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Abstract

Background: Six core behavioural risk factors (poor diet, physical activity, sedentary behaviour, alcohol misuse,
smoking and unhealthy sleep patterns) have been identified as strong determinants of chronic disease, such as
cardiovascular disease, diabetes and cancers. Smartphones have the potential to provide a real-time, pervasive,
unobtrusive and cost-effective way to measure health behaviours and deliver instant feedback to users. Despite this,
validity of using smartphones to measure these six key behaviours is largely unknown. The proposed systematic
review aims to address this gap by identifying existing smartphone-based approaches to measure these health
behaviours and critically appraising, comparing and summarizing the quality of their measurement properties.

Methods: A systematic search of the Ovid MEDLINE, Embase (Elsevier), Cochrane Library (Wiley), PsychINFO
(EBSCOhost), CINAHL (EBSCOHost), Web of Science (Clarivate), SPORTDiscus (EBSCOhost) and IEEE Xplore Digital
Library databases will be conducted from January 2007 to March 2020. Eligible studies will be those written in
English that measure at least one of the six health behaviours of interest via a smartphone and report on at least
one measurement property. The primary outcomes will be validity, reliability and/or responsiveness of these
measurement approaches. A secondary outcome will be the feasibility (e.g. user burden, usability and cost) of
identified approaches. No restrictions will be placed on the participant population or study design. Two reviewers
will independently screen studies for eligibility, extract data and assess the risk of bias. The study methodological
quality (or bias) will be appraised using an appropriate tool. Our results will be described in a narrative synthesis. If
feasible, random effects meta-analysis will be conducted where appropriate.
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Discussion: The results from this review will provide important information about the types of smartphone-based
approaches currently available to measure the core behavioural risk factors for chronic disease and the quality of
their measurement properties. It will allow recommendations on the most suitable and effective measures of these
lifestyle behaviours using smartphones. Valid and reliable measurement of these behaviours and risk factor opens
the door to targeted and real-time delivery of health behaviour interventions, providing unprecedented
opportunities to offset the trajectory toward chronic disease.

Systematic review registration: PROSPERO: CRD42019122242

Keywords: Smartphone, App, Health, mHealth, Prevention, Risk, Alcohol, Smoking, Diet, Physical activity, Sedentary
behaviour, Sleep

Background
Chronic diseases are among the most costly and harmful
worldwide and are currently the leading cause of death
and disability. Cancers, cardiovascular diseases (CVD)
and diabetes are among some of the most prevalent of
these chronic diseases [1]. In 2017, CVD alone
accounted for nearly 30% of all deaths in Australia—
deaths that were largely preventable [2]. In the same
year, the European Heart Network reported that in Eur-
ope, CVD accounted for 47% of all deaths [3]. Poor diet,
physical inactivity, alcohol use and smoking have long
been recognised as key behavioural risks associated with
chronic disease and life expectancy lost [4–6]. In more
recent years, sedentary behaviour (sitting and screen
time) [7, 8] and unhealthy sleep patterns [9] have
emerged as significant contributors to the onset of
chronic disease (i.e. ‘the Big 6’). Valid measurement and
self-monitoring of these risk behaviours are central to
successful chronic disease risk-reduction interventions,
and meta-analyses provide evidence for the efficacy of
self-monitoring of diet, physical activity, weight, and to-
bacco and alcohol use towards this end [10–13]. How-
ever, measurement of many of these health behaviours
can be difficult and burdensome to participants. Trad-
itional measurement techniques using pen-and-paper
and in-person assessment of health behaviours are also
often subject to problems such as recall bias, with re-
spondents forgetting to record data or recording infor-
mation incorrectly or losing information [14]. Alternate
measurement techniques are needed to try to increase
compliance and accuracy with recording data, reduce re-
spondent burden and increase the quality and detail of
health behaviour information it is possible to collect.
Smartphones have become an integral part of many

people’s lives, with 45.12% of the global population in
2020 [15] and 81% of the US adult population in 2019
[16] owning a smartphone. Smartphone applications
(apps) and wearable devices are often used daily by indi-
viduals to record and measure a wide range of health be-
haviours [17]. However, currently, smartphones are the

most common way to self-monitor health behaviours, as
ownership rates of wearable devices remain compara-
tively low, with only 10.5% of the global population and
21% of the US adult population [18] owning a wearable
device in 2019 [19]. As of 2017, there were over 318,000
smartphone health apps available on the major app
stores, many of which allow users to record or measure
their health behaviours, with this number continuing to
grow by over 200 apps every day [20].
Innovations in technology have more recently seen a

wide range of sensors (accelerometers, gyroscopes, light
sensors, GPS and magnetometers) incorporated into
smartphones as standard features, which makes the smart-
phone capable of continuously monitoring users’ context
(e.g. physical activity, location and environment). The data
generated by these sensors and participants’ phone use
(e.g. if the phone screen is on or off, in-phone communica-
tion and gestures used) can be collected ‘passively’, without
the active involvement of the phone user, and can be used
to generate information about phone users’ behaviours
[21]. This allows opportunities for more in-depth, accurate
and less invasive data collection of health behaviours.
These approaches also provide opportunities to objectively
measure some behaviours that previously have been too
difficult or burdensome for participants to measure (e.g.
physical activity and sleep) and could help to identify be-
haviours that are being engaged in at levels considered
risky to short- and long-term health and wellbeing.
Smartphone technologies also provide opportunities

for ‘just-in-time’ adaptive interventions where tailored
support can be provided ‘in the moment’ to participants,
allowing the relevant support material to be delivered to
a person at the time and in a context when it is most sa-
lient [22]. For example, the same app that passively
monitors user physical activity over time could also be
programmed to provide a brief, motivational interven-
tion to increase activity, if that physical activity drops
below a pre-defined level for that user. With increasing
evidence suggesting both the preventative and risk-
reduction effects of exercise, sleep and diet on mental

Thornton et al. Systematic Reviews           (2020) 9:127 Page 2 of 7



health [23–27], the potential for such ‘closed loop sys-
tems’ that both monitor and intervene is high and
broader than the target behaviour or activity that is be-
ing monitored. However, accurately measuring key life-
style behaviours in real time using smartphones is
hampered by a lack of understanding of the validity of
smartphones to measure these behaviours, inducing a
lack of consensus around which behaviours are most im-
portant to monitor (what), which sensors are the most
reliable to monitor (how) and what behaviour change
thresholds warrant an intervention (when). Moreover,
there is no consensus on how raw sensor data should be
translated to a higher level metric. The lifestyle behav-
iours of interest in the proposed review are highly com-
plex, and it is unlikely that any one individual sensor
will be able to act as a reliable and accurate proxy for
the behaviour of interest.
To address current knowledge gaps, the proposed re-

view aims to systematically identify and evaluate the
existing literature reporting on the measurement proper-
ties of smartphone-based approaches to measure diet,
physical activity, sedentary behaviour (sitting and screen
time), alcohol use, tobacco use and sleep. The specific
objectives of this review are to:

1. Identify and describe the ways in which tobacco
use, alcohol use, physical activity, diet, sedentary
behaviour and sleep patterns have been measured
using smartphone technology among populations of
any age, gender or health status

2. Describe and critically evaluate the available
evidence on the measurement properties, with
attention also paid to the feasibility and usability of
these measurement approaches

3. Provide recommendations on the most suitable and
effective ways of measuring tobacco use, alcohol
misuse, physical activity, diet, sedentary behaviour
and sleep patterns using smartphones

Methods
This systematic review has been registered with the
International Prospective Register of Systematic Reviews
(PROSPERO: CRD42019122242). This systematic review
protocol was written in accordance with the Preferred
Reporting Items for Systematic Review and Meta-
Analysis Protocols (PRISMA-P) guidelines (see add-
itional file 1) [28]. The systematic review itself will also
be written in accordance with the PRISMA statement.

Eligibility criteria
Published studies with any type of study design, involv-
ing participants of any age, gender, geographical area
and health status, were eligible for inclusion in the pro-
posed review. To be eligible for inclusion, published

studies needed to be written in English, published after
2007, and describe a smartphone-based approach to
measuring at least one of the following behaviours via a
smartphone: tobacco use, alcohol use, physical activity,
diet, sedentary (sitting time and screen time) and sleep
patterns. Studies were required to report on at least one
measurement property identified in the COSMIN Tax-
onomy of Measurement Properties (see Table 1).
Studies were excluded from the systematic review if

they describe only the feasibility of the measurement ap-
proach without describing at least one other measure-
ment property. Similarly, studies that describe the
methodological effectiveness of a wearable device (e.g.
Fitbit) alone or a wearable device integrated with a
smartphone in a way that does not complement its func-
tionality (e.g. studies describing cases where the smart-
phone is used only to gather data from the device and
send it to a server) were not included. Studies that meas-
ure physical activity as mobility or technique only were
not included. Finally, studies that describe the methodo-
logical effectiveness of using text messaging or a website
only to measure health behaviours were also not
included.

Search strategy
A research librarian developed a database search strategy
in consultation with members of the review team. The
following electronic databases will be searched (from
January 2007 to March 2020): Ovid MEDLINE, Embase
(Elsevier), Cochrane Library (Wiley), PsychINFO (EBS-
COhost), CINAHL (EBSCOHost), Web of Science (Clar-
ivate), SPORTDiscus (EBSCOhost) and IEEE Xplore
Digital Library. The search will be limited to English lan-
guage and studies involving human subjects. Only stud-
ies published after 2007 will be included in the review.
The start date of 2007 was chosen as it is the year in
which the first mobile phones with large capacitive
touchscreens using direct finger input, as opposed to a
stylus or keypad, were released. The search strategy will
involve the use of commonly used database-specific sub-
ject headings and free-text keywords appearing in the
title and abstract across three search groups. The first
search group will contain terms for ‘the Big 6’ (i.e. to-
bacco use, alcohol use, physical activity, diet, sedentary
behaviour/recreational screen time and sleep patterns).
The second group will contain terms associated with
smartphones, while the third group contained search
terms related to methodological effectiveness. The three
search groups will be combined using Boolean operators
to identify studies and review articles examining the
methodological effectiveness of using smartphones to
measure at least one of ‘the Big 6’ health behaviours.
The search terms will be initially developed for MED-
LINE and adapted for the other databases. A draft search
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strategy for MEDLINE is provided as additional file (see
additional file 2). The searches will be supplemented by
cross-checking reference lists of relevant and key publi-
cations. All papers identified in the search strategy will
be exported into a citation management system (End-
note) for de-duplication and uploaded to the Covidence
online software program for screening. Prior to extract-
ing data from the references, the reference lists of eli-
gible papers will be reviewed to identify other relevant
studies, and recent related systematic reviews will be
consulted to identify any additional studies.

Data extraction and screening
The Covidence online program will be used to manage
records and data throughout the review. Articles will be
screened by one reviewer using Covidence against the
inclusion and exclusion criteria using titles and abstracts.
Those articles that meet the criteria based on title and
abstract will have the full text double screened, accord-
ing to the eligibility criteria, by two of seven members of
the research team blinded to each other’s ratings. Any
full-text articles unavailable to the research team
through the university resources will be requested
through inter-library loans or the corresponding author.
Inter-reviewer agreement will be reported. Any disagree-
ments will be resolved with the assistance of a third
researcher.
Preliminary data will be screened, as per the protocol,

and extracted by two reviewers blinded to each other’s
ratings, from a random sample of 10 full-text articles
based upon an initial data extraction plan. Based on this
pilot, the data extraction plan was adjusted and the fol-
lowing plan will be applied to all included full-text
articles:

1) Publication details (author, year of publication, cit-
ation and location)
2) Study characteristics (sample size, age [mean, SD,

range], gender balance, study setting, study design and
study objective)
3) Health behaviour/s measured
4) Approach used to measure the health behaviour:
� If the measure is based on self-report or an objective

measure of the health behaviour
� If the data is collected actively or passively
� Type of phone used and operating system
� Details of the mobile application used to measure the

health behaviour
� Any specific phone sensors used to collect information

about the behaviour
� If a wearable device was used in conjunction with the

smartphone
� Available details regarding the algorithm used to

compute the behaviour, sampling frequency, filtering
applied and phone location during measurement

� If the mobile app, sensors, algorithms, etch is open
source

5) Approach used to assess the measurement properties
of the approach (including all measurement properties
identified in the COSMIN Taxonomy of Measurement
Properties)
6) Findings regarding the measurement properties of

the approach
7) Findings regarding the feasibility of the approach

(e.g. compliance, usability, participant burden, partici-
pant feedback, cost to participant and incentive/
reimbursement)
8) Any other findings or implications:
� Details of any comparison measures

Table 1 COSMIN taxonomy of measurement properties [29]

Domain Measurement properties Definition

Reliability (The degree to which
the measurement is free from
measurement error)

Internal consistency The degree of the interrelatedness among the items

Reliability The proportion of the total variance in the measurements
which is due to ‘true’ differences between patients

Measurement error The systematic and random error of a patient’s score that is
not attributed to true changes in the construct to be measured

Validity (The degree to which an
instrument measures the construct(s)
it purports to measure)

Content validity (including face
validity)

The degree to which the content of an instrument is an
adequate reflection of the construct to be measured

Construct validity (including structural
validity, hypothesis testing, cross-
cultural validity)

The degree to which the scores of an instrument are consistent
with hypotheses (for instance, with regard to internal
relationships, relationships to scores of other instruments or
differences between relevant groups) based on the assumption
that the instrument validly measures the construct to be
measured

Criterion validity The degree to which the scores of an instrument are an
adequate reflection of a ‘gold standard’

Responsiveness Responsiveness The ability of an instrument to detect change over time in the
construct to be measured
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� Abbreviations used
� Any conflicts of interest

Where necessary, the corresponding author of in-
cluded studies will be contacted by email to obtain any
required data not presented in the published paper.

Outcomes
The primary outcomes of this review will be the meas-
urement properties of smartphone-based approaches to
assess the six key lifestyle behaviours of interest. The
specific measurement properties to be investigated (as re-
ported) have been drawn from the COSMIN Taxonomy
of Measurement Properties [29]. They include internal
consistency, reliability, measurement error, content valid-
ity (including face validity), construct validity (including
structural validity and cross-cultural validity), criterion
validity and responsiveness. The feasibility (including, but
not limited to compliance, user burden, usability and cost)
of the identified measurement approaches will also be
assessed as a secondary outcome.

Risk of bias
Data assessing the quality and risk of bias for each study
will also be extracted. Two reviewers will independently
assess the risk of bias of the included studies using the
COSMIN Risk of Bias checklist [30]. Each measurement
property reported, within the relevant section of the COS-
MIN risk of bias checklist, will be completed, and studies
will receive a quality rating for that particular measure-
ment property. Agreement between reviewers will be
assessed using Cohen’s kappa statistic. Any conflict be-
tween the two raters will be resolved by a third reviewer.
If sufficient data is available, publication bias will be exam-
ined by inspection of funnel plots for asymmetry, and the
quality of the body of evidence will be assessed using the
Grading of Recommendations Assessment, Development
and Evaluation (GRADE) framework.

Analysis
The findings regarding the measurement properties of
the approaches identified will be grouped according to
the health behaviour measured. Where enough consist-
ent data exists for a particular approach to measure a
health behaviour, a meta-analysis using the random ef-
fects model [31] will be undertaken to provide a quanti-
tative synthesis of the study findings and I2 statistic [32]
and Cochran’s Q test [33] to quantify any heterogeneity.
It is anticipated however, that the data collected will be
too diverse to meet the threshold for a meta-analytic ap-
proach, and in that case, a narrative synthesis method
will be undertaken. Where appropriate, outcomes will be
described separately for self-report and objective meas-
urement approaches, adolescents and young adults (i.e.

10–24 years) and adults (25 years +) as well as different
study designs. If sufficient data is available, subgroup
analyses will be conducted to examine these variables as
potential sources of heterogeneity. If additional covari-
ates are identified and included in additional analyses,
these will be reported in the final review.
One aspect of targeted improvements is an analysis of

the combination of sensors used to measure the health
behaviours of interest. Such an analysis may allow us to
provide recommendations as to what sensors should be
used for the measurement of any of the big six health
behaviours. We endeavour to analyse how best to com-
bine these sensors to allow their respective outputs to
inform on the behaviour of interest to the highest degree
possible. Where this information is provided, we will
also take into consideration technical details such as
sampling frequency and data pre-processing (such as fil-
tering) applied.

Discussion
The proposed systematic review will be the first to bring
together the existing evidence of the measurement prop-
erties of smartphone-based approaches to measure key
lifestyle behaviours associated with increased chronic
disease risk. This systematic review will inform the fu-
ture use of smartphone apps to measure key lifestyle be-
haviours by identifying which existing approaches are
more methodologically valid and reliable as well as col-
lecting information about the nature of these ap-
proaches, including if the approach is based on self-
report or objective measurement, type of device used
and the specific sensors and algorithms used to calculate
behaviours. This detailed information will help to inform
how these measurement approaches could be imple-
mented by clinicians to help clients better measure and
manage their health behaviours, improve measurement
of these behaviours in research settings and inform the
development of interventions requiring accurate real-
time measurement of lifestyle behaviours, such as just-
in-time adaptive interventions, which have the potential
to provide unprecedented opportunities to offset the tra-
jectory toward chronic disease. Of particular interest are
any methodologically sound approaches that minimise
participant burden and increase compliance in outcome
collection during these measurements.
This review will also attempt to investigate the use of

the combination of smartphone sensors to measure
health behaviours. Our results may allow us to provide
recommendations as to what sensors should be used for
the measurement of any of the six health behaviours.
Where appropriate information is provided, we will also
examine and provide recommendations regarding tech-
nical details such as sampling frequency and data pre-
processing (such as filtering).
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Realizing that most digital health-related studies have
not been replicated, we will seek evidence for methods
and tools that offer replicability. We hope to identify
replicable studies but are aware that these may not exist.
Thus, we will also identify apps and sensors that are
open source, offer access to underlying analysis code,
and are able to easily be implemented in new settings.
This review will help identify those tools that will be of
the greatest interest to the field today.
To date, little is understood about how the use of

these digital health tools varies by age and country. As
social norms around technology use, privacy consider-
ations and access to digital devices may vary by popula-
tion and age, our review will offer information on global
trends in this space. Understanding which age groups
are most likely to engage is an important and open ques-
tion in the field, with some concern that younger people
may be already so active on their smartphones that they
may not pay as much attention to any new app or pro-
gram. On the other hand, such digitally skilled youth
may also be the ideal population to use these new tools
as they already possess the knowledge and skills to opti-
mally use them.
Despite these strengths, it is important to acknowledge

some inherent limitations of our proposed approach.
Firstly, by limiting our search to English language pa-
pers, we are potentially missing other smartphone-based
measurement approaches discussed in the non-English
literature. Unfortunately, it is beyond the expertise and
resources of this review team to include articles not
written in English. Secondly, due to time and resource
constraints, a decision to only double-screen articles at
the full-text review stage was made, meaning there is a
risk that some potentially relevant articles may have
been screened out at the earlier stages of the review.
However, in an attempt to mitigate this limitation, all re-
viewers participated in training sessions where multiple
reviewers independently reviewed and discussed the
same selection of articles to help ensure consistency
across reviewers. Finally, information regarding how
apps measure the behaviours of interest, and their accur-
acy, is commercial-in-confidence for many commercially
developed apps. For this reason, this review will not be
able to comment on the measurement properties of ap-
proaches used by the large number of publicly available
apps which purport to measure the behaviours of inter-
est, but for which no evaluations have been reported in
the peer-reviewed literature.
The review will aim to provide recommendations re-

garding which currently available mobile-based self-
report measures and smartphone-based objective meas-
urement approaches are the most suitable and effective
ways to measure each of the six behaviours of interest
based on the current evidence of their measurement

properties. It will also identify any gaps in the existing
literature and areas for improvement which could help
to inform the development of new smartphone-based
measurement tools.
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1186/s13643-020-01375-w.

Additional file 1. PRISMA-P checklist.

Additional file 2. MEDLINE search.

Acknowledgements
Not applicable

Authors’ contributions
LT, and BO conceived of the study. LT and AW designed the search
strategies. BO drafted the manuscript with the help of LT and OG. LT, BO,
AW, MS, KC, OG, FKL, TS, NN, CC, MT, KM, LB, DL, PVV, JT, BP and LG
reviewed and contributed to the manuscript. All authors read and approved
the final version before submission. LT is the guarantor of this work.

Funding
This work was supported by a philanthropic grant from the Paul Ramsay
Foundation who had no role in the development of this proposal.

Availability of data and materials
Not applicable

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Author details
1The Matilda Centre, The University of Sydney, Sydney, New South Wales,
Australia. 2Galter Health Sciences Library & Learning Center, Northwestern
University Feinberg School of Medicine, Chicago, IL, USA. 3Priority Research
Centre for Brain and Mental Health, The University of Newcastle, Newcastle,
New South Wales, Australia. 4Priority Research Centre for Physical Activity
and Nutrition, The University of Newcastle, Newcastle, New South Wales,
Australia. 5Department of Electronics and Computer Engineering, The
University of Limerick, Limerick, Ireland. 6Beth Israel Deaconness Medical
Center, Harvard Medical School, Boston, MA, USA. 7School of Medical
Sciences, The University of New South Wales, Sydney, New South Wales,
Australia.

Received: 2 October 2019 Accepted: 29 April 2020

References
1. World Health Organisation. Global status report on noncommunicable

diseases 2014. Geneva; 2014.
2. Australian Bureau of Statistics. Causes of death 2017. Canberra: Australian

Bureau of Statistics; 2018.
3. Wilkins E, Wilson L, Wickramasinghe K, Bhatnagar P, Leal J, Luengo-

Fernandez R, et al. European cardiovascular disease statistics 2017. 2017.
4. Ezzati M, Riboli E. Behavioral and dietary risk factors for noncommunicable

diseases. N Engl J Med. 2013;369(10):954–64.
5. Australian Institute of Health and Welfare (AIHW). Australia’s health 2014.

Canberra: AIHW; 2014.
6. Manuel DG, Perez R, Sanmartin C, Taljaard M, Hennessy D, Wilson K, et al.

Measuring burden of unhealthy behaviours using a multivariable predictive

Thornton et al. Systematic Reviews           (2020) 9:127 Page 6 of 7

https://doi.org/10.1186/s13643-020-01375-w
https://doi.org/10.1186/s13643-020-01375-w


approach: life expectancy lost in Canada attributable to smoking, alcohol,
physical inactivity, and diet. PLoS Med. 2016;13(8):e1002082.

7. Ding D, Rogers K, van der Ploeg H, Stamatakis E, Bauman AE. Traditional
and emerging lifestyle risk behaviors and all-cause mortality in middle-aged
and older adults: evidence from a large population-based Australian cohort.
PLoS Med. 2015;12(12):e1001917.

8. Lynch BM, Owen N. Too much sitting and chronic disease risk: steps to
move the science forward. Ann Intern Med. 2015;162(2):146–7.

9. Cappuccio FP, Cooper D, D'Elia L, Strazzullo P, Miller MA. Sleep duration
predicts cardiovascular outcomes: a systematic review and meta-analysis of
prospective studies. Eur Heart J. 2011;32(12):1484–92.

10. Burke LE, Wang J, Sevick MA. Self-monitoring in weight loss: a systematic
review of the literature. J Am Diet Assoc 2011;111(1):92-102.

11. Jenkins RJ, McAlaney J, McCambridge J. Change over time in alcohol
consumption in control groups in brief intervention studies: systematic
review and meta-regression study. Drug Alcohol Depend. 2009;100(1):107–14.

12. McCambridge J. Commentary: research assessments: instruments of bias
and brief interventions of the future? Addiction. 2009;104(8):1311–2.

13. Norris S, Engelgau M, Narayan K. Effectiveness of self-management training
in type 2 diabetes: a systematic review of randomized controlled trials.
Diabetes Care. 2001;24(3):561–87.

14. Rabbi M, Philyaw-Kotov M, Lee J, Mansour A, Dent L, Wang X, et al. SARA: a
mobile app to engage users in health data collection. In: Proceedings of the
2017 ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2017 ACM International Symposium on
Wearable Computers; 2017. p. 781–9.

15. Newzoo. Global Mobile Market Report. Internet; 2019. Available from:
https://newzoo.com/solutions/standard/market-forecasts/global-mobile-
market-report/.

16. Pew Research Center. Mobile Fact Sheet. Washington, DC: Pew Research
Center; 2019. Available from: https://www.pewresearch.org/internet/fact-
sheet/mobile/.

17. Schoeppe S, Alley S, Van Lippevelde W, Bray NA, Williams SL, Duncan MJ,
et al. Efficacy of interventions that use apps to improve diet, physical
activity and sedentary behaviour: a systematic review. Int J Behav Nutr Phys
Act. 2016;13:127.

18. Vogels EA. About one-in-five Americans use a smart watch or fitness tracker.
Washington, DC: Pew Research Centre; 2019. Available from: https://pewrsr.
ch/37IaaN4.

19. MarketsandMarkets. Wearable technology market. Internet: Markets and
Markets; 2017. Contract No.: SE2763. Available from: https://www.
marketsandmarkets.com/Market-Reports/wearable-electronics-market-983.
html.

20. Aitken M, Clancy B, Nass D. The growing value of digital health. New Jersey:
IQVIA; 2017.

21. Moher DC, Zhang M, Schueller SM. Personal sensing: understanding mental
health using ubiquitous sensors and machine learning. Annu Rev Clin
Psychol. 2017;13:23–47.

22. Bae S, Chung T, Ferreira D, Dey AK, Suffoletto B. Mobile phone sensors and
supervised machine learning to identify alcohol use events in young adults:
implications for just-in-time adaptive interventions. Addict Behav. 2018;83:
42–7.

23. Choi K, Chen C, Stein M, Klimentidis Y, Wang M, Kenen K, et al. Assessment
of bidirectional relationships between physical activity and depression
among adults: a 2-sample Mendelian randomization study. JAMA Psychiatry.
2019;76:399–408.

24. Chekroud S, Gueorguieva R, Zheutlin A, Paulus M, Krumholz H, Krystal J,
et al. Association between physical exercise and mental health in 1.2 million
individuals in the USA between 2011 and 2015: a cross-sectional study.
Lancet Psychiatry. 2018;5(9):739–46.

25. Freeman D, Sheaves B, Goodwin GM, Yu L-M, Nickless A, Harrison PJ, et al.
The effects of improving sleep on mental health (OASIS): a randomised
controlled trial with mediation analysis. Lancet Psychiatry. 2017;4(10):749–58.

26. Dimov S, Mundy LK, Bayer JK, Jacka FN, Canterford L, Patton GC. Diet quality
and mental health problems in late childhood. Nutr Neurosci. 2019:1–9.

27. Wattick RA, Hagedorn RL, Olfert MD. Relationship between diet and mental
health in a young adult Appalachian College Population. Nutrients. 2018;
10(8).

28. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al.
Preferred reporting items for systematic review and meta-analysis protocols
(PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.

29. Mokkink L, Terwee C, Patrick D, Alonso J, Stratford P, Knol D, et al. The
COSMIN study reached international consensus on taxonomy, terminology,
and definitions of measurement properties for health-related patient-
reported outcomes. J Clin Epidemiol. 2010;63:737–45.

30. Mokkink L, De Vet H, Prinsen C, Patrick D, Alonso J, Bouter L, et al. COSMIN
risk of bias checklist for systematic reviews of patient-reported outcome
measures. Qual Life Res. 2018;27:1171–9.

31. DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical
trials: an update. Contemp Clin Trials. 2007;28:105–14.

32. Hardy RJ, Thompson SG. Detecting and describing heterogeneity in meta-
analysis. Stat Med. 1998;17(8):841–56.

33. Cochran WG. The combination of estimates from different experiments.
Biometrics. 1954;10:101–29.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Thornton et al. Systematic Reviews           (2020) 9:127 Page 7 of 7

https://newzoo.com/solutions/standard/market-forecasts/global-mobile-market-report/
https://newzoo.com/solutions/standard/market-forecasts/global-mobile-market-report/
https://www.pewresearch.org/internet/fact-sheet/mobile/
https://www.pewresearch.org/internet/fact-sheet/mobile/
https://pewrsr.ch/37IaaN4
https://pewrsr.ch/37IaaN4
https://www.marketsandmarkets.com/Market-Reports/wearable-electronics-market-983.html
https://www.marketsandmarkets.com/Market-Reports/wearable-electronics-market-983.html
https://www.marketsandmarkets.com/Market-Reports/wearable-electronics-market-983.html

	Abstract
	Background
	Methods
	Discussion
	Systematic review registration

	Background
	Methods
	Eligibility criteria
	Search strategy
	Data extraction and screening
	Outcomes
	Risk of bias
	Analysis

	Discussion
	Supplementary information
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

