Physics
Physics Research Publications

Measurement of Z gamma production in $\mathrm{p}(\mathrm{p})$ over-bar collisions at root $\mathrm{s}=1.96$ TeV

T. Aaltonen, J. Adelman, B. A. Gonzalez, S. Amerio, D. Amidei, A. Anastassov, A. Annovi, J. Antos, G. Apollinari, J. Appel, A. Apresyan, T. Arisawa, A. Artikov, J. Asaadi, W. Ashmanskas, A. Attal, A. Aurisano, F. Azfar, W. Badgett, A. Barbaro-Galtieri, V. E. Barnes, B. A. Barnett, P. Barria, P. Bartos, G. Bauer, P. H. Beauchemin, F. Bedeschi, D. Beecher, S. Behari, G. Bellettini, J. Bellinger, D. Benjamin, A. Beretvas, A. Bhatti, M. Binkley, D. Bisello, I. Bizjak, R. E. Blair, C. Blocker, B. Blumenfeld, A. Bocci, A. Bodek, V. Boisvert, D. Bortoletto, J. Boudreau, A. Boveia, B. Brau, A. Bridgeman, L. Brigliadori, C. Bromberg, E. Brubaker, J. Budagov, H. S. Budd, S. Budd, K. Burkett, G. Busetto, P. Bussey, A. Buzatu, K. L. Byrum, S. Cabrera, C. Calancha, S. Camarda, M. Campanelli, M. Campbell, F. Canelli, A. Canepa, B. Carls, D. Carlsmith, R. Carosi, S. Carrillo, S. Carron, B. Casal, M. Casarsa, A. Castro, P. Catastini, D. Cauz, V. Cavaliere, M. Cavalli-Sforza, A. Cerri, L. Cerrito, S. H. Chang, Y. C. Chen, M. Chertok, G. Chiarelli, G. Chlachidze, F. Chlebana, K. Cho, D. Chokheli, J. P. Chou, K. Chung, W. H. Chung, Y. S. Chung, T. Chwalek, C. I. Ciobanu, M. A. Ciocci, A. Clark, D. Clark, G. Compostella, M. E. Convery, J. Conway, M. Corbo, M. Cordelli, C. A. Cox, D. J. Cox, F. Crescioli, C. C. Almenar, J. Cuevas, R. Culbertson, J. C. Cully, D. Dagenhart, N. d'Ascenzo, M. Datta, T. Davies, P. de Barbaro, S. De Cecco, A. Deisher, G. De Lorenzo, M. Dell'Orso, C. Deluca, L. Demortier, J. Deng, M. Deninno, M. d'Errico, A. Di Canto, B. Di Ruzza, J. R. Dittmann, M. D'Onofrio, S. Donati, P. Dong, T. Dorigo, S. Dube, K. Ebina, A. Elagin, R. Erbacher, D. Errede, S. Errede, N. Ershaidat, R. Eusebi, H. C. Fang, S. Farrington, W. T. Fedorko, R. G. Feild, M. Feindt, J. P. Fernandez, C. Ferrazza, R. Field, G. Flanagan, R. Forrest, M. J. Frank, M. Franklin, J. C. Freeman, I. Furic, M. Gallinaro, J. Galyardt, F. Garberson, J. E. Garcia, A. F. Garfinkel, P. Garosi, H. Gerberich, D. Gerdes, A. Gessler, S. Giagu, V. Giakoumopoulou, P. Giannetti, K. Gibson, J. L. Gimmell, C. M. Ginsburg, N. Giokaris, M. Giordani, P. Giromini, M. Giunta, G. Giurgiu, V. Glagolev, D. Glenzinski, M. Gold, N.

Goldschmidt, A. Golossanov, G. Gomez, G. Gomez-Ceballos, M. Goncharov, O. Gonzalez, I. Gorelov, A. T. Goshaw, K. Goulianos, A. Gresele, S. Grinstein, C. Grosso-Pilcher, R. C. Group, U. Grundler, J. G. da Costa, Z. Gunay-Unalan, C. Haber, S. R. Hahn, E. Halkiadakis, B. Y. Han, J. Y. Han, F. Happacher, K. Hara, D. Hare, M. Hare, R. F. Harr, M. Hartz, K. Hatakeyama, C. Hays, M. Heck, J. Heinrich, M. Herndon, J. Heuser, S. Hewamanage, D. Hidas, C. S. Hill, D. Hirschbuehl, A. Hocker, S. Hou, M. Houlden, S. C. Hsu, R. E. Hughes, M. Hurwitz, U. Husemann, M. Hussein, J. Huston, J. Incandela, G. Introzzi, M. Iori, A. Ivanov, E. James, D. Jang, B. Jayatilaka, E. J. Jeon, M. K. Jha, S. Jindariani, W. Johnson, M. Jones, K. K. Joo, S. Y. Jun, J. E. Jung, T. R. Junk, T. Kamon, D. Kar, P. E. Karchin, Y. Kato, R. Kephart, W. Ketchum, J. Keung, V. Khotilovich, B. Kilminster, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kim, N. Kimura, L. Kirsch, S. Klimenko, K. Kondo, D. J. Kong, J. Konigsberg, A. Korytov, A. V. Kotwal, M. Kreps, J. Kroll, D. Krop, N. Krumnack, M. Kruse, V. Krutelyov, T. Kuhr, N. P. Kulkarni, M. Kurata, S. Kwang, A. T. Laasanen, S. Lami, S. Lammel, M. Lancaster, R. L. Lander, K. Lannon, A. Lath, G. Latino, I. Lazzizzera, T. LeCompte, E. Lee, H. S. Lee, J. S. Lee, S. W. Lee, S. Leone, C. Lester, J. D. Lewis, C. J. Lin, J. Linacre, M. Lindgren, E. Lipeles, A. Lister, D. O. Litvintsev, C. Liu, T. Liu, N. S. Lockyer, A. Loginov, L. Lovas, D. Lucchesi, J. Lueck, P. Lujan, P. Lukens, G. Lungu, J. Lys, R. Lysak, D. MacQueen, R. Madrak, K. Maeshima, K. Makhoul, P. Maksimovic, S. Malde, S. Malik, G. Manca, A. Manousakis-Katsikakis, F. Margaroli, C. Marino, C. P. Marino, A. Martin, V. Martin, M. Martinez, R. Martinez-Ballarin, P. Mastrandrea, M. Mathis, M. E. Mattson, P. Mazzanti, K. S. McFarland, P. McIntyre, R. McNulty, A. Mehta, P. Mehtala, A. Menzione, C. Mesropian, T. Miao, D. Mietlicki, N. Miladinovic, R. Miller, C. Mills, M. Milnik, A. Mitra, G. Mitselmakher, H. Miyake, S. Moed, N. Moggi, M. N. Mondragon, C. S. Moon, R. Moore, M. J. Morello, J. Morlock, P. M. Fernandez, J. Mulmenstadt, A. Mukherjee, T. Muller, P. Murat, M. Mussini, J. Nachtman, Y. Nagai, J. Naganoma, K. Nakamura, I. Nakano, A. Napier, J. Nett, C. Neu, M. S. Neubauer, S. Neubauer, J. Nielsen, L. Nodulman, M. Norman, O. Norniella, E. Nurse, L. Oakes, S. H. Oh, Y. D. Oh, I. Oksuzian, T. Okusawa, R. Orava, K. Osterberg, S. P. Griso, C. Pagliarone, E. Palencia, V. Papadimitriou, A. Papaikonomou, A. A. Paramanov, B. Parks, S. Pashapour, J. Patrick, G. Pauletta, M. Paulini, C. Paus, T. Peiffer, D. E. Pellett, A. Penzo, T. J. Phillips, G. Piacentino, E. Pianori, L. Pinera, K. Pitts, C. Plager, L. Pondrom, K. Potamianos, O. Poukhov, F. Prokoshin, A. Pronko, F. Ptohos, E. Pueschel, G. Punzi, J. Pursley, J. Rademacker, A. Rahaman, V. Ramakrishnan, N. Ranjan, I. Redondo, P. Renton, M. Renz, M. Rescigno, S. Richter, F. Rimondi, L. Ristori, A. Robson, T. Rodrigo, T. Rodriguez, E. Rogers, S. Rolli, R. Roser, M. Rossi, R. Rossin, P. Roy, A. Ruiz, J. Russ, V. Rusu, B. Rutherford, H. Saarikko, A. Safonov, W. K. Sakumoto, L. Santi, L. Sartori, K. Sato, V. Saveliev, A. Savoy-Navarro, P. Schlabach, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmidt, M. Schmitt, T. Schwarz, L. Scodellaro, A. Scribano, F. Scuri, A. Sedov, S. Seidel, Y. Seiya, A. Semenov, L. Sexton-Kennedy, F. Sforza, A. Sfyrla, S. Z. Shalhout, T. Shears, P. F. Shepard, M. Shimojima, S. Shiraishi,
M. Shochet, Y. Shon, I. Shreyber, A. Simonenko, P. Sinervo, A. Sisakyan, A. J. Slaughter, J. Slaunwhite, K. Sliwa, J. R. Smith, F. D. Snider, R. Snihur, A. Soha, S. Somalwar, V. Sorin, P. Squillacioti, M. Stanitzki, R. St Denis, B. Stelzer, O. Stelzer-Chilton, D. Stentz, J. Strologas, G. L. Strycker, J. S. Suh, A. Sukhanov, I. Suslov, A. Taffard, R. Takashima, Y. Takeuchi, R. Tanaka, J. Tang, M. Tecchio, P. K. Teng, J. Thom, J. Thome, G. A. Thompson, E. Thomson, P. Tipton, P. Ttito-Guzman, S. Tkaczyk, D. Toback, S. Tokar, K. Tollefson, T. Tomura, D. Tonelli, S. Torre, D. Torretta, P. Totaro, M. Trovato, S. Y. Tsai, Y. Tu, N. Turini, F. Ukegawa, S. Uozumi, N. van Remortel, A. Varganov, E. Vataga, F. Vazquez, G. Velev, C. Vellidis, M. Vidal, I. Vila, R. Vilar, M. Vogel, I. Volobouev, G. Volpi, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner, J. Wagner-Kuhr, T. Wakisaka, R. Wallny, S. M. Wang, A. Warburton, D. Waters, M. Weinberger, J. Weinelt, W. C. Wester, B. Whitehouse, D. Whiteson, A. B. Wicklund, E. Wicklund, S. Wilbur, G. Williams, H. H. Williams, P. Wilson, B. L. Winer, P. Wittich, S. Wolbers, C. Wolfe, H. Wolfe, T. Wright, X. Wu, F. Wurthwein, A. Yagil, K. Yamamoto, J. Yamaoka, U. K. Yang, Y. C. Yang, W. M. Yao, G. P. Yeh, K. Yi, J. Yoh, K. Yorita, T. Yoshida, G. B. Yu, I. Yu, S. S. Yu, J. C. Yun, A. Zanetti, Y. Zeng, X. Zhang, Y. Zheng, and S. Zucchelli

This paper is posted at Purdue e-Pubs.
http://docs.lib.purdue.edu/physics_articles/1080

Measurement of $Z \gamma$ production in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

T. Aaltonen, ${ }^{24}$ J. Adelman, ${ }^{14}$ B. Álvarez González, ${ }^{12, x}$ S. Amerio, ${ }^{4 \mathrm{~b}, 44 \mathrm{a}}$ D. Amidei, ${ }^{35}$ A. Anastassov, ${ }^{39}$ A. Annovi, ${ }^{20}$ J. Antos,,${ }^{15}$ G. Apollinari, ${ }^{18}$ J. Appel, ${ }^{18}$ A. Apresyan, ${ }^{49}$ T. Arisawa, ${ }^{58}$ A. Artikov, ${ }^{16}$ J. Asaadi, ${ }^{54}$ W. Ashmanskas, ${ }^{18}$ A. Attal, ${ }^{4}$ A. Aurisano, ${ }^{54}$ F. Azfar, ${ }^{43}$ W. Badgett, ${ }^{18}$ A. Barbaro-Galtieri, ${ }^{29}$ V. E. Barnes, ${ }^{49}$ B. A. Barnett, ${ }^{26}$ P. Barria, ${ }^{47 \mathrm{c}, 47 \mathrm{a}}$
 D. Benjamin, ${ }^{17}$ A. Beretvas, ${ }^{18}$ A. Bhatti, ${ }^{51}$ M. Binkley, ${ }^{18, \mathrm{a}}$ D. Bisello, ${ }^{44 \mathrm{~b}, 44 \mathrm{a}}$ I. Bizjak,,${ }^{31, \text { ee }}$ R. E. Blair, ${ }^{2}$ C. Blocker, ${ }^{7}$ B. Blumenfeld, ${ }^{26}$ A. Bocci, ${ }^{17}$ A. Bodek,,${ }^{50}$ V. Boisvert, ${ }^{50}$ D. Bortoletto, ${ }^{49}$ J. Boudreau, ${ }^{48}$ A. Boveia, ${ }^{11}$ B. Brau, ${ }^{11, b}$ A. Bridgeman,,25 L. Brigliadori, ${ }^{6,6 a}$ C. Bromberg, ${ }^{36}$ E. Brubaker, ${ }^{14}$ J. Budagov, ${ }^{16}$ H.S. Budd, ${ }^{50}$ S. Budd, ${ }^{25}$ K. Burkett, ${ }^{18}$ G. Busetto, ${ }^{44 b, 44 \mathrm{a}}$ P. Bussey, ${ }^{22}$ A. Buzatu, ${ }^{34}$ K. L. Byrum, ${ }^{2}$ S. Cabrera, ${ }^{17, z}$ C. Calancha, ${ }^{32}$ S. Camarda, ${ }^{4}$ M. Campanelli, ${ }^{31}$ M. Campbell, ${ }^{35}$ F. Canelli, ${ }^{14,18}$ A. Canepa, ${ }^{46}$ B. Carls, ${ }^{25}$ D. Carlsmith, ${ }^{60}$ R. Carosi, ${ }^{47 \mathrm{a}}$ S. Carrillo, ${ }^{19,0}$ S. Carron, ${ }^{18}$ B. Casal, ${ }^{12}$ M. Casarsa, ${ }^{18}$ A. Castro, ${ }^{6 \mathrm{~b}, 6 \mathrm{a}}$ P. Catastini,,${ }^{47 \mathrm{c}, 47 \mathrm{a}}$ D. Cauz, ${ }^{55 \mathrm{a}}$ V. Cavaliere,,${ }^{47 \mathrm{c}, 47 \mathrm{a}}$ M. Cavalli-Sforza, ${ }^{4}$ A. Cerri, ${ }^{29}$ L. Cerrito, ${ }^{31, r}$ S. H. Chang, ${ }^{28}$ Y. C. Chen, ${ }^{1}$ M. Chertok, ${ }^{8}$ G. Chiarelli, ${ }^{47 a}$ G. Chlachidze, ${ }^{18}$ F. Chlebana, ${ }^{18}$ K. Cho, ${ }^{28}$ D. Chokheli, ${ }^{16}$ J. P. Chou, ${ }^{23}$ K. Chung, ${ }^{18, p}$ W. H. Chung, ${ }^{60}$ Y. S. Chung, ${ }^{50}$ T. Chwalek, ${ }^{27}$ C. I. Ciobanu, ${ }^{45}$
M. A. Ciocci, ${ }^{47 c, 47 a}$ A. Clark, ${ }^{21}$ D. Clark, ${ }^{7}$ G. Compostella, ${ }^{44 \mathrm{a}}$ M. E. Convery, ${ }^{18}$ J. Conway, ${ }^{8}$ M. Corbo, ${ }^{45}$ M. Cordelli, ${ }^{20}$
 D. Dagenhart, ${ }^{18}$ N. d'Ascenzo, ${ }^{45, \mathrm{w}} \mathrm{M}$. Datta, ${ }^{18}$ T. Davies, ${ }^{22}$ P. de Barbaro, ${ }^{50} \mathrm{~S}$. De Cecco, ${ }^{52 \mathrm{a}}$ A. Deisher, ${ }^{29}$ G. De Lorenzo, ${ }^{4}$
 B. Di Ruzza, ${ }^{47 a}$ J. R. Dittmann, ${ }^{5}$ M. D'Onofrio, ${ }^{4}$ S. Donati, ${ }^{47 \mathrm{~b}, 47 \mathrm{a}}$ P. Dong, ${ }^{18}$ T. Dorigo, ${ }^{44 \mathrm{a}}$ S. Dube,,${ }^{53}$ K. Ebina, ${ }^{58}$ A. Elagin,,${ }^{54}$ R. Erbacher, ${ }^{8}$ D. Errede, ${ }^{25}$ S. Errede, ${ }^{25}$ N. Ershaidat, ${ }^{45, \text { dd }}$ R. Eusebi, ${ }^{54}$ H. C. Fang, ${ }^{29}$ S. Farrington, ${ }^{43}$ W. T. Fedorko, ${ }^{14}$ R. G. Feild, ${ }^{61}$ M. Feindt, ${ }^{27}$ J. P. Fernandez, ${ }^{32}$ C. Ferrazza, ${ }^{47 d, 47 a}$ R. Field, ${ }^{19}$ G. Flanagan, ${ }^{49, t}$ R. Forrest, ${ }^{8}$ M. J. Frank, ${ }^{5}$ M. Franklin,,${ }^{23}$ J. C. Freeman, ${ }^{18}$ I. Furic, ${ }^{19}$ M. Gallinaro, ${ }^{51}$ J. Galyardt, ${ }^{13}$ F. Garberson, ${ }^{11}$ J. E. Garcia, ${ }^{21}$ A. F. Garfinkel,,${ }^{49}$ P. Garosi, ${ }^{4 \mathrm{c}, 47 \mathrm{a}}$ H. Gerberich, ${ }^{25}$ D. Gerdes, ${ }^{35}$ A. Gessler, ${ }^{27}$ S. Giagu, ${ }^{52 \mathrm{~b}, 52 \mathrm{a}}$ V. Giakoumopoulou, ${ }^{3}$ P. Giannetti, ${ }^{47 \mathrm{a}}$ K. Gibson, ${ }^{48}$ J. L. Gimmell, ${ }^{50}$ C. M. Ginsburg, ${ }^{18}$ N. Giokaris, ${ }^{3}$ M. Giordani,,${ }^{55 b, 55 a}$ P. Giromini, ${ }^{20}$ M. Giunta,,${ }^{47 \mathrm{a}}$ G. Giurgiu,,${ }^{26}$ V. Glagolev, ${ }^{16}$ D. Glenzinski, ${ }^{18}$ M. Gold, ${ }^{38}$ N. Goldschmidt, ${ }^{19}$ A. Golossanov, ${ }^{18}$ G. Gomez, ${ }^{12}$ G. Gomez-Ceballos, ${ }^{33}$ M. Goncharov, ${ }^{33}$ O. González, ${ }^{32}$ I. Gorelov,,${ }^{38}$ A. T. Goshaw, ${ }^{17}$ K. Goulianos, ${ }^{51}$ A. Gresele, ${ }^{44 \mathrm{~b}, 44 \mathrm{a}}$ S. Grinstein, ${ }^{4}$ C. Grosso-Pilcher, ${ }^{14}$ R. C. Group, ${ }^{18}$ U. Grundler, ${ }^{25}$ J. Guimaraes da Costa, ${ }^{23}$ Z. Gunay-Unalan, ${ }^{36}$ C. Haber, ${ }^{29}$ S.R. Hahn, ${ }^{18}$ E. Halkiadakis, ${ }^{53}$ B.-Y. Han, ${ }^{50}$ J. Y. Han, ${ }^{50}$ F. Happacher, ${ }^{20}$ K. Hara, ${ }^{56}$ D. Hare, ${ }^{53}$ M. Hare, ${ }^{57}$ R. F. Harr, ${ }^{59}$ M. Hartz, ${ }^{48}$ K. Hatakeyama, ${ }^{5}$ C. Hays, ${ }^{43}$ M. Heck,,${ }^{27}$ J. Heinrich, ${ }^{46}$ M. Herndon,,${ }^{60}$ J. Heuser, ${ }^{27}$ S. Hewamanage, ${ }^{5}$ D. Hidas, ${ }^{53}$ C. S. Hill,,${ }^{11, \mathrm{~d}}$ D. Hirschbuehl, ${ }^{27}$ A. Hocker, ${ }^{18}$ S. Hou, ${ }^{1}$ M. Houlden, ${ }^{30}$ S.-C. Hsu, ${ }^{29}$ R. E. Hughes, ${ }^{40}$ M. Hurwitz, ${ }^{14}$ U. Husemann, ${ }^{61}$ M. Hussein, ${ }^{36}$ J. Huston, ${ }^{36}$ J. Incandela, ${ }^{11}$ G. Introzzi, ${ }^{47 a}$ M. Iori, ${ }^{52 b, 52 a}$ A. Ivanov, ${ }^{8, q}$ E. James, ${ }^{18}$ D. Jang, ${ }^{13}$ B. Jayatilaka, ${ }^{17}$ E. J. Jeon, ${ }^{28}$ M. K. Jha, ${ }^{6 a}$ S. Jindariani, ${ }^{18}$ W. Johnson, ${ }^{8}$ M. Jones, ${ }^{49}$ K. K. Joo, ${ }^{28}$ S. Y. Jun, ${ }^{13}$ J.E. Jung, ${ }^{28}$ T. R. Junk, ${ }^{18}$ T. Kamon, ${ }^{54}$ D. Kar, ${ }^{19}$ P.E. Karchin, ${ }^{59}$ Y. Kato, ${ }^{42, n}$ R. Kephart, ${ }^{18}$ W. Ketchum, ${ }^{14}$ J. Keung, ${ }^{46}$ V. Khotilovich, ${ }^{54}$ B. Kilminster, ${ }^{18}$ D. H. Kim, ${ }^{28}$ H.S. Kim,,${ }^{28}$ H. W. Kim, ${ }^{28}$ J. E. Kim, ${ }^{28}$ M. J. Kim, ${ }^{20}$ S. B. Kim, ${ }^{28}$ S. H. Kim, ${ }^{56}$ Y. K. Kim,,${ }^{14}$ N. Kimura, ${ }^{58}$ L. Kirsch, ${ }^{7}$ S. Klimenko, ${ }^{19}$ K. Kondo, ${ }^{58}$ D. J. Kong, ${ }^{28}$ J. Konigsberg, ${ }^{19}$ A. Korytov, ${ }^{19}$ A. V. Kotwal,,${ }^{17}$ M. Kreps, ${ }^{27}$ J. Kroll, ${ }^{46}$ D. Krop, ${ }^{14}$ N. Krumnack, ${ }^{5}$ M. Kruse, ${ }^{17}$ V. Krutelyov, ${ }^{11}$ T. Kuhr, ${ }^{27}$ N. P. Kulkarni, ${ }^{59}$ M. Kurata, ${ }^{56}$ S. Kwang, ${ }^{14}$ A. T. Laasanen, ${ }^{49}$ S. Lami, ${ }^{47 a}$ S. Lammel, ${ }^{18}$ M. Lancaster, ${ }^{31}$ R. L. Lander, ${ }^{8}$ K. Lannon, ${ }^{40, v}$ A. Lath, ${ }^{53}$ G. Latino, ${ }^{4 \mathrm{c}, 47 \mathrm{a}}$ I. Lazzizzera, ${ }^{44 \mathrm{~b}, 44 \mathrm{a}}$ T. LeCompte, ${ }^{2}$ E. Lee, ${ }^{54}$ H. S. Lee, ${ }^{14}$ J. S. Lee, ${ }^{28}$ S. W. Lee, ${ }^{54, y}$ S. Leone, ${ }^{47 \mathrm{a}}$ C. Lester, ${ }^{17}$ J. D. Lewis, ${ }^{18}$ C.-J. Lin, ${ }^{29}$ J. Linacre, ${ }^{43}$ M. Lindgren, ${ }^{18}$ E. Lipeles, ${ }^{46}$ A. Lister, ${ }^{21}$ D. O. Litvintsev, ${ }^{18}$ C. Liu, ${ }^{48}$ T. Liu, ${ }^{18}$ N. S. Lockyer, ${ }^{46}$ A. Loginov, ${ }^{61}$ L. Lovas, ${ }^{15}$ D. Lucchesi, ${ }^{44 \mathrm{~b}, 44 \mathrm{a}}$ J. Lueck, ${ }^{27}$ P. Lujan, ${ }^{29}$ P. Lukens, ${ }^{18}$ G. Lungu, ${ }^{51}$ J. Lys, ${ }^{29}$ R. Lysak, ${ }^{15}$ D. MacQueen, ${ }^{34}$ R. Madrak, ${ }^{18}$ K. Maeshima, ${ }^{18}$ K. Makhoul, ${ }^{33}$ P. Maksimovic, ${ }^{26}$ S. Malde, ${ }^{43}$ S. Malik, ${ }^{31}$ G. Manca, ${ }^{30, f}$ A. Manousakis-Katsikakis, ${ }^{3}$ F. Margaroli, ${ }^{49}$ C. Marino, ${ }^{27}$ C. P. Marino, ${ }^{25}$ A. Martin, ${ }^{61}$ V. Martin, ${ }^{22,1}$ M. Martínez, ${ }^{4}$ R. Martínez-Ballarín, ${ }^{32}$ P. Mastrandrea, ${ }^{52 a}$ M. Mathis, ${ }^{26}$ M. E. Mattson, ${ }^{59}$ P. Mazzanti, ${ }^{6 a}$ K. S. McFarland, ${ }^{50}$ P. McIntyre, ${ }^{54}$ R. McNulty ${ }^{30, k}$ A. Mehta, ${ }^{30}$ P. Mehtala, ${ }^{24}$ A. Menzione, ${ }^{47 \mathrm{a}}$ C. Mesropian,,${ }^{51}$ T. Miao, ${ }^{18}$ D. Mietlicki, ${ }^{35}$ N. Miladinovic, ${ }^{7}$ R. Miller, ${ }^{36}$ C. Mills, ${ }^{23}$ M. Milnik, ${ }^{27}$ A. Mitra, ${ }^{1}$ G. Mitselmakher, ${ }^{19}$ H. Miyake, ${ }^{56}$ S. Moed, ${ }^{23}$ N. Moggi, ${ }^{6 a}$ M. N. Mondragon, ${ }^{18,0}$ C. S. Moon, ${ }^{28}$ R. Moore, ${ }^{18}$ M. J. Morello, ${ }^{47 \mathrm{a}}$ J. Morlock, ${ }^{27}$ P. Movilla Fernandez, ${ }^{18}$ J. Mülmenstädt, ${ }^{29}$ A. Mukherjee, ${ }^{18}$ Th. Muller, ${ }^{27}$ P. Murat, ${ }^{18}$ M. Mussini, ${ }^{6 \mathrm{~b}, 6 \mathrm{a}}$ J. Nachtman, ${ }^{18, \mathrm{p}}$ Y. Nagai, ${ }^{56}$ J. Naganoma, ${ }^{56}$ K. Nakamura, ${ }^{56}$ I. Nakano, ${ }^{41}$ A. Napier, ${ }^{57}$ J. Nett, ${ }^{60}$ C. Neu, ${ }^{46, b b}$ M. S. Neubauer, ${ }^{25}$ S. Neubauer, ${ }^{27}$ J. Nielsen, ${ }^{29, h}$ L. Nodulman, ${ }^{2}$ M. Norman, ${ }^{10}$ O. Norniella, ${ }^{25}$ E. Nurse, ${ }^{31}$ L. Oakes, ${ }^{43}$ S. H. Oh, ${ }^{17}$ Y. D. Oh, ${ }^{28}$ I. Oksuzian, ${ }^{19}$ T. Okusawa, ${ }^{42}$ R. Orava, ${ }^{24}$ K. Osterberg, ${ }^{24}$ S. Pagan Griso, ${ }^{44 b, 44 a}$ C. Pagliarone, ${ }^{55 a}$ E. Palencia, ${ }^{18}$ V. Papadimitriou, ${ }^{18}$ A. Papaikonomou, ${ }^{27}$ A. A. Paramanov, ${ }^{2}$ B. Parks, ${ }^{40}$ S. Pashapour, ${ }^{34}$
J. Patrick, ${ }^{18}$ G. Pauletta, ${ }^{55 b, 55 a}$ M. Paulini, ${ }^{13}$ C. Paus, ${ }^{33}$ T. Peiffer, ${ }^{27}$ D. E. Pellett, ${ }^{8}$ A. Penzo, ${ }^{55 a}$ T. J. Phillips, ${ }^{17}$ G. Piacentino, ${ }^{47 \mathrm{a}}$ E. Pianori, ${ }^{46}$ L. Pinera, ${ }^{19}$ K. Pitts, ${ }^{25}$ C. Plager, ${ }^{9}$ L. Pondrom, ${ }^{60}$ K. Potamianos, ${ }^{49}$ O. Poukhov, ${ }^{16, a}$
 V. Ramakrishnan, ${ }^{60}$ N. Ranjan, ${ }^{49}$ I. Redondo, ${ }^{32}$ P. Renton, ${ }^{43}$ M. Renz, ${ }^{27}$ M. Rescigno, ${ }^{52 \mathrm{a}}$ S. Richter, ${ }^{27}$ F. Rimondi, ${ }^{6 b, 6 a}$ L. Ristori, ${ }^{47 \mathrm{a}}$ A. Robson, ${ }^{22}$ T. Rodrigo, ${ }^{12}$ T. Rodriguez, ${ }^{46}$ E. Rogers, ${ }^{25}$ S. Rolli, ${ }^{57}$ R. Roser, ${ }^{18}$ M. Rossi, ${ }^{55 a}$ R. Rossin, ${ }^{11}$ P. Roy, ${ }^{34}$ A. Ruiz, ${ }^{12}$ J. Russ, ${ }^{13}$ V. Rusu, ${ }^{18}$ B. Rutherford, ${ }^{18}$ H. Saarikko, ${ }^{24}$ A. Safonov, ${ }^{54}$ W. K. Sakumoto, ${ }^{50}$ L. Santi, ${ }^{55 b}, 55 \mathrm{a}$ L. Sartori, ${ }^{47 \mathrm{a}}$ K. Sato, ${ }^{56}$ V. Saveliev, ${ }^{45, \mathrm{w}}$ A. Savoy-Navarro, ${ }^{45}$ P. Schlabach, ${ }^{18}$ A. Schmidt, ${ }^{27}$ E. E. Schmidt, ${ }^{18}$ M. A. Schmidt, ${ }^{14}$ M. P. Schmidt, ${ }^{61, a}$ M. Schmitt, ${ }^{39}$ T. Schwarz, ${ }^{8}$ L. Scodellaro, ${ }^{12}$ A. Scribano, ${ }^{47 c, 47 \mathrm{a}}$ F. Scuri, ${ }^{47 \mathrm{a} \text { A A. Sedov, }}{ }^{49}$
 P. F. Shepard, ${ }^{48}$ M. Shimojima, ${ }^{56, u}$ S. Shiraishi, ${ }^{14}$ M. Shochet, ${ }^{14}$ Y. Shon, ${ }^{60}$ I. Shreyber, ${ }^{37}$ A. Simonenko, ${ }^{16}$ P. Sinervo, ${ }^{34}$ A. Sisakyan, ${ }^{16}$ A. J. Slaughter, ${ }^{18}$ J. Slaunwhite, ${ }^{40}$ K. Sliwa, ${ }^{57}$ J. R. Smith, ${ }^{8}$ F. D. Snider, ${ }^{18}$ R. Snihur, ${ }^{34}$ A. Soha, ${ }^{18}$ S. Somalwar, ${ }^{53}$ V. Sorin, ${ }^{4}$ P. Squillacioti, ${ }^{47 c, 47 a}$ M. Stanitzki, ${ }^{61}$ R. St. Denis, ${ }^{22}$ B. Stelzer, ${ }^{34}$ O. Stelzer-Chilton, ${ }^{34}$ D. Stentz, ${ }^{39}$ J. Strologas, ${ }^{38}$ G. L. Strycker, ${ }^{35}$ J. S. Suh,,${ }^{28}$ A. Sukhanov, ${ }^{19}$ I. Suslov, ${ }^{16}$ A. Taffard, ${ }^{25, g}$ R. Takashima, ${ }^{41}$ Y. Takeuchi, ${ }^{56}$ R. Tanaka, ${ }^{41}$ J. Tang, ${ }^{14}$ M. Tecchio, ${ }^{35}$ P. K. Teng, ${ }^{1}$ J. Thom, ${ }^{18, i}$ J. Thome, ${ }^{13}$ G. A. Thompson, ${ }^{25}$ E. Thomson, ${ }^{46}$ P. Tipton, ${ }^{61}$ P. Ttito-Guzmán, ${ }^{32}$ S. Tkaczyk, ${ }^{18}$ D. Toback, ${ }^{54}$ S. Tokar, ${ }^{15} \mathrm{~K}$. Tollefson, ${ }^{36}$ T. Tomura, ${ }^{56}$ D. Tonelli, ${ }^{18}$ S. Torre, ${ }^{20}$ D. Torretta, ${ }^{18}$ P. Totaro, ${ }^{55 \mathrm{~b}, 55 \mathrm{a}}$ M. Trovato, ${ }^{47 \mathrm{~d}, 47 \mathrm{a}}$ S.-Y. Tsai, ${ }^{1} \mathrm{Y}$. Tu, ${ }^{46}$ N. Turini, ${ }^{47 \mathrm{c}, 47 \mathrm{a}}$ F. Ukegawa, ${ }^{56}$ S. Uozumi, ${ }^{28}$ N. van Remortel, ${ }^{24, c}$ A. Varganov, ${ }^{35}$ E. Vataga, ${ }^{47 d, 47 a}$ F. Vázquez, ${ }^{19, o}$ G. Velev, ${ }^{18}$ C. Vellidis, ${ }^{3}$ M. Vidal, ${ }^{32}$ I. Vila, ${ }^{12}$ R. Vilar, ${ }^{12}$ M. Vogel, ${ }^{38}$ I. Volobouev, ${ }^{29, y}$ G. Volpi, ${ }^{47 b, 47 a}$ P. Wagner, ${ }^{46}$ R. G. Wagner, ${ }^{2}$ R. L. Wagner, ${ }^{18}$ W. Wagner, ${ }^{27, c c}$ J. Wagner-Kuhr, ${ }^{27}$ T. Wakisaka, ${ }^{42}$ R. Wallny, ${ }^{9}$ S. M. Wang, ${ }^{1}$ A. Warburton, ${ }^{34}$ D. Waters, ${ }^{31}$ M. Weinberger, ${ }^{54}$ J. Weinelt, ${ }^{27}$ W. C. Wester III, ${ }^{18}$ B. Whitehouse, ${ }^{57}$ D. Whiteson, ${ }^{46, g}$ A. B. Wicklund, ${ }^{2}$ E. Wicklund, ${ }^{18}$ S. Wilbur, ${ }^{14}$ G. Williams, ${ }^{34}$ H. H. Williams, ${ }^{46}$ P. Wilson, ${ }^{18}$ B. L. Winer, ${ }^{40}$ P. Wittich, ${ }^{18, i}$ S. Wolbers, ${ }^{18}$ C. Wolfe, ${ }^{14}$ H. Wolfe, ${ }^{40}$ T. Wright, ${ }^{35} \mathrm{X}$. Wu, ${ }^{21}$ F. Würthwein, ${ }^{10}$ A. Yagil, ${ }^{10}$ K. Yamamoto, ${ }^{42}$ J. Yamaoka, ${ }^{17}$ U. K. Yang, ${ }^{14, s}$ Y. C. Yang, ${ }^{28}$ W. M. Yao, ${ }^{29}$ G. P. Yeh, ${ }^{18}$ K. Yi, ${ }^{18, p}$ J. Yoh, ${ }^{18}$ K. Yorita, ${ }^{58}$ T. Yoshida, ${ }^{42, \mathrm{~m}}$ G. B. Yu, ${ }^{17}$ I. Yu, ${ }^{28}$ S. S. Yu, ${ }^{18}$ J. C. Yun, ${ }^{18}$ A. Zanetti, ${ }^{55 \mathrm{a}}$ Y. Zeng, ${ }^{17}$ X. Zhang, ${ }^{25}$ Y. Zheng, ${ }^{9, \mathrm{e}}$ and S. Zucchelli ${ }^{6 \mathrm{~b}, 6 \mathrm{a}}$
(CDF Collaboration)

[^0][^1][^2]${ }^{\mathrm{p}}$ Visitor from University of Iowa, Iowa City, IA 52242, USA.
${ }^{\mathrm{q}}$ Visitor from Kansas State University, Manhattan, KS 66506, USA.
${ }^{\mathrm{r}}$ Visitor from Queen Mary, University of London, London, E1 4NS, England.
${ }^{\mathrm{s}}$ Visitor from University of Manchester, Manchester M13 9PL, England.
${ }^{\text {t }}$ Visitor from Muons, Inc., Batavia, IL 60510, USA.
${ }^{\mathrm{u}}$ Visitor from Nagasaki Institute of Applied Science, Nagasaki, Japan.
${ }^{\mathrm{V}}$ Visitor from University of Notre Dame, Notre Dame, IN 46556, USA.
${ }^{w}$ Visitor from Obninsk State University, Obninsk, Russia.
${ }^{\mathrm{x}}$ Visitor from University de Oviedo, E-33007 Oviedo, Spain.
${ }^{y}$ Visitor from Texas Tech University, Lubbock, TX 79609,
${ }^{\text {z }}$ Visitor from IFIC(CSIC-Universitat de Valencia), 56071 Valencia, Spain.
${ }^{\text {aa }}$ Visitor from Universidad Tecnica Federico Santa Maria, 110v Valparaiso, Chile.
${ }^{\text {bb }}$ Visitor from University of Virginia, Charlottesville, VA 22906, USA.
${ }^{\text {cc }}$ Visitor from Bergische Universität Wuppertal, 42097 Wuppertal, Germany.
${ }^{\text {dd }}$ Visitor from Yarmouk University, Irbid 211-63, Jordan.
${ }^{e e}$ On leave from J. Stefan Institute, Ljubljana, Slovenia.

${ }^{47 \mathrm{~d}}$ Scuola Normale Superiore, I-56127 Pisa, Italy
${ }^{48}$ University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
${ }^{49}$ Purdue University, West Lafayette, Indiana 47907, USA
${ }^{50}$ University of Rochester, Rochester, New York 14627, USA
${ }^{51}$ The Rockefeller University, New York, New York 10021, USA
${ }^{52 \mathrm{a}}$ Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, I-00185 Roma, Italy
${ }^{52 \mathrm{~b}}$ Sapienza Università di Roma, I-00185 Roma, Italy
${ }^{53}$ Rutgers University, Piscataway, New Jersey 08855, USA
${ }^{54}$ Texas A\&M University, College Station, Texas 77843, USA
${ }^{55 a}$ Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, Italy
${ }^{55 \mathrm{~b}}$ University of Trieste/Udine, I-33100 Udine, Italy
${ }^{56}$ University of Tsukuba, Tsukuba, Ibaraki 305, Japan
${ }^{57}$ Tufts University, Medford, Massachusetts 02155, USA
${ }^{58}$ Waseda University, Tokyo 169, Japan
${ }^{59}$ Wayne State University, Detroit, Michigan 48201, USA
${ }^{60}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{61}$ Yale University, New Haven, Connecticut 06520, USA (Received 7 April 2010; published 25 August 2010)

Abstract

The production rate and kinematics of photons produced in association with Z bosons are studied using $2 \mathrm{fb}^{-1}$ of $p \bar{p}$ collision data collected at the Collider Detector at Fermilab. The cross section for $p \bar{p} \rightarrow$ $\ell^{+} \ell^{-} \gamma+X$ (where the leptons ℓ are either muons or electrons with dilepton mass $M_{\ell \ell}>40 \mathrm{GeV} / c^{2}$, and where the photon has transverse energy $E_{T}^{\gamma}>7 \mathrm{GeV}$ and is well separated from the leptons) is $4.6 \pm$ 0.2 (stat) ± 0.3 (syst) ± 0.3 (lum) pb, which is consistent with standard model expectations. We use the photon E_{T} distribution from $Z \gamma$ events where the Z has decayed to $\mu^{+} \mu^{-}, e^{+} e^{-}$, or $\nu \bar{\nu}$ to set limits on anomalous (non standard model) trilinear couplings between photons and Z bosons.

DOI: 10.1103/PhysRevD.82.031103
PACS numbers: $14.70 . \mathrm{Bh}, 14.70 . \mathrm{Hp}, 13.85 . \mathrm{Qk}$

The study of $Z \gamma$ production [1] is an important test of the standard model (SM) description of gauge boson interactions and provides sensitivity to physics beyond the SM [2]. The $Z \gamma$ cross section is directly sensitive to the trilinear gauge couplings at the $Z Z \gamma$ and $Z \gamma \gamma$ vertices, which are predicted to vanish in the SM at tree level [3,4]. Physics beyond the SM (e.g. compositeness or supersymmetry) could alter the cross section and the production kinematics. $Z \gamma$ production is also an important background to searches for new physics (e.g., in gauge-mediated supersymmetry breaking models [5]) and Higgs searches. In this paper the production properties of $Z \gamma$ events are compared to SM predictions, and limits are set on anomalous trilinear couplings.

There is no direct coupling between the Z boson and the photon in the SM , so $Z \gamma$ production at tree level comes from either initial-state radiation (ISR), where the photon is radiated by one of the incoming quarks, or final-state radiation (FSR), where the photon is radiated off one of the charged leptons from the decay of the Z boson. In ISR events the dilepton mass will approximate the Z mass, whereas in FSR events it is the three-body lepton-leptonphoton mass that will approximate the Z mass. Events from anomalous couplings will have real Z bosons, so they will resemble ISR events.

We present measurements of $Z \gamma$ production from $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$ at the Tevatron Collider using data obtained with the Collider Detector at Fermilab (CDF
II). We use two methods to identify $Z \gamma$ events. For events where the Z decays to charged leptons, we first identify the Z decay products and then look for the associated photon [6]. We use these events to measure the $Z \gamma$ cross section since we are able to identify them with low backgrounds even at low photon transverse energy $\left(E_{T}^{\gamma}\right)$ [7]. Anomalous (non-SM) $Z \gamma$ couplings (described below) would produce an excess of events with high E_{T}^{γ}, so to set limits on these couplings we also include events where the Z boson decays into neutrinos. We identify these by looking for events with high E_{T}^{γ} and large missing transverse energy $\left(\mathbb{L}_{T}\right)$ [8]. An integrated luminosity of $2.0 \mathrm{fb}^{-1}$ is used for Z bosons selected in the $Z \rightarrow \mu^{+} \mu^{-}$and $Z \rightarrow \nu \bar{\nu}$ decay modes and $1.1 \mathrm{fb}^{-1}$ is used for the $Z \rightarrow e^{+} e^{-}$decay mode.

The CDF II detector is described in detail elsewhere [9,10]. The transverse momenta $\left(p_{T}\right)$ of charged particles are measured by an eight-layer silicon strip detector [11] and a 96 -layer drift chamber (COT) [12] inside a 1.4 Tesla magnetic field. The COT provides tracking coverage with high efficiency for $|\eta|<1$ (η is defined in [7]). Electromagnetic and hadronic calorimeters surround the tracking system. They are segmented in a projective tower geometry and measure the energies of charged and neutral particles in the central $(|\eta|<1.1)$ and forward $(1.1<$ $|\eta|<3.6)$ regions. Each calorimeter has an electromagnetic shower profile detector positioned at the shower maximum [13]. The calorimeters are surrounded by muon drift chambers covering $|\eta|<1$. Gas Cherenkov
counters [14] measure the average number of $p \bar{p}$ inelastic collisions per beam crossing and thereby determine the beam luminosity. The readout decision is made with a fast three-level trigger system that has high efficiency for selecting the Z bosons to be used in the offline analysis.

For the $Z \gamma$ cross section measurement, we select $Z \gamma$ candidate events by identifying $Z \rightarrow \mu^{+} \mu^{-}$and $Z \rightarrow$ $e^{+} e^{-}$and then looking for photon candidates with $E_{T}^{\gamma}>$ 7 GeV . Event selection starts with inclusive muon (electron) triggers requiring muon $p_{T}>18 \mathrm{GeV} / c$ (electron $\left.E_{T}>18 \mathrm{GeV}\right)$. Further selection requires the trigger muon (electron) to be isolated and to have $p_{T}>$ $20 \mathrm{GeV} / c\left(E_{T}>20 \mathrm{GeV}\right)$ and to pass standard muon (electron) identification criteria. Once we have identified a trigger lepton, we require a second oppositely charged lepton of the same flavor. For the second muon, we accept an isolated track with $p_{T}>20 \mathrm{GeV} / c,|\eta|<1$, with a minimum-ionizing energy deposit in the calorimeter, regardless of whether or not it is associated with a reconstructed track in the muon chambers. For the second electron, we accept isolated electromagnetic clusters with $E_{T}>20 \mathrm{GeV}$ and $|\eta|<2.8$. One of the electrons is allowed to pass a looser isolation requirement, with up to 3 times the amount of additional energy near the electron compared to the standard isolation requirement. The shape of the shower in the shower max detector is required to match the expected shape for an electron, and in the central region we require a match between this shower and a track. Since the tracking efficiency falls off in the forward region $(|\eta|>1.2)$, we do not require forward electrons to be matched to a track and therefore we do not require an opposite charge. The dilepton invariant mass for both $\mu^{+} \mu^{-}$and $e^{+} e^{-}$is required to be larger than $40 \mathrm{GeV} / c^{2}$.

We measure trigger and reconstruction efficiencies by studying leptonic decays of W and Z bosons. We measure muon trigger efficiencies using $Z \rightarrow \mu^{+} \mu^{-}$decays where the two muons are fiducial to different muon detector systems. The muon triggers varied during the running period; most of the data were taken with triggers that only required a track match in the $r-\phi$ plane while a 3dimensional track match was required later during highluminosity running. The average trigger efficiency for muons is $(91.6 \pm 1.0) \%$. We also use the two muons from $Z \rightarrow \mu^{+} \mu^{-}$decays to measure the average muon reconstruction and identification efficiency to be (81.3 \pm 1.1)\%.

To find the trigger efficiency for a central electron that satisfies the selection criteria, we use W boson candidates triggered by an electromagnetic cluster and \mathscr{E}_{T} but with no tracking requirement. The trigger efficiency for electrons passing the final selection is nearly 100% for electrons with a high- p_{T} track $(>80 \mathrm{GeV} / c)$, averages $(95.9 \pm 0.6) \%$ for electrons with track p_{T} between 20 and $80 \mathrm{GeV} / c$, and falls sharply for electrons with track $p_{T}<14 \mathrm{GeV} / c$. We also use the two electrons of Z boson candidates to
measure the electron reconstruction and identification efficiency. This falls slightly during the run as the luminosity increases; for central electrons it is in the range of 95% to 96% and for forward electrons it is in the range of 90% to 92\%.

A small fraction of the Z boson candidates are background, primarily from QCD jets that are reconstructed as electrons. In the central region we use same-sign events to estimate the number of background events, which is found to be negligible in both the muon and the electron data sets. In events with one central electron and one forward electron, the charge of the forward electron is not measured reliably, so we normalize to the high-mass sideband and find the $(7.7 \pm 1.0) \%$ background.

Once we have selected events with Z boson candidates, we look for well-identified isolated [15] photons in the central region $(|\eta|<1.1)$ with $E_{T}^{\gamma}>7 \mathrm{GeV}$ that are well separated from the Z decay leptons $\left(\Delta R_{\ell \gamma}>0.7\right)$. To determine the efficiency for identifying real photons, we select a sample of Z events where one of the final-state leptons has radiated a photon. We use tight lepton selection criteria to reduce QCD backgrounds and very loose criteria for selecting the photon (which is required to be within our geometric acceptance) to insure nearly full acceptance for photons that have not converted inside the tracking chamber. We suppress $Z+$ jet events by requiring $M_{l l}<$ 80 GeV and we suppress $W W, W Z$, and $Z Z$ events by requiring $\mathbb{X}_{T}<10 \mathrm{GeV}$ and the $Z \gamma p_{T}<10 \mathrm{GeV}$. We reduce the background fraction to a negligible level by requiring the three-body invariant mass of the two leptons and the photon to be $91 \pm 5 \mathrm{GeV} / c^{2}$. Using this method we determine that the efficiency for identifying real photons is $(86 \pm 2) \%$, with the largest inefficiency coming from the isolation requirement, which is needed to reduce QCD backgrounds.

The largest background to the photons comes from QCD jets. A jet can fragment into a high- $p_{T} \pi^{0}$ which decays into two photons. If the two photons are sufficiently collinear, their electromagnetic showers in the calorimeter will be indistinguishable from a single-photon shower. To estimate the number of QCD background events in the $Z \gamma$ sample we use the jets in the Z sample and a probability function for jets to fragment in such a way that they pass the photon identification criteria. This probability function is determined from events collected by a dijet trigger by measuring the rate at which we identify photons (as a function of jet E_{T}) and subtracting the expected true photon production rate. We also correct for the difference in the ratio of jets coming from quarks versus gluons, since quark jets are much more likely to be reconstructed as photons. The probability is about 0.29% at 10 GeV and drops rapidly to about 0.07% (with a large systematic uncertainty) for jets above 25 GeV . The uncertainty on the photon background is the dominant uncertainty on the $Z \gamma$ cross section measurement.

We find a total of $778 Z \gamma$ events: $390 e^{+} e^{-} \gamma$ events in $1.07 \pm 0.06 \mathrm{fb}^{-1}$, and $388 \mu^{+} \mu^{-} \gamma$ events in $2.01 \pm$ $0.12 \mathrm{fb}^{-1}$. We estimate the QCD photon background to be 94 ± 26 events (primarily at low photon E_{T}), and we estimate the number of events where a jet is misidentified as an electron to be 14 ± 7 events. This gives measured cross sections of $\sigma\left(p \bar{p} \rightarrow e^{+} e^{-} \gamma+X\right)=4.9 \pm$ 0.3 (statistical) ± 0.3 (systematic) ± 0.3 (luminosity) pb and $\sigma\left(p \bar{p} \rightarrow \mu^{+} \mu^{-} \gamma+X\right)=4.4 \pm 0.3 \pm 0.2 \pm 0.3 \mathrm{pb}$. The average cross section is $\sigma\left(p \bar{p} \rightarrow \ell^{+} \ell^{-} \gamma+X\right)=$ $4.6 \pm 0.2 \pm 0.3 \pm 0.3 \mathrm{pb}$, which agrees with a next-to-leading-order SM calculation [16] of $4.5 \pm 0.4 \mathrm{pb}$. These cross sections are for events with $E_{T}^{\gamma}>7 \mathrm{GeV}, \Delta R_{\ell \gamma}>$ 0.7 , and a dilepton mass of at least $40 \mathrm{GeV} / c^{2}$.

In Fig. 1 we plot the three-body mass on the vertical axis and the dilepton mass on the horizontal axis. FSRdominated events form the horizontal line near $M_{\ell \ell \gamma}=$ $91 \mathrm{GeV} / c^{2}$, and ISR-dominated events form the vertical line near $M_{\ell \ell}=91 \mathrm{GeV} / c^{2}$. The diagonal contains radiative Drell-Yan events [1].

Potential anomalous $Z \gamma$ couplings have been studied by Baur and Berger [4] and we adopt their notation for classifying the nature of the coupling: h_{i}^{V} where V is either a Z or a γ and the index i runs from 1 to 4 . In order to preserve tree-level unitarity at large center-of-mass energy $\sqrt{\hat{s}}$, a form factor is used of the form $h_{i}^{V}=\frac{h_{i 0}^{V}}{\left(1+\hat{s} / \Lambda^{2}\right)^{n}}$. In this paper we use $\Lambda=1.2 \mathrm{TeV}$ and $n=3(4)$ for $i=3(4)$. If an anomalous coupling between the Z boson and the photon exists, it will produce more events with high- E_{T}^{γ} photons than expected from the SM. An example of this is included in Fig. 2, which compares the distribution of E_{T}^{γ} for ISR events (events where $M_{l l \gamma}>100 \mathrm{GeV} / c^{2}$) to the SM expectation, showing good agreement.

To set limits on anomalous $Z \gamma$ couplings, we use the same data set used for the cross section measurement.

FIG. 1 (color online). Three-body $M_{l l \gamma}$ vs two-body $M_{l l}$ in the $Z \rightarrow \mu^{+} \mu^{-}$and $Z \rightarrow e^{+} e^{-}$data sets for photons with $E_{T}>$ 7 GeV .

FIG. 2 (color online). Photon E_{T} distribution for ISRdominated events ($M_{l l \gamma}>100 \mathrm{GeV} / c^{2}$) in the $l^{+} l^{-} \gamma$ data set. The solid line is the SM prediction, while the dotted line is the prediction including an anomalous coupling $h_{4}=0.0047$. The predictions were made using the ZGAMMA [4] generator.

Since the statistics are limited at high E_{T}^{γ}, we also include $Z \gamma \rightarrow \nu \bar{\nu} \gamma$ events identified from a photon plus \mathscr{E}_{T} data set where $E_{T}^{\gamma}>90 \mathrm{GeV}$. The photon plus \mathscr{E}_{T} data set used for this analysis is identical to that used in [17].

The expected signal and backgrounds for $Z \gamma \rightarrow \nu \bar{\nu} \gamma$ are described in detail in [17]. The total number of $\gamma+\mathbb{E}_{T}$ events with $E_{T}^{\gamma}>90 \mathrm{GeV}$ is predicted to be 46.3 ± 3.0, of which 25.6 ± 2.0 are expected to be $Z \gamma \rightarrow \nu \bar{\nu} \gamma$ events; we observe 40 events. The E_{T}^{γ} distribution is displayed in Fig. 3 along with the predicted distributions for the signal and backgrounds.

Using the measured E_{T}^{γ} distributions (separated by Z decay channel) we set upper limits on the strength of

FIG. 3 (color online). Photon E_{T} distribution for $Z \gamma \rightarrow \nu \bar{\nu} \gamma$ candidate events. The data are compared to SM contributions. Only events with $E_{T}^{\gamma}>90 \mathrm{GeV}$ are used for this analysis. The cross hatching represents the uncertainty on the predicted number of events (from [17]).

TABLE I. Upper limits (95% C.L.) on anomalous $Z \gamma$ couplings using notation from Ref. [4] and $\Lambda=1.2 \mathrm{TeV}$. The last column gives the limit obtained using only the $\mu^{+} \mu^{-} \gamma$ and $e^{+} e^{-} \gamma$ events.

Observed Limit	Expected Limit	Limit $(\mu+e)$
$\left\|h_{3}^{Z}\right\|<0.050$	0.062 ± 0.014	0.083
$\left\|h_{4}^{Z}\right\|<0.0034$	0.0043 ± 0.0009	0.0047
$\left\|h_{3}^{\gamma}\right\|<0.051$	0.064 ± 0.014	0.084
$\left\|h_{4}^{\gamma}\right\|<0.0034$	0.0043 ± 0.0009	0.0047

anomalous couplings using a binned likelihood method. We determine the expected E_{T}^{γ} distributions from Monte Carlo data samples with nonzero anomalous couplings as well as SM couplings. There are too many samples to fully simulate each one, so instead we determine the net efficiency for a generated event to appear in the analysis sample as a function of E_{T}^{γ} by fully simulating both SM and representative anomalous coupling samples. While the difference in efficiency between these samples is consistent with statistical fluctuations, we take the difference between the measured efficiencies as a systematic uncertainty. We then apply this efficiency function to generator-level MC samples to get the expected E_{T}^{γ} distributions.

The resulting upper limits on the strength of anomalous couplings are shown in Table I. The expected limits are determined by generating a large number of pseudoexperiments, Poisson smearing the number of expected signal and background events, and varying parameters subject to systematic uncertainties (which are dominated by uncertainties on the background estimates) [18]. The observed limits are better than the average expected limits but fall within the expected range. We see no evidence for anoma-
lous couplings. The limits based upon events with $Z \rightarrow$ $e^{+} e^{-}$and $Z \rightarrow \mu^{+} \mu^{-}$decays are nearly identical to previous limits from the D0 Collaboration [19], which studied the same channels using $1 \mathrm{fb}^{-1}$ of data. Our limits including the $Z \rightarrow \nu \bar{\nu}$ decays from $2 \mathrm{fb}^{-1}$ are not directly comparable to the limits published by the D0 Collaboration [20] using $3.6 \mathrm{fb}^{-1}$ since the D0 limits were calculated using $\Lambda=1.5 \mathrm{TeV}$.

In conclusion, we have measured the $Z \gamma$ cross section at the Tevatron Collider and find that it is consistent with SM expectations. We have also found that the E_{T}^{γ} distribution of photons produced in association with Z bosons is consistent with SM couplings where there is no direct $Z \gamma$ coupling, and we have set limits on anomalous gauge couplings.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science, and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R\&D Agency; and the Academy of Finland.
[1] Throughout this paper the notation " Z " is used to specify Z / γ^{*} production via the Drell-Yan process; see S. D. Drell and T.-M. Yan, Phys. Rev. Lett. 25, 316 (1970).
[2] D. Choudhury et al., Int. J. Mod. Phys. A 16, 4891 (2001).
[3] For a review see J. Ellison and J. Wudka, Annu. Rev. Nucl. Part. Sci. 48, 33 (1998).
[4] U. Baur and E.L. Berger, Phys. Rev. D 47, 4889 (1993).
[5] D. Acosta et al., Phys. Rev. D 71, 031104 (2005).
[6] F. Abe et al. (CDF Collaboration), Phys. Rev. D 52, 4784 (1995), contains electromagnetic cluster and photon identification variable definitions.
[7] We use a coordinate system where ϕ is the azimuthal angle around the beam axis and θ is the polar angle measured with respect to the proton direction. The pseudorapidity η is defined by $\eta \equiv-\ln \tan (\theta / 2)$, and $\Delta R \equiv$ $\sqrt{\Delta \eta^{2}+\Delta \phi^{2}}$.
[8] Transverse momentum and energy are defined as $p_{T}=$ $p \sin \theta$ and $E_{T}=E \sin \theta$, respectively. Missing $E_{T}\left(\mathbb{L}_{T}\right)$ is defined by $E_{T}=-\Sigma_{i} E_{T}^{i} \hat{n}_{i}$, where i is the calorimeter tower number for $|\eta|<3.6$ and \hat{n}_{i} is a unit vector perpendicular to the beam axis and pointing at the i-th tower. ($E_{T}=\left|\vec{E}_{T}\right|$).
[9] The CDF Collaboration, Report No. FERMILAB-PUB-96-390-E.
[10] D. Acosta et al., Phys. Rev. D 71, 032001 (2005).
[11] A. Sill et al., Nucl. Instrum. Methods Phys. Res., Sect. A 447, 1 (2000).
[12] T. Affolder et al., Nucl. Instrum. Methods 526, 249 (2004).
[13] G. Apollinari, K. Goulianos, P. Melese, and M. Lindgren, Nucl. Instrum. Methods Phys. Res., Sect. A 412, 515 (1998).
[14] D. Acosta et al., Nucl. Instrum. Methods Phys. Res., Sect. A 461, 540 (2001).
T. AALTONEN et al.
[15] The additional energy in a cone of $\Delta R<0.4$ must be less than $0.1 \times E_{T}^{\gamma}$ if $E_{T}^{\gamma}<20 \mathrm{GeV}$ and less than $2+0.02 \times$ ($E_{T}^{\gamma}-20$) if $E_{T}^{\gamma}>20 \mathrm{GeV}$ for a photon to pass the isolation selection.
[16] U. Baur, T. Han, and J. Ohnemus, Phys. Rev. D 57, 2823 (1998).
[17] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett.

PHYSICAL REVIEW D 82, $031103(\mathrm{R})(2010)$
101, 181602 (2008).
[18] J. Deng, Ph.D. thesis, Duke University, 2008.
[19] V. M. Abazov et al. (D0 Collaboration), Phys. Lett. B 653, 378 (2007).
[20] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 102, 201802 (2009).

[^0]: ${ }^{1}$ Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
 ${ }^{2}$ Argonne National Laboratory, Argonne, Illinois 60439, USA
 ${ }^{3}$ University of Athens, 15771 Athens, Greece
 ${ }^{4}$ Institut de Fisica d'Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain ${ }^{5}$ Baylor University, Waco, Texas 76798, USA
 ${ }^{6 \mathrm{a}}$ Istituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
 ${ }^{6 \mathrm{~b}}$ University of Bologna, I-40127 Bologna, Italy
 ${ }^{7}$ Brandeis University, Waltham, Massachusetts 02254, USA
 ${ }^{8}$ University of California, Davis, Davis, California 95616, USA
 ${ }^{9}$ University of California, Los Angeles, Los Angeles, California 90024, USA
 ${ }^{10}$ University of California, San Diego, La Jolla, California 92093, USA
 ${ }^{11}$ University of California, Santa Barbara, Santa Barbara, California 93106, USA
 ${ }^{12}$ Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
 ${ }^{13}$ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
 ${ }^{14}$ Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
 ${ }^{15}$ Comenius University, 84248 Bratislava, Slovakia;
 Institute of Experimental Physics, 04001 Kosice, Slovakia
 ${ }^{16}$ Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
 ${ }^{17}$ Duke University, Durham, North Carolina 27708, USA
 ${ }^{18}$ Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
 ${ }^{19}$ University of Florida, Gainesville, Florida 32611, USA
 ${ }^{20}$ Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
 ${ }^{21}$ University of Geneva, CH-1211 Geneva 4, Switzerland
 ${ }^{22}$ Glasgow University, Glasgow G12 8QQ, United Kingdom
 ${ }^{23}$ Harvard University, Cambridge, Massachusetts 02138, USA
 ${ }^{24}$ Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
 ${ }^{25}$ University of Illinois, Urbana, Illinois 61801, USA
 ${ }^{26}$ The Johns Hopkins University, Baltimore, Maryland 21218, USA

[^1]: ${ }^{27}$ Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
 ${ }^{28}$ Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea;
 Seoul National University, Seoul 151-742, Korea;
 Sungkyunkwan University, Suwon 440-746, Korea;
 Korea Institute of Science and Technology Information, Daejeon 305-806, Korea;
 Chonnam National University, Gwangju 500-757, Korea;
 Chonbuk National University, Jeonju 561-756, Korea
 ${ }^{29}$ Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
 ${ }^{30}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
 ${ }^{31}$ University College London, London WC1E 6BT, United Kingdom
 ${ }^{32}$ Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
 ${ }^{33}$ Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
 ${ }^{34}$ Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8;
 Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6;
 University of Toronto, Toronto, Ontario, Canada M5S 1A7;
 and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3
 ${ }^{35}$ University of Michigan, Ann Arbor, Michigan 48109, USA
 ${ }^{36}$ Michigan State University, East Lansing, Michigan 48824, USA
 ${ }^{37}$ Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
 ${ }^{38}$ University of New Mexico, Albuquerque, New Mexico 87131, USA
 ${ }^{39}$ Northwestern University, Evanston, Illinois 60208, USA
 ${ }^{40}$ The Ohio State University, Columbus, Ohio 43210, USA
 ${ }^{41}$ Okayama University, Okayama 700-8530, Japan
 ${ }^{42}$ Osaka City University, Osaka 588, Japan
 ${ }^{43}$ University of Oxford, Oxford OX1 3RH, United Kingdom
 ${ }^{44 \mathrm{a}}$ Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova, Italy
 ${ }^{44 \mathrm{~b}}$ University of Padova, I-35131 Padova, Italy
 ${ }^{45}$ LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France
 ${ }^{46}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
 ${ }^{47 a}$ Istituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy
 ${ }^{47 \mathrm{~b}}$ University of Pisa, I-56127 Pisa, Italy
 ${ }^{47 \mathrm{c}}$ University of Siena, I-56127 Pisa, Italy

[^2]: ${ }^{\text {a }}$ Deceased.
 ${ }^{\mathrm{b}}$ Visitor from University of Massachusetts Amherst, Amherst, MA 01003, USA.
 ${ }^{c}$ Visitor from Universiteit Antwerpen, B-2610 Antwerp, Belgium.
 ${ }^{\mathrm{d}}$ Visitor from University of Bristol, Bristol BS8 1TL, United Kingdom.
 ${ }^{\mathrm{e}}$ Visitor from Chinese Academy of Sciences, Beijing 100864, China.
 ${ }^{\text {f }}$ Visitor from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy.
 ${ }^{g}$ Visitor from University of California Irvine, Irvine, CA 92697, USA.
 ${ }^{\text {h }}$ Visitor from University of California Santa Cruz, Santa Cruz, CA 95064, USA.
 ${ }^{\mathrm{i}}$ Visitor from Cornell University, Ithaca, NY 14853, USA.
 ${ }^{\mathrm{j}}$ Visitor from University of Cyprus, Nicosia CY-1678, Cyprus.
 ${ }^{\mathrm{k}}$ Visitor from University College Dublin, Dublin 4, Ireland.
 ${ }^{1}$ Visitor from University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom.
 ${ }^{m}$ Visitor from University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.
 ${ }^{\mathrm{n}}$ Visitor from Kinki University, Higashi-Osaka City, Japan 577-8502.
 ${ }^{\circ}$ Visitor from Universidad Iberoamericana, Mexico D.F., Mexico.

