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Variational quantum algorithms are promising applications of noisy intermediate-scale quantum (NISQ)

computers. These algorithms consist of a number of separate prepare-and-measure experiments that estimate

terms in a Hamiltonian. The number of terms can become overwhelmingly large for problems at the scale of

NISQ hardware that may soon be available. We use unitary partitioning (developed independently by Izmaylov

et al. [J. Chem. Theory Comput. 16, 190 (2020)]) to define variational quantum eigensolver procedures in

which additional unitary operations are appended to the ansatz preparation to reduce the number of terms. This

approach may be scaled to use all coherent resources available after ansatz preparation. We also study the use

of asymmetric qubitization to implement the additional coherent operations with lower circuit depth. Using

this technique, we find a constant factor speedup for lattice and random Pauli Hamiltonians. For electronic

structure Hamiltonians, we prove that linear term reduction with respect to the number of orbitals, which has

been previously observed in numerical studies, is always achievable. For systems represented on 10–30 qubits,

we find that there is a reduction in the number of terms by approximately an order of magnitude. Applied to

the plane-wave dual-basis representation of fermionic Hamiltonians, however, unitary partitioning offers only

a constant factor reduction. Finally, we show that noncontextual Hamiltonians may be reduced to effective

commuting Hamiltonians using unitary partitioning.

DOI: 10.1103/PhysRevA.101.062322

I. INTRODUCTION

Quantum simulation is a promising application of future

quantum computers [1–4]. Applications in materials science,

chemistry, and high-energy physics offer the prospect of sig-

nificant advantages for simulation of quantum systems [5–7].

Calculations on quantum computers that would challenge the

classical state of the art require large-scale, error-corrected

quantum computers [8]. However, quantum hardware is en-

tering the noisy intermediate-scale quantum (NISQ) era [9], in

which the machines are still too small to implement error cor-

rection but are already too large to simulate classically [10]. It

is natural to ask whether NISQ computers can perform useful

tasks in addition to demonstrations of quantum supremacy

[10–12].

The variational quantum eigensolver (VQE) was developed

to enable quantum estimation of ground-state energies on

noisy small-scale quantum computers [13]. VQE was devel-

oped as a method for quantum simulation of electronic struc-

ture [13] and concurrently as a simulation method for quantum

field theory by cavity QED [14]. Contemporaneously, the

quantum approximate optimization algorithm (QAOA) was

developed as a variational approach to approximate solutions

of classical optimization problems [15]. VQE has been widely

implemented experimentally due to its simplicity and suitabil-

ity for NISQ devices [13,16–20].

*Also at Brookhaven National Laboratory; peter.love@tufts.edu

VQE consists of preparation of a variational ansatz state

by a low-depth parameterized quantum circuit, followed by

estimation of the expectation values of the terms in the Hamil-

tonian, obtained by measuring each separately. This process is

repeated until the statistical error on the expectation value of

each term is less than some desired precision threshold. Thus,

in VQE the long coherent evolutions of phase estimation are

replaced by many independent and short coherent evolutions.

However, the necessary number of independent measurements

may become overwhelmingly large for problem sizes of ∼50

qubits, which may soon be accessible. Recently, there has

been much activity in addressing this measurement problem

via numerous approaches [21–33]. In the present paper, we

consider the use of extra coherent resources to reduce the

number of separate Pauli terms whose expectation values must

be estimated. We refer to this process as term reduction. Our

methods are closely related to those introduced in [26,30],

which we discuss later.

We consider throughout a k-local Pauli Hamiltonian on n

qubits:

H =
m

∑

j=1

α jPj, (1)

where the m terms Pj ∈ {I, X,Y, Z}⊗n are k-local Pauli oper-

ators, i.e., tensor products of the Pauli matrices and the 2 × 2

identity containing at most k nonidentity tensor factors. This

k-locality does not refer to any geometrical locality of the

layout of the physical qubits.

2469-9926/2020/101(6)/062322(19) 062322-1 ©2020 American Physical Society

https://orcid.org/0000-0002-0299-0277
https://orcid.org/0000-0002-0299-3478
https://orcid.org/0000-0002-2778-1703
https://orcid.org/0000-0001-8977-1749
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.101.062322&domain=pdf&date_stamp=2020-06-12
https://doi.org/10.1021/acs.jctc.9b00791
https://doi.org/10.1021/acs.jctc.9b00791
https://doi.org/10.1021/acs.jctc.9b00791
https://doi.org/10.1021/acs.jctc.9b00791
https://doi.org/10.1103/PhysRevA.101.062322


ANDREW ZHAO et al. PHYSICAL REVIEW A 101, 062322 (2020)

The Hamiltonian H for 1 � k � n and 1 � m � 4n can

represent any qubit observable. Interesting cases occur for k a

small constant (2 � k � 4) [15] and for k scaling logarithmi-

cally with n [34,35]. Jordan-Wigner mappings of fermions to

qubits generate Hamiltonians with k � n, albeit of a restricted

form and in which m is still a polynomial in n [36]. Techniques

to map interesting physical Hamiltonians to Pauli Hamilto-

nians show that the Hamiltonian H is expressive enough to

represent problems in physics and chemistry ranging from

condensed-matter models to molecular electronic structure to

quantum field theory. Restricting to Eq. (1) is therefore not a

significant limitation on the applicability of our results to the

simulation of quantum systems.

Assuming measurements are to be performed in the z basis

on individual qubits, to simulate the terms of Eq. (1) it is

necessary to map each Pj to a measurement in the computa-

tional basis (given by the tensor product of the z bases for each

qubit). If our NISQ device has all-to-all pairwise connectivity

(as is the case for ion-trap NISQ devices), then we require

k − 1 CNOT gates and up to k single-qubit Clifford operations

to reduce our measurement of a k-local Pauli operator Pj to

a z-basis measurement [37]. If our NISQ computer has only

nearest-neighbor connectivity on the line we may require an

additional O(n) CNOT gates to swap the qubits into an adjacent

set.

Any completely commuting set of Pauli operators SC may

be mapped to a set of Pauli words over Z and the identity by

mapping the common eigenbasis of SC to the computational

basis [37]. Previous works have studied this as a method for

reducing the number of measurements; the resulting technique

requires an additional O(n2) gates, with numerical evidence

for an O(n) measurement count reduction [27,29]. Because

the eigenbasis of SC is a set of stabilizer states (with stabilizers

given by elements of SC up to a sign), this map is a Clifford

operation. Clifford operators are known to lack transformation

contextuality [38], i.e., they are describable by positive maps

on Wigner functions.

Furthermore, Clifford operations map single Pauli opera-

tors to single Pauli operators, which means that if we desire to

reduce the number of terms in the Pauli Hamiltonian Eq. (1),

our map must possess some non-Clifford structure. Hence it

must in general possess transformation contextuality.

We describe two methods for term reduction based on such

transformations. The first technique, unitary partitioning, was

previously and independently obtained in [26,30]. Our second

technique provides a more efficient realization of the required

transformations at the cost of some ancilla state preparation

using asymmetric qubitization—an extension of the linear

combination of unitaries model [39]—introduced in [40]. We

present these two methods in Sec. II. In Sec. III we evaluate

the method for several classes of Hamiltonians. Section IV

is devoted to analyzing electronic structure Hamiltonians in

depth. We confirm and extend the previous numerical results

of [26] observing that a linear term reduction with respect to

the number of orbitals is possible. We prove that this linear

reduction can always be achieved. We also show in Sec. IV D

that unitary partitioning offers a constant factor reduction in

the number of terms of a fermionic Hamiltonian expressed in

the plane-wave dual basis defined in [21]. Then, in Sec. V we

show that noncontextual Hamiltonians, defined in [41] (also

studied in [42]), are reducible to commuting Hamiltonians

under unitary partitioning. We close the paper with discussion

and directions for future work.

II. TERM REDUCTION FOR PAULI HAMILTONIANS

Given a Hamiltonian of the form of Eq. (1), we wish to

reduce the number of distinct expectation values to estimate

in a VQE experiment by using the coherent operations of the

quantum computer. Suppose that our ansatz |ψA〉 is prepared

by a quantum circuit U from the state |ψ0〉 ≡ |0〉⊗n so that

|ψA〉 = U |ψ0〉. (2)

Then our experiment estimates the expectation values

〈Pj〉 = 〈ψ0|U †PjU |ψ0〉. (3)

Suppose instead we rewrite our Hamiltonian in terms of a

different set of Pauli operators {Ql}mc

l=1 and unitary operations

{Rl}mc

l=1 as follows:

H =
m

∑

j=1

α jPj =
mc
∑

l=1

γlR
†
l
Ql Rl . (4)

Such decompositions give the correct variational estimate:

〈ψA|H |ψA〉 =
m

∑

j=1

α j〈ψA|Pj |ψA〉 (5)

=
mc
∑

l=1

γl〈ψA|R†
l
QlRl |ψA〉. (6)

Each term labeled by l is estimated by a separate prepare-

and-measure ansatz which appends a different unitary Rl

to the ansatz preparation. The unitary rotations Rl therefore

represent the additional coherent resources required to reduce

the number of separate expectations to be obtained.

Unlike the approach of [26], we do not estimate the unitary

operators R
†
l
QlRl themselves. Instead, we propose to perform

a set of mc experiments in which the coherent operations

Rl are appended to U so that the expectation values are

obtained by measuring Ql in the resultant state. In this case,

the Rl may be made as simple or as complex as the coherent

resources available after the state preparation circuit allow.

Term reduction therefore allows the use of VQE for larger

systems by optimally using the increasing amount of coherent

resources available in new devices.

A. Unitary partitioning

We will apply rotations in the adjoint representation of

su(2n) with the goal of reducing the number of Pauli terms

in the Hamiltonian. For classical algorithms the number of

such terms is not a relevant variable, as one must represent

all the nonzero terms of the Hamiltonian in some way. There

are some general constraints on the form of terms arising

from a Pauli matrix by an adjoint unitary action. We now

consider what resources the Rl operations require and give

constructions that achieve term reduction. These ideas were

previously presented in [26].

062322-2



MEASUREMENT REDUCTION IN VARIATIONAL QUANTUM … PHYSICAL REVIEW A 101, 062322 (2020)

We may write

R
†
l
Ql Rl =

∑

j

βl jPf (l, j), (7)

where f is a relabeling of generalized Pauli matrices. Any

unitary rotation of a generalized Pauli matrix is self-inverse,

so (R†
l
QlRl )

2 = 1, which implies

∑

j

β2
l j = 1 and

∑

j<k

βl jβlk{Pf (l, j), Pf (l,k)} = 0. (8)

The first constraint can be satisfied for any subset of terms

by scaling the coefficients βl j by appropriately defining γl .

The second constraint is the defining property of subsets of

terms which can be combined into a single term by unitary

rotation. For the technique discussed in this section, we divide

the terms of the Hamiltonian into sets in which the operators

pairwise anticommute; we call such sets completely anti-

commuting sets. The second constraint in Eq. (8) is trivially

satisfied within each such set. We then rescale these terms to

satisfy the first constraint and seek unitary operators that map

each set to a single Pauli operator.

The compatibility graph associated to a set of Pauli oper-

ators is an undirected graph whose vertices are the operators

in the set and in which a pair of vertices is connected if the

associated operators commute. Completely anticommuting

sets of Pauli operators are independent sets of the compat-

ibility graph. A partition of the operators into completely

anticommuting sets is provided by a coloring of the vertices

of the graph such that no two vertices connected by an edge

have the same color. The number of sets is determined by

the number of colors. Graph coloring is a well-known NP-

complete problem; however, we only require the number of

colors to be less than the number of vertices for our method

to provide a reduction in the number of terms. A detailed

study of the use of various heuristics for graph coloring for

the compatibility graphs of Hamiltonians was performed in

[26].

We now construct the rotation R that maps a completely

anticommuting set to a single Pauli operator by conjugation.

Let S be a set of Pauli operators appearing in the Hamiltonian

such that {Pj, Pk} = 0 ∀Pj 	= Pk ∈ S. It will also be useful to

define s = |S|. The set of terms corresponding to S in the

Hamiltonian is then written

HS =
∑

Pj∈S

β jPj . (9)

We will assume for now that the coefficients satisfy
∑

j

β2
j = 1. (10)

We define the following Hermitian, self-inverse operators:

Xsk = iPsPk, 1 � k � s − 1. (11)

It is straightforward to verify that Xsk commutes with all Pj ∈
S for j 	= s, j 	= k, and that it anticommutes with Pk and Ps.

We define the adjoint rotation generated by Xsk:

Rsk = exp

(

−i
θsk

2
Xsk

)

, (12)

whose action on the terms in HS is given by

RskPkR
†
sk

= cos θskPk + sin θskPs,

RskPsR
†
sk

= − sin θskPk + cos θskPs. (13)

That is, Rsk is an adjoint rotation acting in the space spanned

by Ps and Pk .

If we act on HS with Rsk , we obtain

RskHSR
†
sk

= (βk cos θsk − βs sin θsk )Pk

+ (βk sin θsk + βs cos θsk )Ps

+
∑

Pj∈S\{Pk ,Ps}

β jPj . (14)

Choosing βk cos θsk = βs sin θsk therefore gives a rotation of

the Hamiltonian with the Pk term removed and with the norm

of the term Ps increased from βs to

√

β2
s + β2

k
. Defining the

operator

RS = Rs(s−1)(θs(s−1)) · · · Rs2(θs2)Rs1(θs1), (15)

where the angles θsk satisfy

β1 cos θs1 = βs sin θs1, (16)

and, for k > 1,

βk cos θsk =

√

√

√

√

√

⎛

⎝β2
s +

k−1
∑

j=1

β2
j

⎞

⎠ sin θsk, (17)

therefore gives

RSHSR
†
S = Ps, (18)

where we used the fact that
∑s

j=1 β2
j = 1. Care must be taken

when choosing θsk so as to obtain the positive root.

Our decomposition strategy is therefore the following:

H =
m

∑

j=1

α jPj =
mc
∑

l=1

γlHSl
, (19)

where

HSl
=

∑

Pj∈Sl

βl jPj (20)

has support on a set Sl of self-inverse operators for which

{Pj, Pk} = 0 ∀ j 	= k and
∑

j β
2
l j = 1. Each HSl

can be ob-

tained from a single Pauli operator by a unitary rotation as

in Eq. (15), so we can rewrite Eq. (19) as

H =
mc
∑

l=1

γlR
†
Sl

Psl
RSl

, (21)

where the RSl
operators are given for each set of pairwise

anticommuting operators by Eq. (15).

For each HS we must therefore append to our ansatz

preparation the set of s − 1 operators Rsk (recall that s =
|S|). For an l-local Hamiltonian, each of these requires O(l )

CNOT and single-qubit rotations to implement. Hence one

exchanges s separate Pauli expectation value estimations for

a single expectation value estimation at the cost of O(sl )

additional coherent operations. Note that directly appending
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these transformations to the ansatz preparation results in a

factor of 2 reduction in the required coherent resources as

compared to [26], where both R and R† must be implemented

as controlled operations.

The decomposition given above and in [26] is the most di-

rect implementation of the transformation of the Hamiltonian.

Improvement can be made through the use of ancilla qubits

and more coherent resources, as we now show in Sec. II B.

B. Low-depth implementation of the rotations

In Sec. II A and in Ref. [26], an ordered sequence of

rotations is used to write a completely anticommuting set of

Pauli operators as a single term. Here we will show how to use

a single rotation to perform the same reduction, and show how

to implement this rotation using the methods based on linear

combinations of unitaries (LCU) [39].

We define a set of operators Hk for 1 � k � n such that

H1 = P1, Hn = sin φn−1Hn−1 + cos φn−1Pn. Each Hn is self-

inverse, and we consider rotations of Hn around an axis that is

Hilbert-Schmidt orthogonal to both Hn−1 and Pn. The operator

defining this axis is

X =
i

2
[Hn−1, Pn]. (22)

The operator X is self-inverse, anticommutes with Hn, and so

[X , Hn] = 2XHn. Furthermore, we may show that

XHn = i(− sin φn−1Pn + cos φn−1Hn−1). (23)

The operator X generates the rotation

R = exp(−iαX /2) = cos(α/2)1 − i sin(α/2)X . (24)

The adjoint action of R on Hn is given by

RHnR† = sin(φn−1 − α)Hn−1 + cos(φn−1 − α)Pn. (25)

Choosing α = φn−1 therefore gives RHnR† = Pn. This is a

simple constructive demonstration that any self-inverse oper-

ator supported on a set of pairwise anticommuting operators S

can be mapped to a single Pauli operator. (The details of these

calculations can be found in Appendix A 1.)

The terms in the operator X all pairwise anticommute, and

X squares to the identity. This yields the expression for R

given in Eq. (24). As a linear combination of Pauli operators,

which are unitary, this naturally suggests implementation of R

using the LCU method [39]. These methods can be combined

with qubitization and quantum signal processing to reduce the

required gate count [8,43–45]. However, X has coefficients

that are ℓ2 normalized, whereas the standard LCU methods

naturally treat Hamiltonians with ℓ1 normalized coefficients.

Fortunately, this issue was already addressed in Ref. [40], in

which an asymmetric LCU (ALCU) method was introduced.

We propose the ALCU method for the implementation of R.

Because R is equivalent to evolution under the Hamiltonian X ,

the cost of asymmetric qubitization scales as the square root

of the number of terms in X , and hence the use of this method

offers a quadratic speedup in asymptotic scaling compared to

the methods of Sec. II A and Ref. [26].

ALCU requires O(log s) additional qubits (s being the

maximum size of any of the anticommuting sets) and more

complex gate operations than the method of Sec. II A and

[26]. However, the use of these methods in the context of

VQE provides a motivation to implement more sophisticated

quantum algorithms on NISQ devices. It should be noted that

implementation of ALCU for this purpose is much simpler

than its use for direct simulation of time evolution under the

original Hamiltonian. This is because the number of terms in

X is only equal to the number of terms in an anticommuting

set. As we discuss in detail below, this can be made smaller in

order to take advantage of any additional coherent resources

available after state preparation.

C. Commuting terms

Requiring that the sets of terms to be combined anticom-

mute, as in Secs. II A and II B, is sufficient but not necessary

to perform term reduction. If there is additional structure

on the coefficients of the Hamiltonian, the second constraint

in Eq. (8) may be satisfied without the individual terms all

vanishing. Here we consider the possibility that for some l ,
∑

j<k

βl jβlk{Pj, Pk} = 0, (26)

while the individual terms are nonzero (note that we have sim-

plified the labeling of the Pauli terms). Because generalized

Pauli matrices have the property that they either commute or

anticommute, we can restrict attention to the subset of the

operators that commute. We then require that
∑

j<k

βl jβlk{Pj, Pk} = 2
∑

S(l, j,k)

βl jβlkPjPk = 0, (27)

where S(l, j, k) is the set of indices satisfying j < k and

[Pj, Pk] = 0. Each term here is nonzero, so the condition must

be enforced by cancellation of pairs, i.e., due to relations of

the form

βl jβlkPjPk + βlsβlrPsPr = 0. (28)

This can only be true if |βl jβlk| = |βlsβlr |, and so this pos-

sibility of term reduction depends on the details of the co-

efficients more sensitively than simply requiring all terms to

anticommute in a particular subset.

Supposing that the conditions on pairs of coefficients are

satisfied, we also require that

PjPk ± PsPr = 0 (29)

(for βl jβlk = ±βlsβlr). Suppose the pairs ( j, k) and (s, r)

have one operator in common, j = s. Then our requirement

is Pk = ±Pr , meaning that ( j, k) and (s, r) are the same pair.

Hence the pairs ( j, k) and (s, r) must be completely distinct.

This implies that PjPk = Pt and ±PsPr = Pt . This is perfectly

possible: for example, if Pk = IX , Pj = XI , Pr = ZZ , and

Ps = YY , then PkPj = XX and PrPs = −XX . We leave further

investigation of this possibility for term reduction to future

work.

D. Total measurement cost estimates

Achieving precision ǫ in the estimate of the expectation

value 〈H〉 requires a statistically significant sample of qubit

measurements for each Pauli term in H . Naively, this requires

approximately |α j |2/ǫ2 measurements for the jth term, where
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α j is its associated weight. However, it was proposed in

[46], and formally proven in [22], that the optimal number

of measurements per term is

M j =
|α j |σ j

ǫ2

(

m
∑

k=1

|αk|σk

)

, (30)

where σ 2
j = 〈P2

j 〉 − 〈Pj〉2 is the operator variance of the jth

term. Using σ 2
j � 1 for all self-inverse operators, the upper

bound for the total number of measurements to estimate the

full Hamiltonian is [22]

M =
m

∑

j=1

M j =

⎛

⎝

1

ǫ

m
∑

j=1

|α j |σ j

⎞

⎠

2

�
�2

ǫ2
, (31)

where � =
∑m

j=1 |α j | is the ℓ1 norm of the Hamiltonian

weights.

Using the standard inequalities

1
√

d
‖x‖1 � ‖x‖2 � ‖x‖1, (32)

for any x ∈ R
d , where ‖ · ‖p denotes the ℓp norm, we may

establish bounds for the value of �2 after transforming the

Hamiltonian via unitary partitioning. We reuse the notation of

Eqs. (19) and (21), so that

H =
m

∑

j=1

α jPj (33)

is the Hamiltonian as given, and

H =
mc
∑

l=1

γlR
†
Sl

PlRSl
(34)

is its form after unitary partitioning. Note that R
†
Sl

Pl RSl
is

self-inverse, so the variances remain bounded by 1. Since the

coefficients associated with each anticommuting set Sl must

be ℓ2 normalized, we have

γ 2
l =

∑

k∈Sl

α2
k . (35)

By abuse of notation, here we use Sl to denote the index set

on which its elements are supported.

Let � be the ℓ1 norm of the weights {α j}m
j=1 as before

and �c be the ℓ1 norm of {γl}mc

l=1. Then, using the right-hand

inequality of Eq. (32), we obtain

�c =
mc
∑

l=1

|γl | =
mc
∑

l=1

√

∑

k∈Sl

α2
k

�

mc
∑

l=1

∑

k∈Sl

|αk|

=
m

∑

j=1

|α j | = �. (36)

Thus �c � �, and in fact this bound is saturated only if no

partitioning is performed at all.

Applying the left-hand inequality of Eq. (32) to the first

line of Eq. (36) yields

mc
∑

l=1

(

1
√

|Sl |
∑

k∈Sl

|αk|
)

� �c. (37)

Let smax = maxl |Sl | be the size of the largest set in the

partition. Then

1
√

smax

mc
∑

l=1

∑

k∈Sl

|αk| =
�

√
smax

� �c. (38)

Bounding the set sizes by smax is fairly tight if they are

all roughly equal, which is both desirable (since the gate

complexity scales with the set size) and always possible (one

may take a large set and simply divide it into smaller ones,

which remain fully anticommuting). Roughly speaking, the

number of measurements Mc may be thought of as being

lower bounded by M/smax, although this is not the whole story,

since � (resp. �c) is itself an upper bound estimate for M

(resp. Mc). Equation (38) gives only an approximate sense for

the maximum amount of measurement reduction possible by

unitary partitioning when taking into account the statistical

repetitions.

It is worth noting that this lower bound is saturated when

|α j | = |αk| ∀ j, k. In fact, a weaker condition saturates the

tighter bound of Eq. (37). There we require only that |α j | =
|αk| ∀ j, k ∈ Sl for each l—that is, the coefficient magnitudes

are uniform within each set. Supposing that this approxi-

mately holds, and again that all |Sl | are roughly the same,

yields �c ≈ �/
√

smax.

Thus partitioning with additional constraints respecting

these coefficient conditions may result in more measurement

reduction, without requiring any additional coherent rotations.

The partitioning algorithm would then require significantly

more classical computational resources, as this is now a

weighted graph coloring problem, but in principle these ideas

may be implemented straightforwardly. For the analysis in the

following section, we focus only on the number of unique

Hamiltonian terms before and after partitioning as a rough

estimate for the amount of measurement reduction achieved

by our method.

III. PRELIMINARY APPLICATIONS

A. Transverse-field Ising model in one dimension

To give a simple realization of these ideas we consider

the transverse-field Ising model (TIM) on a one-dimensional

lattice with L sites and periodic boundary conditions:

H =
L

∑

j=1

(Z j+1Z j + xX j ). (39)

No pair of Z terms and no pair of X terms can be in the same

anticommuting set, so we choose pairs of anticommuting

operators composed of Z j+1Z j and X j+1. We then write

Z j+1Z j + xX j+1I j =
√

1 + x2

(

Z j+1Z j + xX j+1I j√
1 + x2

)

. (40)
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From Eqs. (11) and (12) we define the operator

R j = exp

(

iθ

2
Yj+1Z j

)

(41)

= CNOT( j+1, j) × exp

(

iθ

2
Yj+1I j

)

, (42)

where θ is given from Eq. (17)

x
√

1 + x2
cos θ =

1
√

1 + x2
sin θ. (43)

Our final Hamiltonian decomposition is then

H =
L

∑

j=1

[R†
j Z jZ j+1R j]. (44)

Whereas our initial Hamiltonian had 2L terms, our final

Hamiltonian has L terms.

B. TIM on arbitrary graphs

If we consider transverse Ising Hamiltonians defined on

arbitrary graphs, the analysis does not change substantially.

The maximum size of a totally anticommuting set is still 2,

independent of the graph, because once a single local Xi is

included in the set, one can include only one ZiZ j term in

the set. Hence, the number of terms in a transverse Ising

Hamiltonian on a general graph with vertex set V and edges

E can be reduced from |E | + |V | to |E |. This cannot change

the asymptotic scaling of the number of terms as a function of

the number of vertices. In particular, for regular graphs with

degree q the number of edges is |V |q/2 and the number of

terms in the transverse Ising model Hamiltonian is |V |(1 +
q/2), which can be reduced to |V |q/2, a constant factor

improvement of q/(q + 2). Note that this case includes lattice

models. The relative lack of performance here is due to the

presence of little anticommutative structure in the operators

of the transverse-field Ising model.

C. Compatibility graphs of random Hamiltonians

Randomly choosing Pauli terms from the complete set of

n-qubit Pauli observables corresponds to selecting a subset

of the vertices of the full compatibility graph of all Pauli

observables. The resulting compatibility graphs can only be

subgraphs of this graph, which has a finite geometric structure

considered in [47]. Therefore randomly sampling Pauli terms,

resulting in an edge in the compatibility graph with given

probability, say p, does not result in Erdős-Rényi random

graphs given by populating edges with probability p. The

constraint that the graphs arising be subgraphs of the full com-

patibility graph of all Pauli operators causes this deviation.

However, for large numbers of qubits, fixed locality of

operators, and a number of Pauli terms scaling polynomially

with the number of qubits, the probability that a randomly

sampled pair of Pauli operators commutes should approach 1

with increasing n. In this limit the compatibility graph will

be closely approximated by a polynomially sized complete

subgraph of the exponentially large compatibility graph of

all Pauli operators on n qubits, with a few edges missing.

Asymptotically, we expect that the number of colors required

will tend to the chromatic number of the complete graph,

which is equal to the number of vertices.

As we shall see in Secs. III D and III E, for any fixed

random k-local Hamiltonian we may write the probability that

a randomly sampled pair of terms commute as

pc ≃ 1 −
const

n
. (45)

The chromatic number of almost all such graphs will be

proportional to n, and hence we expect at most a constant

factor reduction in the number of terms [48]. The problem of

finding commuting cliques of related graphs was discussed in

[25]. Here we study the problem from the context of finding

anticommuting sets for unitary partitioning.

D. Random 2-local Pauli Hamiltonians

Consider a 2-local Pauli Hamiltonian defined on an Erdős-

Rényi random interaction graph with n vertices and |E | edges.

A term in the Hamiltonian corresponds to an edge in the set

E and a sample drawn uniformly at random from {X,Y, Z}⊗2.

We choose Hamiltonians with only one term per edge. Two

terms corresponding to edges e1 and e2 from such a Hamilto-

nian anticommute if

(1) e1 	= e2,

(2) |e1

⋂

e2| = 1.

What is the probability that |e1

⋂

e2| = 1? There are n − 2

vertices connected to each vertex of e1 that form edges with

|e1

⋂

e2| = 1. There are therefore 2(n − 2) of the n(n − 1)/2

possible edges that give |e1

⋂

e2| = 1 for any given e1. The

probability of such an incidence is therefore pe = 4(n −
2)/[n(n − 1)].

What is the probability that two terms intersect on one

qubit and do not commute? There are nine operators that can

be associated with an edge. Examination of this set gives a

probability of 2/3 that tensor factors incident on the same

vertex disagree. Given a pair of edges from the interaction

graph, i.e., a pair of terms in the Hamiltonian, the probability

that the associated operators anticommute is therefore

pa =
8

3n

n − 2

n − 1
. (46)

We now analyze the coloring of an Erdős-Rényi random

graph in which edges are populated independently with prob-

ability p [49]. As noted above, the compatibility graphs of

random Pauli Hamiltonians cannot be Erdős-Rényi, but in the

limit of large numbers of qubits we expect these results to be

asymptotically correct. Our procedure for defining a random

2-local Pauli Hamiltonian has given us a probability 1 − pa

that an edge is present in the compatibility graph, because

Pauli operators either commute or anticommute.

Almost every random graph with m vertices drawn from an

ensemble where the probability of an edge between any pair

of vertices is 1 − pa has chromatic number [48]

χ =
(

1

2
+ o(1)

)

ln
1

pa

m

ln m
. (47)

This immediately enables us to characterize the performance

of our method on random 2-local Hamiltonians. Suppose the

number of terms rises as a power τ of the number of qubits
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m = O(nτ ). Then the fractional improvement mc/m in the

number of terms in the Hamiltonian will be

mc

m
=

(

1

2
+ o(1)

)

ln
3n(n − 1)

8(n − 2)

1

τ ln n
. (48)

This implies that we should expect a reduction in the number

of the terms in the Hamiltonian by a constant factor of about

2τ .

E. Random k-local Hamiltonians

To choose a random interaction hypergraph of a k-local

Hamiltonian we choose m independent k-tuples of qubit labels

between 1 and n. We then uniformly randomly assign one of

the 3k Pauli operators of weight k to that k-tuple. Let S1 and

S2 be two sets of k qubits. Given tuple S1 there are

NI =
(

n − k

k − I

)(

k

I

)

(49)

tuples S2 with I � |S1 ∪ S2|, where 0 � I � k. Summing over

I recovers all k-tuples, by the Chu-Vandermonde identity. The

probability of tuples S1 and S2 intersecting on I qubits is

therefore

pI =
(

n

k

)−1(
n − k

k − I

)(

k

I

)

. (50)

Given that the tuples S1 and S2 intersect on I qubits, what

is the probability that they commute? Let the Pauli factors of

S1 and S2 be identical on a subset of their intersection of size

σ and otherwise every pair of tensor factors in the intersection

disagrees. The total number of pairs of Pauli operators on the

intersection is 9I . The number of Pauli operators identical on

σ qubits is

tI,σ = 3σ

(

I

σ

)

3I−σ 2I−σ , (51)

which is obtained by multiplying the 3σ Pauli operators

common to the subset of σ qubits by the number of subsets

of size σ and the number of distinct assignments to pairs of

tensor factors in the complement of the subset of size σ . The

total number of Pauli operators is then given by

9I =
I

∑

σ=0

6I

2σ

(

I

σ

)

. (52)

In order that a pair of operators commutes, the size of the

complement of the identical set must be even. That is,

p(I )
c =

(

2

3

)I
∑

I−σ even

1

2σ

(

I

σ

)

=
1

2

(

1 +
1

3I

)

. (53)

The overall probability that a pair of tuples commutes is

therefore

pc =
∑

I

pI p(I )
c =

∑

I

pI

2

(

1 +
1

3I

)

. (54)

For k = 2 we recover Eq. (46). For k = 3 we obtain

pc = 1 −
1

n(n − 1)(n − 2)

(

3n2 − 13n −
134

3

)

. (55)

Higher values of k can be obtained from Eq. (54). The

expression in Eq. (54) justifies the use of coloring bounds for

Erdős-Rényi random graphs for large numbers of qubits when

the expression of Eq. (54) limits to Eq. (45).

IV. ELECTRONIC STRUCTURE HAMILTONIANS

Quantum chemistry simulations are expected to be an im-

portant use of variational quantum algorithms [50]. The goal

is to find the eigenvalues and eigenvectors of the molecular

electronic Hamiltonian,

H =
∑

p,q

hpqa†
paq +

1

2

∑

p,q,r,s

hpqrsa
†
pa†

qaras, (56)

where a†
p and ap are fermionic creation and annihilation opera-

tors acting on the space spanned by molecular spin orbitals χp.

For computational purposes, this basis set is truncated to the

first N orbitals. The fermionic operators satisfy the canonical

anticommutation relations

{a†
p, a†

q} = {ap, aq} = 0,

{ap, a†
q} = δpq1. (57)

The weights hpq and hpqrs are defined as

hpq = δσpσq

∫

d3r χ∗
p (r)

(

−
∇2

2
−

∑

I

ζI

|r − RI |

)

χq(r),

(58)

hpqrs = δσpσs
δσqσr

∫

d3r1d3r2

χ∗
p (r1)χ∗

q (r2)χr (r2)χs(r1)

|r1 − r2|
,

(59)

where r denotes the electronic spatial coordinates, σp ∈ {↑
,↓} is the spin value of the pth orbital, and {RI}I and {ζI}I

are the molecule’s classical nuclear positions and their as-

sociated charges, respectively. These spatial integrals can be

efficiently precomputed on a classical computer. For use in

a quantum algorithm, the Hamiltonian is then transformed

to a weighted sum of Pauli strings using a fermion-to-qubit

encoding, such as the Jordan-Wigner [51], Bravyi-Kitaev

[34,35,52], or other similar [53] mappings. For the former

two encodings, the number n of qubits is the same as the

number N of molecular spin orbitals. The expectation value

of each Pauli string is measured independently. The power

of this approach stems from the ability to prepare ansatz

states that cannot be efficiently constructed on a classical

computer; these are typically derived from a unitary coupled

cluster ansatz [54–56]. This allows for efficient computation

of high-precision eigenvalues, which has importance when

considering calculations that require such precision, such as

reaction kinetics and dynamics.

Implementation of this procedure for chemical systems

at the desired accuracy is challenging. For chemistry, the

required precision is typically considered to be a constant

1 kcal/mol, or 1.6 mHa. This level of precision is roughly

commensurate with that obtained by experimental techniques

in thermochemistry. Recall from Eq. (30) that the number of

independent measurements that must be performed to esti-

mate the expectation value of a single term with weight h to

precision ǫ is O(�|h|/ǫ2). For chemical accuracy, this means
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that each term requires on the order of hundreds of thousands

of independent measurements, each of which requires a sepa-

rate ansatz preparation stage. This must be repeated for each

step of the variational optimization, for each of the O(N4)

terms in the molecular Hamiltonian (noting that using the

Jordan-Wigner transformation requires up to 16 Pauli strings

for each term). As such, this quantum chemistry problem has

recently garnered much interest with regard to reducing VQE

measurement costs [21,23,26–30]. The term reduction strat-

egy discussed in Sec. II appears a promising way to reduce

the overall resources required by utilizing available coherent

computational resources subsequent to ansatz preparation.

In the absence of restrictions on the length of circuits

that can be performed coherently, the term reduction strategy

reduces the number of expectation values that must be inde-

pendently estimated, going from the number of Hamiltonian

terms to the number of fully anticommuting sets of terms. The

main task is therefore to partition the Hamiltonian into such

sets. The effectiveness of this term reduction strategy can be

quantified by examining the number of fully anticommuting

sets for a given Hamiltonian with respect to both the number

of orbitals and the total number terms in the unmodified

Hamiltonian. In Sec. IV B, we show that it is always pos-

sible to reduce the number of terms from O(N4) to at most

O(N3) for any electronic structure Hamiltonian. In Sec. IV C,

we perform numerical studies using specific molecules and

compare the results to our analytic construction. We also

consider how the constraint of circuit size affects one’s ability

to construct such partitions. Finally, in Sec. IV D we examine

such Hamiltonians in the plane-wave dual basis introduced

in [21] and observe a constant factor reduction of terms by

unitary partitioning.

A. Majorana operators

The approach we take here will be agnostic to the choice

of qubit encoding. However, in order to partition the terms

into completely anticommuting sets, it will be convenient to

express them using Majorana operators. This is because they

place all the fermionic operators on an equal footing, are

Hermitian and unitary, and obey a single anticommutation

relation. Here we briefly review the properties of these op-

erators essential for our analysis. The single-mode Majorana

operators are defined from the fermionic modes as

γ2p = ap + a†
p,

γ2p+1 = −i(ap − a†
p). (60)

In this formalism, the anticommutation relations of Eq. (57)

become

{γ j, γk} = 2δ jk1. (61)

These 2N single-mode operators generate a basis (up to phase

factors) for the full algebra of Majorana operators via arbitrary

products, i.e.,

γA =
∏

j∈A

γ j, (62)

where A ⊆ {0, . . . , 2N − 1} is the support of γA. From

Eq. (61), it is straightforward to show that the anticommu-

tator between two arbitrary Majorana operators γA and γB is

determined by their individual supports and their overlap:

{γA, γB} = [1 + (−1)|A||B|+|A∩B|]γAγB. (63)

This relation provides a clear picture of how to construct

fully anticommuting sets of fermionic operators. Since the

electronic Hamiltonian contains only terms of quadratic and

quartic order, we restrict our attention to even-parity products.

In this setting, we only need to examine the overlap of the

Majorana operators’ supports: if |A ∩ B| is odd (i.e., the two

operators share an odd number of single-mode indices), then

they anticommute.

B. Linear reduction in terms

Since there are no spin interaction terms in our Hamilto-

nian, we can always choose molecular orbital basis functions

χp which are real-valued. With this, it follows that hpq, hpqrs ∈
R, and in particular, we have the permutational symmetries

hpq = hqp, (64)

hpqrs = hsqr p = hprqs = hsrqp. (65)

Furthermore, the canonical anticommutation relations give

a†
pa†

qaras = a†
qa†

pasar , which implies that

hpqrs = hqpsr, (66)

for a total of eight permutational symmetries in the two-

body integrals. Using these symmetries and the generalized

anticommutation relation, Eq. (63), one can rewrite the Hamil-

tonian using Majorana operators as

H = h̃1 +
∑

p,q

h̃pqiγ2pγ2q+1

+
1

2

∑

p, q, r, s

p 	= q; r 	= s

h̃pqrsγ2pγ2qγ2r+1γ2s+1. (67)

We refer the reader to Appendix A 2 for the details of this

derivation. The redefined weights h̃, h̃pq, and h̃pqrs are given

in Eq. (A31). For our present analysis, the only relevant detail

here is that each term features an equal number of even and

odd indices in its support. In principle, any such combination

of terms may appear in the Hamiltonian. In this form, it

becomes clear that there are up to N2 quadratic terms and
(

N

2

)2

quartic terms.

Furthermore, since the single-mode Majorana operators

are Hermitian, there is a one-to-one correspondence between

Majorana operators and the respective Pauli strings obtained

after a fermion-to-qubit transformation (for encodings that

preserve the number of orbitals as the number of qubits). For

instance, in the Jordan-Wigner encoding, we have

γ2p = XpZp−1 · · · Z0,

γ2p+1 = YpZp−1 · · · Z0. (68)

Since the single-mode Majorana operators simply become

Pauli strings, arbitrary products of them remain single Pauli

strings. In contrast, if one were to deal with the fermionic

operators directly, a single a†
pa†

qaras term would generate a
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linear combination of up to 16 unique Pauli strings. By writing

the Hamiltonian in terms of Majorana operators, we have

not circumvented this overhead, but rather, we have explicitly

incorporated it into our term counting while remaining encod-

ing agnostic. In particular, many cancellations and simplifi-

cations may occur between the transformed terms, yielding

the expression given above in Eq. (67). Also note that any

anticommuting partition in the Majorana formalism remains

valid after a qubit transformation, since the anticommutation

relations are preserved.

Recall from Eq. (63) that we had determined that every pair

of terms anticommutes if and only if their supports intersect an

odd number of times. This fact, along with the specific form

of the terms appearing in Eq. (67), is crucial for showing that

it is always possible to partition this Hamiltonian into at most

O(N3) completely anticommuting sets.

We note that very recent results have made similar findings.

In [30], it was observed that at least �(N3) sets would be

necessary to divide the set of all quartic Majorana operators

rather than the specific terms appearing in electronic structure

Hamiltonians. Meanwhile, in [32], an algorithm was pre-

sented which partitions electronic structure terms into O(N3)

completely commuting sets. The analysis presented there

specifies the Jordan-Wigner encoding but does not assume any

of the permutational symmetries in the hpq, hpqrs coefficients.

We now prove our claim by providing an explicit construc-

tion of such a partition.

Theorem 1. Let

M = {γ2pγ2qγ2r+1γ2s+1 | p < q and r < s} (69)

be the set of all possible quartic Majorana operators appear-

ing in the electronic structure Hamiltonian. For each triple

(q, r, s) ∈ {0, . . . , N − 1}3 satisfying r < s, define

S(q,r,s) = {γ2pγ2qγ2r+1γ2s+1 | p < q}. (70)

These sets S(q,r,s) are completely anticommuting, and they

form a partition of M. Furthermore, there are O(N3) such

sets.

Proof. By construction, all elements of S(q,r,s) share sup-

port on exactly three indices; hence they all pairwise anticom-

mute, per Eq. (63). It is also straightforward to see that these

sets form an exact cover of M:

|S(q,r,s) ∩ S(q′,r′,s′ )| = q δqq′δrr′δss′ , (71)

⋃

q, r, s

r < s

S(q,r,s) = M. (72)

There are
(

N

2

)

values that the pair (r, s) can take and N − 1

values that q can take (q = 0 yields the empty set, which we

ignore). A slight optimization arises from the observation that

the union S(1,r,s) ∪ S(2,r,s) remains a completely anticommut-

ing set. Hence there are a total of
(

N

2

)

(N − 2) = O(N3) such

sets. �

We refer the reader to Appendix B for further details of

the above proof. Although there are only O(N2) quadratic

terms, hence not affecting the asymptotic scaling of Theorem

1, they can in fact be included in the above construction with

no additional overhead. Intuitively, since there are at most N2

such operators which need to be placed into O(N3) sets, one

has a great deal of freedom in how to allocate them. As one

example, consider the set

Tp = {iγ2pγ2q+1 | 0 � q � N − 1} (73)

for some fixed p. Then all the elements of Tp anticommute

with all of some S(p,r,s), except for those with q = r or q = s.

The new completely anticommuting set then becomes

S(p,r,s) ∪ Tp \ {iγ2pγ2r+1, iγ2pγ2s+1}, (74)

and those two excluded operators can be placed with any other

S(p,r′,s′ ), where all of r, r′, s, and s′ are different:

S(p,r′,s′ ) ∪ {iγ2pγ2r+1, iγ2pγ2s+1}. (75)

Since there are N such sets Tp, this procedure combines all

possible N2 quadratic operators with only 2N of the preexist-

ing sets of quartic operators.

We emphasize that the partition presented here is not an

optimal solution to the problem. Rather, it demonstrates that

even in the worst case one can always achieve term reduction

by at least a factor of O(N ). For a practical demonstration,

we now move to numerical studies of specific molecular

Hamiltonians.

C. Pauli-level coloring and numerics

The above analysis demonstrates a reduction in difficulty

of VQE by considering the number of fully anticommuting

sets of terms in the electronic Hamiltonian. Equivalently, we

may consider fully anticommuting sets of terms at the level

of Pauli strings, i.e., subsequent to transforming the electronic

Hamiltonian with, for example, the Jordan-Wigner or Bravyi-

Kitaev mappings. This approach could hold advantage by

allowing the combination of duplicate strings and allowing

the combination of anticommuting Pauli subterms between

different fermionic terms. However, once the fermion-to-qubit

mapping is applied, the natural symmetries of the spatial-

molecular-orbital integrals are embedded into a complex

structure. Moreover, the anticommutativity structure of the

resulting Pauli terms is difficult to predict. As such, we turn to

numerical methods.

The key metric here is the number of fully anticommuting

sets in the Pauli Hamiltonian. As discussed in Sec. II A, this is

equivalent to a coloring of the compatibility graph—the graph

composed of nodes corresponding to terms, with edges drawn

where terms commute. Optimal graph coloring is an NP-hard

problem [57], but many approximate algorithms exist [58].

While minimizing the number of sets is advantageous for re-

ducing the number of measurements needed, an approximate

solution is sufficient, and diminishing returns are obtained

from improving the quality of the approximation.

In order to assess whether this strategy is viable for molec-

ular Hamiltonians, we generated coloring schemes for 65

Hamiltonians (previously used in Refs. [59,60] and described

in Appendix C). Geometry specifications were obtained from

the NIST CCBDB database [61]. Molecular orbital integrals

in the Hartree-Fock basis were gathered using the PSI4 pack-

age [62] and OPENFERMION [63]. Our code was then used

to generate Jordan-Wigner and Bravyi-Kitaev Hamiltonians,
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FIG. 1. Number of fully anticommuting sets for electronic struc-

ture Hamiltonians vs the number of terms in the full Pauli Hamilto-

nian using the greedy independent sets strategy. The number of fully

anticommuting sets is at least an order of magnitude less than the

number of terms. The Jordan-Wigner and Bravyi-Kitaev mappings

perform almost equivalently.

which were divided into anticommuting subsets using the NET-

WORKX PYTHON package [64] and the greedy independent sets

strategy [58]. As our focus was on quantifying whether the

term reduction technique is viable, alternative coloring strate-

gies were not considered; such an analysis was performed in

[26]. Our coloring strategy here is relatively computationally

expensive, limiting our analysis to a maximum of 36 spin

orbitals, with only three systems involving 30 or more. While

our code is unoptimized and can likely be improved upon, this

does indicate that it would be difficult to extend this approach

to larger systems. The Majorana-based scheme of Sec. IV B

was also used to partition the Hamiltonians. In contrast to

the greedy coloring strategy, this does not require extensive

classical computational resources.

Figure 1 shows the number of fully anticommuting sets

obtained versus the number of terms in the Hamiltonian. The

number of fully anticommuting sets is approximately an order

of magnitude less than the number of terms. The choice of

Jordan-Wigner and Bravyi-Kitaev mapping does not appear

to meaningfully affect the number of fully anticommuting

sets found, as the anticommutativity structure is dependent

on the underlying molecular Hamiltonian. Encouragingly, the

agreement demonstrated here by Fig. 1 suggests that the

greedy independent set strategy is finding close-to-optimal

colorings.

The results for both partitioning schemes against the num-

ber of spin orbitals are depicted in Fig. 2. Both the numerical

implementation of the Majorana-based construction and the

greedy coloring scheme prove to be consistently effective.

Beyond the smallest Hamiltonians, a roughly linear trend

between the number of sets found and the number of Hamil-

tonian terms is observed, demonstrating that the asymptotic

improvement discussed in Sec. IV B can be achieved when

using numerical approaches to coloring Pauli Hamiltonians.

The numerical Majorana results, and the greedy coloring

strategy, consistently outperform the analytic upper bound,

as expected. This may be attributed primarily to the sparsity

in the hpq and hpqrs weights due to geometric molecular

symmetries and the locality of the basis functions. The ratio

of the number of terms to the number of sets also appears

to increase linearly with the number of spin orbitals (albeit

with high variance), in agreement with the scaling properties

discussed in Sec. IV B.

The greedy coloring scheme yields roughly a factor of 10

improvement over the numerical Majorana scheme, suggest-

ing that it may be of substantial use in NISQ VQE experi-

ments. However, it should be emphasized that the substantial

classical computing resources required may inhibit its use

for systems with more spin orbitals. The Majorana-based

scheme demonstrates the same term reduction scaling but with

substantially reduced classical overhead.

Although these results are promising, they do not con-

sider the difficulty of performing the additional coherent

operations required for the term recombination procedure.

In principle, our analytic construction of anticommuting sets

FIG. 2. Number of fully anticommuting sets for electronic structure Hamiltonians vs the number of spin orbitals using the Jordan-Wigner

mapping. Left: Including all partitioning schemes. The “Majorana analytic” curve is the
(

N

2

)

(N − 2) upper bound obtained from (1) for generic

Hamiltonians of Eq. (67). The “Majorana numeric” data points correspond to the partitions described in Sec. IV B without further optimization.

This upper bound is loose due to sparsity in the molecular Hamiltonians vs the set of all possible terms. Right: Ratio of the number of terms

to the number of anticommuting sets for systems with more than five spin orbitals. A roughly linear trend is observed, in agreement with the

analytic scaling discussed in Sec. IV B.
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FIG. 3. Resource requirements for full and partial term reduction using the greedy algorithm for partitioning. Left: Average post-ansatz

gates required for full term reduction. Whiskers denote one standard deviation in the length of the circuit required for each anticommuting

partition in the Hamiltonian. The growth in circuit length is dramatically slower than the growth in the number of Hamiltonian terms

but displays high variance between anticommuting sets. Right: Reduction in the number of required independent expectation values given

restrictions on maximum individual circuit length. With highly restricted circuit lengths, term recombination is largely impossible. However,

roughly 1000 additional gates at most are sufficient to perform near-maximal term reduction for the molecules considered here (up to 36 spin

orbitals), which is in agreement with the figure to the left.

in Sec. IV B requires only O(N ) depth circuits under the

Jordan-Wigner mapping. This can be shown using well-

known gate-compiling techniques [65,66]. Figure 3 shows

that the length of the circuits grows slowly in comparison to

the amount of terms in the Hamiltonian. However, near-term

quantum devices are likely to be heavily constrained in the

number of operations that can be performed coherently. As

such, it is likely that it will not be possible to combine entire

sets of anticommuting terms. Crucially, however, the term

recombination procedure can be applied to subsets of the fully

anticommuting sets. Provided the available coherent resources

can be quantified prior to execution of the circuits, subsets of

terms can be found to maximally use such resources to reduce

the overall number of measurements required. This yields

a hardware-dependent tunable parameter—for example, the

number of gates that can be implemented coherently subse-

quent to ansatz preparation—introduced at compile time. This

parameter allows for optimal use of the quantum resources

provided by a given hardware option.

In order to assess the implications of varying such a param-

eter, we generated circuits corresponding to the implementa-

tion of the term reduction procedure for each Hamiltonian,

introducing a maximum post-ansatz preparation gate count

parameter. For simplicity, these circuits used the standard

method of implementing exponentiated Pauli strings given in

Sec. II A rather than the ALCU circuits of Sec. II B. Where

circuits exceeded this length, the corresponding anticommut-

ing set was split in half and new circuits were generated.

This binary splitting process was iterated until sufficiently

short circuits were found. Adjacent self-inverse gates were

canceled, moving through commuting gates where necessary

[66]. For verification purposes, we calculated the expectation

values with the true ground state of the Hamiltonians pre-

dicted by the circuits for systems with less than ten qubits.

As the results presented in Fig. 2 suggest that there is little

difference between Jordan-Wigner and Bravyi-Kitaev circuits,

we considered only Jordan-Wigner circuits.

Figure 3 shows the results of this process. Using a max-

imum circuit length of 10 000 gates subsequent to ansatz

preparation allows all anticommuting sets, in all Hamiltoni-

ans, to be combined. Allowing only 10 gates removes any

possibility of term recombination. Encouragingly, allowing

100 gates does not dramatically impede term recombination.

Even for the longest circuit considered, using 100 gates allows

for a reduction in terms by a factor of over 2. Allowing

1000 post-ansatz gates similarly performs as well as full

anticommuting set recombination in all systems apart from

the bromine atom; in this instance, the difference between the

1000- and 10 000-gate decompositions is minor.

Our choice of allowable circuit length here is intended to

be illustrative of the practicality of the term recombination

procedure. In a true simulation, the maximum post-ansatz

gates parameter should be set to a value that is empirically

determined by the ability of the hardware and should not be

restricted to an integer power of 10. Given the relatively low

gate counts required for substantial improvement with regard

to the number of terms, the results here strongly suggest

that this approach is an effective way of reducing the over-

all runtime of variational quantum algorithms for electronic

structure.

D. The plane-wave dual basis

The use of a plane-wave basis is well established for

condensed-matter systems. The plane-wave and plane-wave

dual basis was recently used in the context of quantum simu-

lation of quantum chemistry to express the Hamiltonian with

a number of terms scaling quadratically with the number of

basis functions [21]. While suitable for periodic systems, the

plane-wave dual basis requires a constant factor of additional

spin orbitals to achieve the same accuracy as Gaussian-type

orbitals for nonperiodic systems such as molecules. Thus

the choice of basis set depends highly on the system under

consideration, especially for near-term applications.
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The qubit Hamiltonian obtained from the Jordan-Wigner

transformation is (see Eq. (9) in [21])

H =
∑

p, σ

ν 	= 0

⎛

⎝

π

� k2
ν

−
k2
ν

4 N
+

2π

�

∑

j

ζ j

cos[kν · (R j − rp)]

k2
ν

⎞

⎠Zp,σ

+
π

2 �

∑

(p, σ ) 	= (q, σ ′ )
ν 	= 0

cos[kν · rp−q]

k2
ν

Zp,σ Zq,σ ′

+
1

4 N

∑

p 	= q

ν, σ

k2
ν cos[kν · rq−p]Xp,σ Zp+1,σ · · · Zq−1,σ Xq,σ

+
1

4 N

∑

p 	= q

ν, σ

k2
ν cos[kν · rq−p]Yp,σ Zp+1,σ · · · Zq−1,σYq,σ

+
∑

ν 	=0

(

k2
ν

2
−

π N

� k2
ν

)

1. (76)

The labels p run over N basis functions, and so by inspection

we see that the number of terms in the Hamiltonian is O(N2).

Also by inspection, we can identify a set of N2 commuting

operators Zp,σ Zq,σ ′ . Thus, we can immediately conclude that

unitary partitioning cannot reduce the asymptotic number of

terms in this Hamiltonian.

However, we may use unitary partitioning to reduce the

number of terms by a constant factor. We can identify sets of

anticommuting terms from Eq. (76) as follows. Define the sets

Ap = {Zp} ∪ {Xp−1Xp} ∪ {YpYp+1}
∪ {YpZ[p+1,p+l+1]Yp+l+2 | 0 � l � N − p − 3}
∪ {XlZ[l+1,p−1]Xp | 0 � l � p − 2}. (77)

There are N operators in each set Ap, all of which pairwise

anticommute. All sets Ap are distinct, and so unitary

partitioning can reduce each set Ap to a single term. This

results in a fractional reduction in the number of terms of

(2N + 1)/(4N − 1), giving an asymptotic reduction in the

number of terms by a factor of 2.

V. NONCONTEXTUAL HAMILTONIANS

In Ref. [41], contextuality of a Pauli Hamiltonian is defined

as the condition under which it is impossible to consistently

assign values to the Pauli terms in the Hamiltonian. Contex-

tuality, if present, is a manifestation of nonclassicality of the

Hamiltonian. Contextuality of a Hamiltonian is determined by

the following criterion on the set S of Pauli terms [41]: First,

let Z ⊆ S be the set of terms that commute with all other

terms, and let T ≡ S \ Z . Then S is noncontextual if and

only if commutation is an equivalence relation on T . In other

words, if and only if S is noncontextual, T partitions into a

union of disjoint cliques C1,C2, . . . ,CN such that operators

in different cliques anticommute, while operators in the same

clique commute (so in the graph-theoretic sense these are

cliques in the compatibility graph).

We now show that, using the term reduction technique

presented above, we can map any noncontextual Hamiltonian

to a commuting Hamiltonian. First, as shown in [41], we can

check that the Hamiltonian is noncontextual in O(|S|3) time.

Given that the Hamiltonian is noncontextual, we know that it

has the structure described above: we can find the cliques Ci

as well as Z in O(|S|2) time.

To map these terms to a commuting set, find a largest

clique, and without loss of generality let it be C1. Then

construct a set D1 by selecting exactly one element from each

of the Ci (D1 is a minimal hitting set on the Ci). Similarly,

construct D2 by selecting exactly one element from each of

the Ci after removing the elements in D1, and so forth, until

we have covered T with disjoint sets D1, D2, . . . , DM , where

M = |C1|. Letting Ci j denote the jth element of Ci, we may

visualize the D j as

D1 D2 · · · DM

C1 C11 C12 · · · C1M

C2 C21 C22 · · · · · ·
...

...
...

. . .
...

CN CN1 · · · · · · · · ·

. (78)

Since C1 is a largest clique, it is guaranteed to have nonempty

intersection with all of the sets D j . Elements of different

cliques anticommute, so each of the D j is completely anti-

commuting. Therefore, we can use the techniques described in

Secs. II A and II B to construct Pauli rotations RD j
that map the

operators in each D j to the operator C1 j , the single operator in

D j ∩ C1.

The resulting Hamiltonian has terms Z ∪ C1, which com-

mute, since by definition the operators in Z commute with

all operators in S , and the operators in C1 also commute

with each other. Thus any noncontextual Hamiltonian may be

mapped to a set of commuting terms that form an effective

commuting Hamiltonian, using as a resource only the ability

to append the additional Pauli rotations RD j
to the state

preparations as in Eq. (21). It is important to note, however,

that the commuting Hamiltonian is not unitarily equivalent to

the noncontextual Hamiltonian, since the rotations required to

map each set D j to a single operator vary with j.

VI. CONCLUSIONS

In this paper we have discussed unitary partitioning—the

technique for using anticommuting sets of Hamiltonian terms

to reduce the number of measurements needed when per-

forming variational quantum algorithms. Applying this tech-

nique to transverse Ising models and random Hamiltonians

resulted in a constant factor improvement in the number of

independent expectation value estimations required. However,

applying the technique to electronic structure Hamiltonians

yielded greater reduction, scaling linearly with the number of

qubits.

The dramatic growth in the number of independent expec-

tation values that must be determined is a key problem in

the use of variational quantum algorithms for quantum chem-

istry in the NISQ era. Due to the nature of the plane-wave

dual-basis representation, in which one defines a basis that

yields only O(N2) nonzero electronic Hamiltonian weights,

we observed only a constant factor reduction in terms with

unitary partitioning. However, using generic molecular orbital
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basis sets, we were able to obtain a reduction that scales

linearly. We proved this result in Sec. IV B and confirmed its

practicality by numerics in Sec. IV C.

We report two strategies for partitioning the electronic

structure Hamiltonian into fully anticommuting subsets. The

first of these, based on expressing the fermionic Hamiltonian

using Majorana operators, demonstrates the favorable scal-

ing properties and can be rapidly performed for even large

numbers of spin orbitals. Conversely, using a greedy coloring

scheme is relatively expensive with regard to classical com-

putational resources but demonstrates an order-of-magnitude

reduction, even for relatively small systems (less than 30

qubits). The latter scheme is likely to be useful in NISQ

applications where systems are small and greedy solutions can

be feasibly computed. The former yields the same scaling,

and is not restricted by the cost of coloring algorithms, but

suffers from a constant factor overhead in the number of

fully anticommuting sets compared to the greedy coloring

method. The availability of post-ansatz coherent resources,

and the relative difficulty of the classical partitioning step,

may determine which scheme is favored.

Finally, in Sec. V we studied the class of noncontextual

Hamiltonians, as defined in [41]. The presence of contextu-

ality in a quantum system provides a barrier to a classical

description of the system. Here we have shown that any non-

contextual Hamiltonian (which lacks this separation from a

classical Hamiltonian) may be transformed into a Hamiltonian

of fully commuting terms using only the rotations developed

in Sec. II A. This result helps us further understand the con-

nection between noncontextual Hamiltonians and commuting

Hamiltonians, and it adds support to the notion that VQE

experiments should focus on contextual Hamiltonians [41].

Our analysis of circuits for implementing the unitary

partitioning procedure indicates that relatively modest

additional coherent resources are required, compared to

those typically needed for ansatz preparation. Crucially, this

optimization is tunable, allowing for optimal use of coherent

resources by hardware-dependent parametrization at compile

time. It is also likely that unitary partitioning is compatible

with other aspects of VQE optimization. For instance, while

we have remained agnostic to the choice of the parameterized

ansatz for this study, the form of the unitaries required to

perform term reduction matches those of popular ansatz

choices, such as the unitary coupled cluster and related

methods [55,56,67]. Thus with proper circuit compilation,

one may significantly reduce the effective number of

post-ansatz operations in practice, instead incorporating

their rotation angles into the appropriate ansatz parameters.

For these reasons, we believe that unitary partitioning could

substantially aid in the use of variational quantum algorithms

for studying classically intractable systems.

ACKNOWLEDGMENTS

The authors would like to thank A. Ralli for productive

discussions. This work was supported by the National Science

Foundation STAQ project (Grant No. PHY-1818914). W.M.K.

additionally acknowledges support from the National Science

Foundation (Grant No. DGE-1842474).

APPENDIX A: CALCULATIONAL DETAILS

In this section we give some derivations of the algebraic

results used in the text.

1. Computation of X for the ALCU method

We now derive the results that follow Eq. (22). The opera-

tor X is given by

X =
i

2
[Hn−1, Pn]

=
i

2

n−1
∑

k=1

βk[Pk, Pn]

= i

n−1
∑

k=1

βkPkPn, (A1)

where we wrote Hn−1 =
∑n−1

k=1 βkPk with
∑n−1

k=1 β2
k = 1. Then

we can compute

X
2 = −

n−1
∑

k=1

n−1
∑

j=1

βkβ jPkPnPjPn

= −
n−1
∑

k=1

β2
k PkPnPkPn −

n−1
∑

k< j

βkβ j{PkPn, PjPn}

= −
n−1
∑

k=1

β2
k PkPnPkPn

=
n−1
∑

k=1

β2
k P2

k P2
n

= 1. (A2)

Now consider the commutator of X and Hn. We can use

X = iHn−1Pn to write

XHn = iHn−1PnHn

= iHn−1Pn(sin φn−1Hn−1 + cos φn−1Pn)

= i(sin φn−1Hn−1PnHn−1 + cos φn−1Hn−1P2
n ). (A3)

Using {Hn−1, Pn} = 0 and P2
n = 1 we have

XHn = i(− sin φn−1Pn + cos φn−1Hn−1), (A4)

so that

[X , Hn] = 2i(− sin φn−1Pn + cos φn−1Hn−1). (A5)

This enables us to compute the adjoint action generated by

X on Hn. Using the identity [for any operators A and B, where

A2 = 1 so that e−i(α/2)A = cos(α/2)1 − i sin(α/2)A]

e−i(α/2)ABei(α/2)A = cos2(α/2)B + sin2(α/2)ABA

+ i sin(α/2) cos(α/2)[A, B], (A6)

we have (R = e−i(α/2)X )

RHnR† = cos2(α/2)Hn + sin2(α/2)XHnX

+ i sin(α/2) cos(α/2)[X , Hn]
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= (cos2 α/2 − sin2 α/2)Hn

+ (i/2)2 sin(α/2) cos(α/2)[X , Hn]

= cos αHn

− sin α(− sin φn−1Pn + cos φn−1Hn−1)

= cos α(cos φn−1Pn + sin φn−1Hn−1)

− sin α(− sin φn−1Pn + cos φn−1Hn−1)

= (cos α cos φn−1 + sin α sin φn−1)Pn

+ (cos α sin φn−1 − sin α cos φn−1)Hn−1

= cos(φn−1 − α)Pn

+ sin(φn−1 − α)Hn−1. (A7)

Choosing α = φn−1 gives RHnR† = Pn. Given this role for R,

which is generated by X , we wish to know the commutation

relations among the terms of X . Because X = 2iPnHn−1, the

terms of X have the form 2iPnPj for j < n. The commutation

relations between any pair of terms are

[PnPj, PnPk] = PnPjPnPk − PnPkPnPj

= −(PnPnPjPk − PnPnPkPj )

= −[Pj, Pk]

= 2PkPj . (A8)

2. Electronic structure Hamiltonian using Majorana operators

Here we derive the form of the Hamiltonian given in

Eq. (67). Since the single-mode Majorana operators are linear

combinations of the fermionic ladder operators, we have the

identities

ap =
γ2p + iγ2p+1

2
, a†

p =
γ2p − iγ2p+1

2
. (A9)

Furthermore, recall the permutational symmetries in the co-

efficients, given by Eqs. (64)–(66), and the anticommutation

relation for arbitrary Majorana operators, Eq. (63). These are

the only properties we use, but they allow for considerable

simplification to the structure of the Hamiltonian terms. For

brevity, we shall make use of such properties freely and often

without comment.

First, consider the one-body terms, which are quadratic in

fermionic operators. Using Majorana operators, they become

∑

p,q

hpqa†
paq =

1

4

∑

p,q

hpq(γ2pγ2q + γ2p+1γ2q+1

+ iγ2pγ2q+1 − iγ2p+1γ2q). (A10)

This expression can be simplified by separating the summa-

tion into diagonal and off-diagonal terms, a technique which

we employ heavily throughout this derivation. The sum over

the γ2pγ2q and γ2p+1γ2q+1 terms simply yields a multiple of

the identity:

∑

p,q

hpq(γ2pγ2q + γ2p+1γ2q+1)

=
∑

p

hpp

(

γ 2
2p + γ 2

2p+1

)

+
∑

p, q

p < q

hpq({γ2p, γ2q} + {γ2p+1, γ2q+1})

= 2
∑

p

hpp1. (A11)

The remaining terms simplify but do not cancel or reduce

in order; by relabeling the indices (another trick which we

make frequent use of), we see that
∑

p,q hpqiγ2pγ2q+1 =
∑

p,q hpqiγ2qγ2p+1, hence

∑

p,q

hpqa†
paq =

1

2

(

∑

p

hpp1 +
∑

p,q

hpqiγ2pγ2q+1

)

. (A12)

Next, we consider the two-body interaction terms, which

feature the quartic order operators. Any such term is written

as a linear combination of 16 Majorana operators. To do so,

define

Ŵx
pqrs = i|x|(−1)x1+x2γ2p+x1

γ2q+x2
γ2r+x3

γ2s+x4
, (A13)

where x = x1x2x3x4 ∈ {0, 1}4 is a binary string encoding the

parity of each index and |x| is its Hamming weight. Then,

from Eq. (A9), a straightforward algebraic expansion gives

the following expression for each two-body term:

a†
pa†

qaras =
1

16

∑

x∈{0,1}4

Ŵx
pqrs. (A14)

Consider the set B1 = {0011, 1100, 0101, 1010}. These

strings correspond to the quartic Majorana operators appear-

ing in Eq. (67), and as we will see, they are the only such

terms which do not vanish. Also, note that since a2
j = (a†

j )
2 =

0, we impose the trivial constraints in the summations that

p 	= q and r 	= s. Specifying these conditions explicitly will

be useful once we relabel the indices. We rewrite these terms

as
∑

p,q,r,s

hpqrsŴ
1100
pqrs = −

∑

p, q, r, s

p 	= q; r 	= s

hpqrsγ2p+1γ2q+1γ2rγ2s

= −
∑

p, q, r, s

p 	= q; r 	= s

hpqrsγ2rγ2sγ2p+1γ2q+1

= −
∑

p, q, r, s

p 	= q; r 	= s

hpqrsγ2pγ2qγ2r+1γ2s+1,

(A15)

and, for x, y ∈ {0, 1} such that x 	= y,
∑

p,q,r,s

hpqrsŴ
xyxy
pqrs =

∑

p, q, r, s

p 	= q; r 	= s

hpqrsγ2p+xγ2q+yγ2r+xγ2s+y

= −
∑

p, q, r, s

p 	= q; r 	= s

hpqrsγ2p+xγ2r+xγ2q+yγ2s+y

= −
∑

p, q, r, s

p 	= r; q 	= s

hpqrsγ2p+xγ2q+xγ2r+yγ2s+y.

(A16)
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Thus we obtain

∑

p,q,r,s

hpqrs

(

∑

x∈B1

Ŵx
pqrs

)

= −2

⎛

⎜

⎜

⎜

⎝

∑

p, q, r, s

p 	= q; r 	= s

+
∑

p, q, r, s

p 	= r; q 	= s

⎞

⎟

⎟

⎟

⎠

× hpqrsγ2pγ2qγ2r+1γ2s+1. (A17)

Since we would like to completely separate the quadratic

terms from the quartic terms, we observe that if p = q or

r = s in the above expression, then those terms reduce to

quadratic order (or the identity, if both equalities hold). The

first summation automatically excludes such reduction, so we

analyze the second one, again separating the diagonal and

off-diagonal summands with respect to each pair (p, q) and

(r, s):

∑

p, q, r, s

p 	= r; q 	= s

hpqrsγ2pγ2qγ2r+1γ2s+1

=
∑

p, q, r, s

p 	= r; q 	= s

p 	= q; r 	= s

hpqrsγ2pγ2qγ2r+1γ2s+1 +
∑

p, r

p 	= r

hpprr1

+
∑

p, q, r

p 	= r; q 	= r

p 	= q

hpqrrγ2pγ2q +
∑

p, r, s

p 	= r; p 	= s

r 	= s

hpprsγ2r+1γ2s+1

=
∑

p, q, r, s

p 	= r; q 	= s

p 	= q; r 	= s

hpqrsγ2pγ2qγ2r+1γ2s+1 +
∑

p, r

p 	= r

hpprr1

+
∑

p, q, r

p 	= r; q 	= r

p < q

hpqrr{γ2p, γ2q} +
∑

p, r, s

p 	= r; p 	= s

r < s

× hpprs{γ2r+1, γ2s+1}

=
∑

p, q, r, s

p 	= r; q 	= s

p 	= q; r 	= s

hpqrsγ2pγ2qγ2r+1γ2s+1 +
∑

p, q

p 	= q

hppqq1. (A18)

So we see that these quadratic terms in fact vanish due to

anticommutation.

Now we show that the remaining 12 cases yield the same

operators as those already obtained in Eq. (A12). Let B2 =
{0000, 0110, 1001, 1111} and x, y ∈ {0, 1}:

∑

p,q,r,s

hpqrsŴ
xyyx
pqrs =

∑

p, q, r, s

p 	= q; r 	= s

hpqrsγ2p+xγ2q+yγ2r+yγ2s+x

=
∑

p, q, r, s

p 	= q; r 	= s

p 	= s

hpqrsγ2p+xγ2q+yγ2r+yγ2s+x

+
∑

p, q, r

p 	= q; r 	= p

hpqr pγ2q+yγ2r+y. (A19)

The second sum simplifies to

∑

p, q, r

p 	= q; r 	= p

hpqr pγ2q+yγ2r+y

=
∑

p, q

p 	= q; r 	= p

q < r

hpqr p{γ2q+y, γ2r+y}+
∑

p, q

p 	= q

hpqqp1=
∑

p, q

p 	= q

hpqqp1.

(A20)

The first sum depends on whether x and y are the same or not.

If x 	= y, then

∑

p, q, r, s

p 	= q; r 	= s

p 	= s

hpqrsγ2p+xγ2q+yγ2r+yγ2s+x

=
∑

p, q, r, s

p 	= q; r 	= s

p < s

hpqrs(γ2p+xγ2q+yγ2r+yγ2s+x

+ γ2s+xγ2q+yγ2r+yγ2p+x )

=
∑

p, q, r, s

p 	= q; r 	= s

p < s

hpqrs(γ2p+xγ2q+yγ2r+yγ2s+x

− γ2p+xγ2q+yγ2r+yγ2s+x ) = 0. (A21)

If x = y, we first observe that if p 	= r and q 	= s, then the sum

vanishes, as demonstrated above. Therefore we have the three

remaining cases (p 	= r and q = s, p = r and q 	= s, and p = r

and q = s):

∑

p, q, r, s

p 	= q; r 	= s

p 	= s

hpqrsγ2p+xγ2q+xγ2r+xγ2s+x

= −
∑

p, q

p 	= q

hpqpq1 −
∑

p, q, r

p 	= q; r 	= q

p 	= r

hpqrqγ2p+xγ2r+x

−
∑

p, q, s

p 	= q; p 	= s

q 	= s

hpqpsγ2q+xγ2s+x

= −
∑

p, q

p 	= q

hpqpq1 −
∑

p, q, r

p 	= q; r 	= q

p < r

hpqrq{γ2p+x, γ2r+x}

−
∑

p, q, s

p 	= q; p 	= s

q < s

hpqps{γ2q+x, γ2s+x}

= −
∑

p, q

p 	= q

hpqpq1. (A22)
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Altogether, the terms corresponding to B2 are just the identity

operator:

∑

p,q,r,s

hpqrs

(

∑

x∈B2

Ŵx
pqrs

)

=
∑

p, q

p 	= q

(4hpqqp − 2hpqpq )1. (A23)

Let B3 = {0010, 0100, 1011, 1101}. These strings give rise to

the same terms, since for x ∈ {0, 1},
∑

p,q,r,s

Ŵx01x
pqrs =

∑

p,q,r,s

hpqrsiγ2p+xγ2qγ2r+1γ2s+x

= −
∑

p,q,r,s

hpqrsiγ2p+xγ2q+1γ2rγ2s+x

=
∑

p,q,r,s

Ŵx10x
pqrs . (A24)

We simplify the sum using the same type of manipulations as

in Eq. (A21):
∑

p,q,r,s

hpqrsiγ2pγ2qγ2r+1γ2s

=
∑

p, q, r, s

p 	= q; r 	= s

p < s; s 	= q

hpqrsi(γ2pγ2qγ2r+1γ2s − γ2pγ2qγ2r+1γ2s)

−
∑

p, q, r

p 	= q; r 	= q

hpqrqiγ2pγ2r+1 +
∑

p, q, r

p 	= q; r 	= p

hpqr piγ2qγ2r+1

=
∑

p, q, r

p 	= r; q 	= r

(hprrq − hprqr )iγ2pγ2q+1. (A25)

Thus we obtain

∑

p,q,r,s

hpqrs

(

∑

x∈B3

Ŵx
pqrs

)

= 4
∑

p, q, r

p 	= r; q 	= r

(hprrq − hpqrr )iγ2pγ2q+1. (A26)

The last set is B4 = {0001, 0111, 1000, 1110}. Again, all four

strings correspond to the same terms. We show this by evalu-

ating, for w, x, y ∈ {0, 1} with w 	= y,
∑

p,q,r,s

Ŵwxxy
pqrs = (−1)w+1

∑

p,q,r,s

hpqrsiγ2p+wγ2q+xγ2r+xγ2s+y

= (−1)w+1
∑

p, q, r, s

p 	= q; r 	= s

q < r

hpqrsi(γ2p+wγ2q+xγ2r+xγ2s+y

− γ2p+wγ2q+xγ2r+xγ2s+y)

+ (−1)w+1
∑

p, q, s

p 	= q; q 	= s

hpqqsiγ2p+wγ2s+y

= (−1)w+1
∑

p, q, r

p 	= r; r 	= q

hprrqiγ2p+wγ2q+y. (A27)

If we order the Majorana product such that the even index

appears first, then the sign of (−1)w+1 cancels with that of

swapping γ2p+w with γ2q+y, and so we have

∑

p,q,r,s

hpqrs

(

∑

x∈B4

Ŵx
pqrs

)

= 4
∑

p, q, r

p 	= r; q 	= r

hprrqiγ2pγ2q+1. (A28)

Finally, we collect all the terms from Eqs. (A17), (A23),

(A26), and (A28), along with the slight simplification in

Eq. (A18), to write the two-body terms as

1

2

∑

p,q,r,s

hpqrsa
†
pa†

qaras

=
1

32

∑

p,q,r,s

hpqrs

⎛

⎝

∑

x∈{0,1}4

Ŵx
pqrs

⎞

⎠

=
1

8

∑

p, q

p 	= q

(

hpqqp − hpqpq

)

1

+
1

8

∑

p, q, r

p 	= r; q 	= r

(2hprrq − hpqrr )iγ2pγ2q+1

−
1

16

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∑

p, q, r, s

p 	= q; r 	= s

+
∑

p, q, r, s

p 	= q; r 	= s

p 	= r; q 	= s

⎞

⎟

⎟

⎟

⎟

⎟

⎠

hpqrsγ2pγ2qγ2r+1γ2s+1.

(A29)

Including the one-body terms, Eq. (A12), we express the

full electronic structure Hamiltonian in terms of Majorana

operators:

H =
1

2

⎡

⎢

⎢

⎢

⎣

∑

p

hpp +
1

4

∑

p, q

p 	= q

(

hpqqp − hpqpq

)

⎤

⎥

⎥

⎥

⎦

1

+
∑

p,q

⎡

⎢

⎢

⎢

⎣

1

2
hpq +

∑

r

p 	= r; q 	= r

(

1

4
hprrq −

1

8
hpqrr

)

⎤

⎥

⎥

⎥

⎦

iγ2pγ2q+1

−
1

16

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∑

p, q, r, s

p 	= q; r 	= s

+
∑

p, q, r, s

p 	= q; r 	= s

p 	= r; q 	= s

⎞

⎟

⎟

⎟

⎟

⎟

⎠

hpqrsγ2pγ2qγ2r+1γ2s+1.

(A30)
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Defining new coefficients as

h̃ =
1

2

∑

p

hpp +
1

8

∑

p, q

p 	= q

(

hpqqp − hpqpq

)

,

h̃pq =
1

2
hpq +

∑

r

p 	= r; q 	= r

(

1

4
hprrq −

1

8
hpqrr

)

,

h̃pqrs = −
1

8
[1 + (1 − δpr )(1 − δqs)]hpqrs,

(A31)

we obtain the Hamiltonian as presented in the main text,

Eq. (67).

APPENDIX B: PROOF DETAILS FOR THEOREM 1

To see why Eqs. (71) and (72) hold, we first examine the

structure of our anticommuting partition {S(q,r,s)}. Although

we have the choice of matching either one or three indices

in each term’s support, here we only use the condition of

three matches. This amounts to matching exactly one even

index, since the other two must be odd (or vice versa, by

symmetry). In this sense, the problem reduces to finding an

anticommuting partition of the set of all quadratic Majorana

operators with only even indices in their support. Taking

products with the set of all quadratic operators with only odd

indices in their support then generates all the relevant quartic

operators, M (up to phase factors).

One may readily check from the definition of S(q,r,s) that

they do indeed cover M and are all pairwise disjoint. How-

ever, since we have reduced the problem to considering simply

quadratic operators, we may provide a visual argument which

clearly demonstrates the partitioning scheme, Fig. 4. Note that

FIG. 4. Partitioning of electronic structure terms. Finding an an-

ticommuting partition of the quartic terms can be reduced to finding

an anticommuting partition of quadratic terms with exclusively even

(equiv. odd) indices. Each highlighted bin is such an anticommuting

set. Excluding the red bin, each set shares one common index 2q for

3 � q � N − 1. Although only three values of N are depicted, the

induction of this diagram is straightforward for arbitrary N . One thus

obtains N − 3 bins of size q each and 1 “red bin” of size 3.

TABLE I. The systems examined in our numerical analysis.

Geometries were obtained from the NIST CCBDB database [61], and

molecular orbital integrals in the Hartee-Fock basis were obtained

from PSI4 [62] and OPENFERMION [63].

System Charge Multiplicity Basis Qubits

Ar1 0 1 STO-3G 18

B1 0 2 STO-3G 10

Be1 0 1 STO-3G 10

Br1 0 2 STO-3G 36

C1O1 0 1 STO-3G 20

C1O2 0 1 STO-3G 30

C1 0 3 STO-3G 10

Cl1 0 2 STO-3G 18

Cl1 -1 1 STO-3G 18

F1 0 2 STO-3G 10

F2 0 1 STO-3G 20

H1Cl1 0 1 STO-3G 20

H1F1 0 1 3-21G 22

H1F1 0 1 STO-3G 12

H1He1 0 1 3-21G 8

H1He1 0 1 6-311G** 24

H1He1 0 1 6-311G 12

H1He1 0 1 6-31G** 20

H1He1 0 1 6-31G 8

H1He1 0 1 STO-3G 4

H1Li1O1 0 1 STO-3G 22

H1Li1 0 1 3-21G 22

H1Li1 0 1 STO-3G 12

H1Na1 0 1 STO-3G 20

H1O1 -1 1 STO-3G 12

H1 0 2 STO-3G 2

H2Be1 0 1 STO-3G 14

H2C1O1 0 1 STO-3G 24

H2C1 0 3 3-21G 26

H2C1 0 3 STO-3G 14

H2C1 0 3 STO-3G 14

H2C2 0 1 STO-3G 24

H2Mg1 0 1 STO-3G 22

H2O1 0 1 STO-3G 14

H2O2 0 1 STO-3G 24

H2S1 0 1 STO-3G 22

H2 0 1 3-21G 8

H2 0 1 6-311G** 24

H2 0 1 6-311G 12

H2 0 1 6-31G** 20

H2 0 1 6-31G 8

H2 0 1 STO-3G 4

H3N1 0 1 STO-3G 16

H3 0 1 3-21G 12

H3 1 1 STO-3G 6

H4C1 0 1 STO-3G 18

H4C2 0 1 STO-3G 28

H4N1 1 1 STO-3G 18

He1 0 1 STO-3G 2

K1 0 2 STO-3G 26

Li1 0 2 STO-3G 10

Mg1 0 1 STO-3G 18

N1 0 4 STO-3G 10

N2 0 1 STO-3G 20

Na1 0 2 STO-3G 18

Ne1 0 1 STO-3G 10
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TABLE I. (Continued).

System Charge Multiplicity Basis Qubits

O1 0 3 STO-3G 10

O2 0 1 STO-3G 20

O2 0 3 STO-3G 20

P1 0 4 STO-3G 18

S1 0 3 STO-3G 18

Si1 0 3 STO-3G 18

for N = 2, there is only one unique quartic term, and for

N = 3, all the even quadratics already anticommute (i.e., the

red bin in the figure). From the figure, we immediately see

the disjointness property satisfied, with each set of common

index 2q having size q. The exception, again, is the red bin,

which corresponds to the union S(1,r,s) ∪ S(2,r,s), as mentioned

in the main text. Hence there are N − 2 anticommuting sets of

even-index quadratic operators, and taking products with all
(

N

2

)

odd-index quadratic operators yields the desired O(N3)

result.

APPENDIX C: ELECTRONIC STRUCTURE SYSTEMS

Table I details the systems from which the electronic

structure Hamiltonians studied in Sec. IV C were generated.
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