|<2.5$	jet if $\Delta R($ jet,$e)<0.2$ or $\Delta R($ jet, $\gamma)<0.1$
Photon	not originated from hadrons	$p_{\mathrm{T}}>15 \mathrm{GeV}$ $\|\eta\|<2.37$	

- Event level cuts: Exactly one lepton (e or μ) from W boson, $\geqslant 4$ jets, $\geqslant 1 b$-jet, exactly one photon, $\Delta R($ jet, $\gamma)>0.5$ and ΔR (lepton, $\gamma)>0.7$

Fake Photon Candidates To Extract Hadronic-Fake Template

- Control region to extract hadronic-fake template is requiring $\geqslant 1$ photon candidate that fails specific photon identification criteria:

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/EGAMMA/PublicPlots/ 20100721/display-photons/index.html
- At least one of the four identification criteria constructed from showershape variables from the first layer (strip layer) of electromagnetic calorimeter.
- Strong discriminating power between signal and fake photon
- Negligible correlation with photon isolation
- Modified template to estimate systematics due to prompt-photon contamination is constructed from fake photons that fails all of the four specific identification criteria, corresponding to less prompt-photon contamination.

Post-Fit Event Yields

Range	tt γ	Hadronic fake	$e \rightarrow \gamma$ fake	$W \gamma+$ jets	$Z \gamma+$ jets	Single top $+\gamma$	Multijet+ γ	Diboson+ γ	Data
Total	1060 ± 130	1020 ± 90	710 ± 90	160 ± 40	73 ± 32	32 ± 15	16 ± 6	5.1 ± 2.4	3072
$15 \leq p_{\mathrm{T}}<25 \mathrm{GeV}$	280 ± 40	360 ± 40	240 ± 35	47 ± 13	23 ± 10	7 ± 4	4.4 ± 2.3	1.3 ± 0.7	966
$25 \leq p_{\mathrm{T}}<40 \mathrm{GeV}$	309 ± 34	233 ± 26	171 ± 7	37 ± 10	22 ± 10	6.4 ± 3.3	3.8 ± 2.4	1.8 ± 0.9	783
$40 \leq p_{\mathrm{T}}<60 \mathrm{GeV}$	220 ± 40	205 ± 21	111 ± 30	28 ± 8	13 ± 6	10 ± 5	1.6 ± 1.9	0.5 ± 0.3	589
$60 \leq p_{\mathrm{T}}<100 \mathrm{GeV}$	160 ± 40	116 ± 16	100 ± 40	24 ± 7	10 ± 5	8 ± 4	3.4 ± 2.1	1.0 ± 0.6	420
$100 \leq p_{\mathrm{T}}<300 \mathrm{GeV}$	150 ± 25	71 ± 10	50 ± 20	23 ± 7	4 ± 2	0.9 ± 0.7	0.8 ± 1.0	0.3 ± 0.2	298
$\|\eta\|<0.25$	246 ± 34	121 ± 21	93 ± 24	18 ± 6	9 ± 4	4.0 ± 2.2	5.2 ± 1.8	1.0 ± 0.6	497
$0.25 \leq\|\eta\|<0.55$	260 ± 40	130 ± 20	116 ± 29	29 ± 8	11 ± 6	3.7 ± 2.1	0.0 ± 0.4	1.5 ± 0.8	552
$0.55 \leq\|\eta\|<0.90$	180 ± 40	198 ± 27	150 ± 40	31 ± 9	16 ± 7	2.2 ± 1.3	4.0 ± 1.8	0.4 ± 0.2	578
$0.90 \leq\|\eta\|<1.37$	200 ± 40	233 ± 33	169 ± 50	35 ± 10	17 ± 8	9 ± 5	5.7 ± 2.1	1.0 ± 0.5	663
$1.37 \leq\|\eta\|<2.37$	150 ± 40	344 ± 33	200 ± 12	48 ± 13	19 ± 9	13 ± 6	5.4 ± 2.5	1.4 ± 0.7	782

