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Abstract. Biomarker discovery and development requires measurement reproducibility studies in addition to case-control studies.

Parallel pursuit of reproducibility studies is especially important for emerging technologies such as protein biomarkers based on

time-of-flight mass spectrometry, the case considered in this paper. For parallel studies, a way to improve reproducibility prior to

identification of protein species is necessary. One approach is use of functional principal components analysis (PCA) as the basis

for assessing measurement reproducibility. Reproducibility studies involve repeated measurement of a reference material such

as a human serum standard. Measurement in our example is by SELDI-TOF (surface-enhanced laser desorption and ionization

time-of-flight) mass spectrometry. Reproducibility is defined in reference to a source of variation, which in our example is

associated with a type of commercially available protein biochip. We obtained spectra for 8 spots on each 11 chips. Two spectra

are generally more alike when obtained from the same chip rather than different chips. Thus, our experiment indicates potential

improvements from reducing variation in chip manufacture and chip handling during measurement. Our analysis involves careful

registration of the spectra and characterization of the spectral differences. As shown by our example, a metrological analysis may

enhance case-control studies by guiding optimization of the measurements underlying the biomarker.

1. Introduction

A biomarker is a biologically-based surrogate feature

whose quantification reproducibly and reliably predicts

or defines a broader, more comprehensive biological

response that is too complex, impractical or technically

impossible to quantify directly. As the Biomarkers

Definitions Working Group [6] writes,

“Biological marker (biomarker): A characteristic

that is objectively measured and evaluated as an

indicator of normal biological processes, patholog-

ical processes, or pharmacological responses to a

therapeutic intervention.”

Development of a biomarker involves both measure-

ment and interpretation [4]. Each of these aspects

should be fully explored when advances in analytical
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instrumentation offer opportunities for the measure-

ment of new biomarkers.

The phrase “objectively measured” implies that there

is a measurement protocol that is followed each time
a measurement is made. The goal of measurement

system development is optimization of the protocol.

An important aspect of the protocol is the variation

encountered as the protocol is followed from one time

to the next. Experimental investigation of this aspect

is based on measurement of the same specimen more

than once under different realizations of the protocol,

that is, different ways of following the protocol. What

constitutes different realizations changes with the type
of experiment.

In some experiments, the protocol is intentionally

varied as a way of obtaining different realizations. The

protocol may be defined in terms of settings of mea-

surement system parameters, and these settings may

be varied in the experiment. This way of thinking un-

derlies ruggedness testing [2,9,17] and parameter de-

sign [18]. In addition, the background conditions un-
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der which the protocol is executed may be varied in the

experiment.

Another way of thinking about realizations is in

terms of sources of variation. Although some sources

of variation cannot be controlled, others can be held

constant as successive measurements are made or,alter-

natively, allowed to vary. The source itself determines

the amount of variation. If the controllable sources

of variation are held constant, the closeness of agree-

ment between the results of successive measurements

is called the repeatability [8]. If one or more control-

lable sources of variation are instead allowed to have

their typical effects on the measurement, then the close-

ness of agreement between successive measurements

is called the reproducibility [8]. The reproducibility

depends on which source or sources are allowed to vary.

Contrasting these two cases constitutes what is

called a gauge R&R (repeatability and reproducibility)

study [12]. If the reproducibility is appreciably worse

than the repeatability, then an effort should be made

to control the relevant sources of variation, usually by

changing the measurement protocol. Although other

types of experiments are also important, we detail the

gauge R & R type of experiment here.

The system development experiment we consider in-

volves measurement of identical subsamples of a hu-

man serum standard. The standard is a pooled serum

obtained from 250 males and 250 females, all young

and healthy. In our experiment, the controllable source

of variation is the actualization of a commercially avail-

able protein biochip, the IMAC++ metal affinity chip

(IMAC stands for immobilized metal affinity capture).

Such a chip plays an important role in SELDI-TOF

mass spectrometry [11]. The surface of this chip has

chromatographic properties that pre-select subsets of

serum components. This focuses the analytical readout

of the SELDI-TOF mass spectrometer instrument, and

thus the spectra produced are cleaner. The chip surface

is designed to bind only a subset of proteins from a

complex mixture based on physical features such as hy-

drophobicity, pH or affinity to metal ions. The chip-to-

chip variation is that which remains even under osten-

sibly identical conditions of biochip manufacture and

use. The experimental results in this study are groups

of measurements. Within each measurement group, the

biochip is held constant. Among measurement groups,

components of the universe of serum proteins are cap-

tured with biochips of differing “bait” surface charac-

teristics. From such results, we can judge how much

biochip variation contributes to the measurement vari-

ation. If this additional variation were large, we would

seek to improve the protocol by reducing the variability
in the biochips used and the variability in the process
of applying samples to the biochips.

Gauge R&R studies for univariate measurements are
routine. Closeness of agreement is measured by the fa-
miliar sample variance. In the case of analytical instru-
mentation such as SELDI-TOF mass spectrometers, we
would have a one-dimensional measurement if a fea-
ture of the spectrum were identified as the clinically
useful biomarker. The feature could be, for example,
the intensity corresponding to a particular serum pro-
tein. Lacking a feature or even a group of features
on which to focus, achieving the goals of gauge R&R
studies is more difficult. In this paper, we show how to
achieve the goals of gauge R&R without prior informa-
tion on which features of the mass spectrum are useful
as a biomarker. Our approach is based on functional
principal components analysis (PCA) [15]. The idea of
using PCA in gauge R&R studies appears in Liggett et
al. [10]. In this paper, this idea is executed with more
refined data analysis and developed more completely.

Lee et al. [9] apply the usual multivariate PCA to
HPLC peptide maps to achieve objectives somewhat
different from ours. Because functional PCA is sim-
ilar to multivariate PCA, one can obtain from Lee, et
al. [9] different ideas on what can be done with PCA.
The application in Lee et al. [9] is ruggedness test-
ing rather than gauge R&R. Their application of PCA
emphasizes just dimensionality reduction whereas we
also consider interpretation of the individual principal
component weight functions as they change with the
mass-to-charge ratio. This interpretation requires care-
ful registration of the spectra, a pretreatment step that
Lee et al. [9] mention but do not actually perform.

Just as we discuss measurement system development
that does not depend on protein information, Petricoin
et al. [14] and Adam, et al. [1] undertake demonstra-
tion of biomarker feasibility prior to characterization of
links between proteins and target disease. Petricoin et
al. [14] and Adam et al. [1] analyze collections of case
and control specimens with SELDI-TOF mass spec-
trometry. They use the spectra obtained as training data
to derive classifiers that predict the disease state from
the observed mass spectrum. The idea of deriving a
biomarker based on the mass spectrum without iden-
tifying the proteins is attractive. Moreover, Petricoin,
et al. [14] and Adam et al. [1] claim that the classifiers
they derive perform well. However, Baggerly et al. [3]
have raised questions about the classifiers of Petricoin
et al. [14].

Billheimer [5] applies functional analysis of vari-
ance [15] to MALDI-TOF mass spectra in a case-
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control study. He also proceeds without identifying

proteins. He shows that the parts of the spectrum most

useful in distinguishing cases from controls do not cor-

respond to the obvious spectral peaks and therefore to

easily identified proteins.

The classifiers derived by Petricoin et al. [14] and

Adam, et al. [1] do contain derived spectral features,

and one might imagine use of these for gauge R&R

studies. These features, however, depend on the instru-

ment operating conditions during analysis of the case

and control specimens. Moreover, these features are

somewhat noisy due to the relatively limited number

of case and control specimens. Thus, an approach to

gauge R&R for spectra that does not depend on case

and control specimens is both desirable and useful.

Here we describe gauge R&R analysis that is suitable

for a system with functional response, such as a SELDI-

TOF mass spectrum analysis. As background, we dis-

cuss gauge R&R for an elementary univariate response

in Section 2. In Section 3, we discuss the functional

case. In Section 4, we address the differences between

measurement system studies and case-control studies.

The case-control framework is commonly adopted for

biomarker development but is quite different from the

framework for measurement system studies. We rec-

ommend that both be considered in maximizing efforts

toward successful biomarker development.

2. Univariate observations

In this analysis, there are 88 measurements of the

same human serum standard all made on the same day.

These measurements correspond to 8 specimen spots

on each of 11 biochips. Before further adjustment as

discussed in Section 3, the 88 measurements are mass

spectra with baseline correction and normalization as

provided by the instrument manufacturer. The aver-

age of these 88 mass spectra for a particular mass-to-

charge (m/z) interval is shown in Fig. 1. The large

peaks dominate perception of this average, but these

peaks although prominent, may be of limited use as

biomarkers. In terms of the presence of large peaks, the

m/z interval depicted in Fig. 1 seems more interesting

than the intervals above it or below it. As indicated

in Fig. 1, we have chosen only m/z in the subinterval

[7690, 9389] for consideration in Section 3. In this

section, we consider just the largest peak, the one at

m/z = 7775 on the right side of the interval chosen for

Section 3.

We begin our investigation of our 88 mass spectra

with a rudimentary analysis. We quantitate the largest

of the spectral peaks and treat the resulting univariate

measurements as data of a gauge R&R study. As well

as being an illustration, this would actually be appro-

priate to biomarker development if the largest peak cor-

responded to a serum protein concentration directly re-

flective of a biological characteristic such as the pres-

ence of early cancer. Reduction of the spectra to the

values of several peaks is a common first step in data

analysis for chemical spectra. Univariate gauge R&R

is widely used for measurement system development.

Our rudimentary analysis reveals data properties that

help justify steps we take when working with the mass

spectra in the next section.

We extract from each of the 88 spectra the height of

the largest peak. We find the height by interpolating the

spectral points in the vicinity of the peak with a cubic

spline and finding the maximum of the interpolating

function. There are certainly other ways of quantitating

the peaks of chemical spectra such as finding the height

from a baseline or finding the peak area. However, for

the purpose of illustrating univariate gauge R&R, the

method we have chosen is suitable.

Figure 2 shows the height of the largest peak for each

measurement. Each letter on the vertical axis of this dot

plot corresponds to an independent biochip. Thus, there

are 11 letters each with 8 dots corresponding to the spots

on the biochip. We note that biochip F includes 3 spots

with high values. Further investigation shows that the

corresponding spectra have much higher baselines than

the other spectra. As part of our analysis in Section 3,

we correct for this. Quantifying the spread of values

for each biochip by computing the standard deviation

and pooling the 11 results provides an estimate of the

repeatability. Figure 2 shows that between biochips

there is some extra variability. For example, the values

for biochip B are all lower than the values for biochip H.

This indicates that biochip as a reproducibility factor,

adds variability. An estimate of the standard deviation

that would be observed if this factor were allowed to

vary generally in a sequence of measurements can be

computed from the values in Fig. 2. Thus, the increase

attributable to biochip variation can be computed [12].

3. Functional observations

Extension of the analysis in Section 2 to the 7690–

9389 m/z subinterval indicated in Fig. 1 is important

when it is unknown what features of the SELDI-TOF
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Fig. 1. Average spectrum for an m/z interval with prominent peaks.

4 5 6 7 8 9 10

K

J

I

H

G

F

E

D

C

B

A

Peak Maximum

Fig. 2. Plot of heights of largest peak grouped by biochip.

mass spectrum are useful as biomarkers. For this subin-

terval, Fig. 1 shows a few major peaks and several minor
ones, any of which might be important. Thus, we would

like to perform gauge R&R in a way that takes into
account the entire curve. In other words, we would like

to see all the effects that the reproducibility factor has
on the functional measurement. This requires replac-

ing the standard deviation used as an indicator of vari-
ability in the univariate case with something else that

takes into account the entire curve. Functional PCA has
potential as an indicator of curve variability [15]. Of

course, functional measurements are inherently more

complex than univariate measurements, and functional

PCA will not eliminate all the additional complexity.
In particular, only under exceptional circumstances can

curve variability be described by a value analogous to
a single standard deviation.

Functional PCA provides insight by summarizing a
batch of functional measurements in terms of typical

deviations from the mean of the batch. These typical
deviations are the principal component weight func-

tions. This is somewhat like summarizing a batch of
univariate measurements by the mean and standard de-

viation except that both the mean and the deviations are
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curves. Functional PCA provides an indication of how

many alternative forms of deviation are represented in

the batch. For each form of deviation, that is, each

principal component weight function, there is an in-

dication of its strength at each value of the indepen-

dent variable. In place of covariance functions, func-

tional PCA provides an accessible interpretation of the

structure of measurement-to-measurement variability.

In mathematical terms, it provides an informative low-

dimensional representation of the batch.

Typically, functional measurements are presented for

analysis in sampled form, that is, as observations at

discrete values of the independent variable u. For our

data, the variable u denotes mass-to-charge ratio. We

do not use t as the symbol for the independent variable

as Ramsay and Silverman [15] do because t might be

associated with time, which is an alternative indepen-

dent variable for time-of-flight mass spectra. There are

N functional measurements. Measurement i is pre-

sented as n values yi1, . . . , yin, where yij is the ob-

servation of the function i at uj . If as we assume, the

sampling is fine enough and the measured function is

at least continuous, we can think of yi1, . . . , yin as a

function yi with values yi(u) computable for any value

of the independent variable u, and use these functions

in the calculations for functional PCA. See Ramsay and

Silverman [15] for the necessary software. A cubic-

spline representation of the function y i derived from

yi1, . . . , yin is the basis of the data analysis in this pa-

per.

Note that we could apply principal components anal-

ysis directly to the matrix with elements yij . However,

in the case considered here, we must treat the data func-

tionally so that we can interpolate between the given

spectral values to register the curves. Also, treating

the data functionally allows smoothing the spectra or

alternatively, applying functional PCA in a way that

produces smooth weight functions [15]. We have not

done this here, but it is a potentially important option.

3.1. Adjustment of the spectra

To make the principal components interpretable, we

need to remove from the spectra some of the variation.

Consider Fig. 3(a), which shows the 88 spectra in the

vicinity of the peak discussed in Section 2. Three spec-

tra stand out as having a problem with their baselines

as mentioned in connection with Fig. 2. We adjust the

baselines for all the spectra including these three. Also,

the location of the peak does not occur at the same

m/z value for each spectrum. We register the spectra

to remove this source of variation. Although it cannot

be identified in Fig. 3(a), there may be measurement-

to-measurement variation in the amount of protein re-

leased from the chip by the laser. We normalize the

spectra to adjust for this. Finally, in the course of an

initial analysis of these measurements, we identified an

outlier. The outlying measurement was produced from

spot 8 on chip J. Although this outlying measurement

may be interesting, treating it separately is better than

including it in the PCA. Thus, we have N = 87.

Because the 7690–9389 m/z interval is relatively

small, we adjust the baseline by subtracting from each

spectrum the average of the spectrum over the interval.

The baseline-adjusted spectra are given by

zi(u) = yi(u) −

∫ u2

u1

yi(s)ds/(u2 − u1),

where u1 = 7960 and u2 = 9389.

Registration of a spectrum can be thought of as re-

placement of zi(u) with zi(hi(u)). As a form for the

registration, we take hi(u) = δi+γiu. The registration

affects the baseline adjustment in that

zi(hi(u)) = yi(hi(u))

−

∫ u2

u1

yi(hi(s))ds/(u2 − u1).

Note that the registered spectra may include values

somewhat outside the 7690–9389 m/z interval. This is

not a problem because the mass spectra extend beyond

the interval we have chosen.

Registering spectrum i consists of estimating δi and

γi. As estimates, we follow Ramsay and Silverman [16]

and find the values of δi and γi that minimize the smaller

of the two eigenvalues of the matrix
[

∫ u2

u1

{z0(s)}
2ds

∫ u2

u1

z0(s)zi(hi(s))ds
∫ u2

u1

z0(s)zi(hi(s))ds
∫ u2

u1

{zi(hi(s))}
2ds

]

.

The rationale for this estimation criterion stems from

the fact that if zi(hi(u)) = Az0(u), then the smallest

eigenvalue is 0. In other words, this criterion seeks

to register spectrum i so that it is proportional to the

model spectrum z0(u).
We determine z0(u) by what is called the Procrustes

method [15]. Initially, we take

z0(u) =
1

N

N
∑

i=1

zi(u).

Then, after registration on the basis of this value of

z0(u), we replace it with
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Fig. 3. Spectral curves for an interval containing the largest peak and the corresponding principal component weight function.

z0(u) =
1

N

N
∑

i=1

zi(hi(u))

and refine the estimate of the registration. Note that in

computing z0(u), we omit the outlier.

We continue this until refining the registration seems

to make little difference. The final value of z0(u) we

denote by z(u).
The function zi(hi(u)) is spectrum i after baseline

correction and registration. Now we want to account

for the possibility that the amount of material desorbed

from the chip changes from measurement to measure-

ment. The reason is that we do not want to have to dis-

tinguish this source of variability from what else PCA

has to show. We model the effect on a spectrum of vari-

ability in material desorbed as addition or subtraction

of an amount proportional to z(u). As a consequence

of this model, we adjust for this source of variability

by computing

xi(u)=zi(hi(u))−z(u)

[
∫ u2

u1

zi(hi(s))z(s)ds
∫ u2

u1

{z(s)}2ds

]

.

Note that after this adjustment, spectrum i is given by

xi(u)+z(u), that is, the xi(u) to which we apply PCA

are deviations from the mean spectrum. The advan-

tages of an additive adjustment become apparent when

we want to interpret the principal component weight

functions.

The spectra after adjustment (xi(u) + z(u))) are

shown superimposed in Fig. 4. This figure provides a

rough picture of the variation as it compares to the av-

erage of the spectra. The amount of variation as shown

in this figure must be considered in the interpretation

of subsequent figures where the variation is exagger-

ated so that details can be seen. We note that the m/z

values where the variation is larger correspond to the

spectral peaks. However, the amount of variation is

not proportional to the mean z(u). The smaller peak at

m/z = 8944 has as much variation as the large peaks at

m/z = 7775 and m/z = 9299.

3.2. Functional PCA

As an introduction to PCA, consider the following:

Functional measurements such as chemical spectra are

usually analyzed by first reducing each measurement

to one or more features. One type of feature is a linear

combination of the function values for different values

of u. A feature of this type is given by

fi =

∫

β(s)[xi(s) + z(s)]ds, i = 1, . . . , N.
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The weight function β defines the feature f . One

could specify β and analyze the resulting batch of num-

bers fi, i = 1, . . . , N . Note that by proper selection of

β, one could obtain areas under a peak as the values f i.

Rather than specifying β in advance, one can ask for

the weight function that gives the feature most descrip-

tive of the variation of the functional measurements.

More explicitly, one can find the weight function ξ1 for

which the corresponding feature values

fi1 =

∫

ξ1(s)xi(s)ds

have the largest possible
∑

i f2
i1 subject to

∫

ξ2
1(s)ds =

1. This gives the weight function ξ1 and the scores

fi1, i = 1, . . . , N for the first functional principal com-

ponent.

Returning to Fig. 3, we note that even without adjust-

ing the 88 spectra shown in Fig. 3(a), we can center this

collection of curves and find the first principal compo-

nent for the centered curves. The weight function of the

first principal component ξ1 is shown in Fig. 3(b). We

see that ξ1 heavily weights the peak, which as shown

in Fig. 3(a) is the most variable part of this batch of

functional measurements. Such a relation between the

peaks and the principal components is obvious in our

application of PCA to the xi(u), i = 1, . . . , N .

A more complete description of the variation in a

batch of functional measurements can be obtained by

computing more weight functions. Proceeding step by

step, we compute at step k, the weight function ξk

corresponding to feature values

fik =

∫

ξk(s)xi(s)ds.

The weight function ξk is chosen to maximize
∑

i f2
ik

subject to
∫

ξ2
k(s)ds = 1 and the additional k − 1

constraints
∫

ξm(s)ξk(s)ds = 0

for m < k. We see that functional PCA extracts fea-

tures of the variability in descending order of sample

variance and that the weight functions are uncorrelated.

The idea that the principal components describe the

variation of the batch can be made clearer. For any

fixed K , let

x̂i(u) =

K
∑

k=1

fikξk(u) (1)

be an expansion of xi in terms of the first K principal

component weight functions ξk. In terms of integrated

square error

N
∑

i=1

∫

[xi(s) − x̂i(s)]
2ds,

this expansion gives at least as good an approximation

to the batch of functional measurements as any other

set of K functions. We can quantify the amount of

variation explained by the first principal K components

by means of the quantity

1−

{

N
∑

i=1

∫

[xi(s)−x̂(s)]2ds/
N

∑

i=1

∫

[xi(s)]
2ds

}

.

3.3. PCA results

We now apply functional PCA to the xi(u). The

first and second principal components ξ1 and ξ2 and

the mean z are shown in Fig. 5. These two principal
components account for 70% of the variation in the

spectra. With respect to the amount of variation actu-

ally observed in the spectra, the scale of these principal

components is exaggerated relative to the scale of the

mean.

As shown in Fig. 5, the first principal component

has peaks that correspond to the spectral peaks shown

by the mean spectrum. Billheimer [5] made a similar

observation about his data. As discussed further in the

Appendix, that the peaks in this principal component

are positive and negative is in part the result of the
spectral adjustment. As part of the adjustment, we have

forced the principal components to be orthogonal to a

constant and to z. Note that the magnitudes of the peaks

in this principal component are not proportional to the

magnitudes of the peaks in the mean. This observation

corresponds to a similar observation about Fig. 4.

The second principal component seems to reflect

more than increased variability at the spectral peaks.

The second principal component swings rapidly back

and forth with m/z in the vicinity of the two largest

spectral peaks. This behavior is what one might expect

if the spectral variation is in part the broadening and
narrowing of these two peaks. Moreover, the second

principal component seems to be associated with varia-

tion in the smaller spectral peaks between the two large

ones. Further interpretation of the principal compo-

nents is found in the Appendix.

Let us return to the goal of understanding how much

the variation from biochip to biochip contributes to the

variation in the spectra. For each principal component

k, each (centered) spectrum i is associated with a score

fik that gives the amount of the spectrum that can be at-
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Fig. 5. First and second principal components compared to the mean spectrum.

tributed to the principal component. Plotting the scores
for the first principal component versus the scores for
the second is a common data analysis step [15]. If
there were no association between the locations of the

points on this plot and the biochip from which the spec-
trum came, then we would conclude, at least to the
extent of the first two principal components, that there
is no additional variability contributed by variation in
the biochip. Plotting scores for other pairs of princi-
pal components might also be informative. Figure 6
shows such a plot with the points labeled by biochip.

Apparently, there is some association. Moreover, com-
pared to the first principal component, the dependence

on biochip seems greater for the second principal com-
ponent. For example, in terms of the second princi-
pal component, biochip H has high scores and biochip
B has low scores. This means that were we to com-

pare the spectra from biochip H with the spectra from
biochip B, we would see variation similar to what is
shown in exaggerated form in Fig. 5 for the second prin-
cipal component. If we could identify the sources of
variation reflected in the second principal component,
then we might hypothesize the mechanism behind the
chip-to-chip differences and possible remedies.

Figure 6 provides a way of comparing the spot-to-
spot variability for a given chip with the chip-to-chip
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Fig. 6. Scores for first and second principal components with biochip indicated.

variability. In this regard, Fig. 6 provides for functional

measurements what Fig. 2 provides for univariate mea-

surements. In terms of the definitions of repeatability

and reproducibility, Fig. 6 shows “closeness of agree-

ment” but in a way that depends on the principal com-

ponent weight functions, which are derived from the

data. One can ask whether the quantification of vari-

ability possible in the univariate case is also possible in

the functional case. The problem with such quantifica-

tion in the functional case is lack of knowledge of the

relation between the principal component weight func-

tions and the biomarker, which is as yet undiscovered

or at least not completely specified. Thus, maybe all

we say is that Fig. 6 shows chip-to-chip variability the

reduction of which is generally a good idea.

We have, of course, analyzed just part of each spec-

trum. For the particular standard used, most of the

prominent peaks are in the m/z interval shown in Fig. 1,

and we have examined only a fraction of this interval.

Consider applying PCA to a larger part of the interval

shown in Fig. 1. In this case, interpretation would in-

volve more principal components because there would

be more peaks. For this reason and because figures

such as Fig. 5 would become unreadable, interpretation

would be more difficult. Consider applying PCA to an

interval that extends above the interval shown in Fig. 1.

In this extension, the intensities are much lower but of

interest. In this case, the large peaks shown in Fig. 1

would dominate the results of PCA. For this reason,

interpretation of the spectra in the extension would be

difficult. Consider applying PCA to successive non-

overlapping intervals. This might be better than ap-

plication of PCA to a larger interval, but correlation

between spectral features in different intervals would

not enter the analysis. For this reason, some important

aspects of the spectra might be missed. Clearly, there

is a need to expand the methodology described in this

paper so that larger sections of the spectra can be better

analyzed.

4. Metrological and case-control studies

The foregoing description of measurement protocol

improvement differs from the case-control studies that

have been put forward as a paradigm for biomarker de-

velopment [13]. In a case-control study, one obtains a

group of samples from individuals with the disease in

question and a group of samples from individuals free

of the disease in question. One then observes the cat-

egory into which the biomarker places the individuals.

A biomarker with high sensitivity is one with a high

rate of true positives, and a biomarker with high speci-

ficity is one with a low rate of false positives. Clinical

validation of a biomarker involves case-control stud-

ies. The experiment described in Section 3 is designed

for analytical validation and does not address clinical

validation.

The difference between metrological studies and

case-control studies can be characterized in three ways.

First, in metrological studies, one generally measures

the same specimen twice whereas in case-control stud-

ies, one contrasts measurements of specimens from

diseased individuals with measurements of specimens
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Fig. 7. Rotated components associated with left and right peaks compared to mean spectrum.
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Fig. 8. Rotated components associated with middle peaks and trailing edges of peaks compared to the mean spectrum.

from healthy individuals. Second, the difference stands

out in terms of the scientific basis. Measurement proto-

col evaluations have their basis in scientifically defined

quantities such as protein concentrations. Case-control

studies have their basis in a scientifically sound way

of distinguishing diseased individuals from healthy in-

dividuals. Third, specimens for case-control studies

are more expensive to procure because they must prop-

erly reflect diseased and disease-free populations [13].

Many metrological studies, on the other hand, require

little but specimens that can be divided into homoge-

neous subsamples.

Consider the development of a biomarker based on
measurement of human serum. Say that we have serum
specimens known to be from diseased individuals and
other specimens known to be from healthy individuals.

One can proceed with the development as Petricoin et
al. [14] and Adam, et al. [1] did. One can measure as
many properties of each specimen as one would like.
The measurements on a specimen could be a SELDI-
TOF mass spectrum as in Petricoin et al. [14] and Adam
et al. [1]. One could then search for the combination of
these measurements that best distinguishes cases from

controls. If one shows that this combination is indeed
effective, then it can be used as a biomarker. The ef-
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fectiveness of such an approach, however, depends on

the quality of the measurements. In fact, with poor

measurements, such an approach might not reveal any

promise of a new biomarker. In contrast, Baggerly, et

al. [3] discuss measurement problems perhaps leading

to a false indication of biomarker effectiveness. Thus,

experiments to improve measurement quality should

not be postponed. Early in the development, one might

try to find some indication that the instrumentation in

some configuration is capable of distinguishing cases

from controls. Beyond that, however, one would not

want to take the instrument configuration, and more

broadly the measurement protocol, as fixed. Measure-

ment protocols as initially specified are based in part

on engineering judgments. Considerable improvement

may result from checking these judgments experimen-

tally. The best advice on the steps to be undertaken

in an engineering project stipulates that the first step

be study of the measurement system [7]. The approach

described in this paper allows study of the measure-

ment system before the interpretation of the response

is finalized.

Even after an effective biomarker has been discov-

ered, more is necessary in biomarker development. One

must be concerned with the variability associated with

the measurement protocol when implemented by sev-

eral laboratories as the use of the biomarker becomes

wide spread. This concern should be addressed through

the sorts of experiments that metrologists perform. One

might take a set of case-control specimens, split each

of them, and measure the two identical sets with differ-

ent protocols to see which gives the best sensitivity and

specificity. If one spreads the measurement of each set

among several laboratories, one might see which pro-

tocol was best in an interlaboratory setting. However,

this approach seems cumbersome at best. Moreover, it

makes no use of knowledge of the measurement mech-

anism. Generally, this part of biomarker development

should more closely follow metrological practice.

In the instance of human-serum biomarkers, a scien-

tific description of the proteins that form the basis of

the biomarker would be ideal. This should lead to a

scientific understanding of how the biomarker is con-

nected with the condition it is intended to detect and

thereby improvement of the biomarker. This might also

lead to focus on specific aspects of the measurement

mechanism and thereby more effective metrological ex-

periments. But knowledge of the specific proteins is

not necessary to achieve effective class discrimination

nor is it an essential component of a biomarker. De-

spite questions about their specific performance find-

ings, Petricoin et al. [14] and Adam, et al. [1] have

shown how a case-control study can proceed without

this knowledge. In Section 3, we demonstrate how

metrological studies can proceed without this knowl-

edge.

In structuring biomarker development, one must be

sure that the distinct difference between case-control

studies and metrological studies does not become an

impediment to planning. Because of the difference,

integrating both study types is challenging. Each has

the potential for contributing to the biomarker devel-

opment, and reducing the time from discovery to clin-

ical application. Moreover, their relative timing in

biomarker development sequence is an important issue.

Because the required components of each approach are

so distinct, it may be difficult to derive a commonly

accepted plan for successfully combining case-control

and metrological studies. A general sequence of phases

such as those advocated by Pepe et al. [13] may not be

amenable to achieving the separate objectives. How-

ever, this lack of a consensus, if recognized, can be

overcome so that it does not slow biomarker develop-

ment.
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Appendix. Interpretation of Principal Components

PCA would lead to greater understanding if each

component could be associated with a mechanism re-

sponsible for spectral variation. The first and second

principal components, which are shown in Fig. 5, seem

to be the result of several mechanisms and therefore

hard to interpret. It is possible to transform the first
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K principal components into a new set of components

that are more interpretable in terms of mechanisms.

The transformation is called VARIMAX rotation [15].

This appendix presents the results of this transforma-

tion. Among other things, these results suggest the

mechanisms that influence the gauge R&R plot shown

in Fig. 6.

VARIMAX rotation could be applied directly to the

first K principal components, but supplementing this

set can lead to better results. Because of the centering

and normalization of the spectra, the principal compo-

nents are orthogonal to the constant spectrum and to

the mean spectrum. Let ξK+1(u) be a constant that

is determined by
∫

ξ2
K+1(s)ds = 1, and let ξK+2(u)

be proportional to the mean spectrum z(u) with the

constant of proportionality given by
∫

ξ2
K+2(s)ds = 1.

We can rewrite Eq. (1) with these two extra components

x̂i(u) =
K+2
∑

k=1

fikξk(u)

by letting fik = 0 for k = K + 1 and k = K +
2. Applying VARIMAX rotation to this representation

gives

x̂i(u) =

K+2
∑

k=1

gikψk(u),

where the ψk(u) are the rotated components. The

reason for including the two extra components is that

VARIMAX rotation attempts to find rotated compo-

nents that are large over a small portion of the inter-

val and nearly zero elsewhere. Thus, for example,

one would hope that VARIMAX rotation would lead

to a separate component for each of the major spectral

peaks. With the two extra components, the VARIMAX

rotation is not constrained by orthogonality to the con-

stant spectrum and the mean spectrum. Thus, the goal

of VARIMAX rotation can be more nearly achieved.

Note that the rotated components ψk(u) are not orthog-

onal to the constant spectrum and the mean spectrum

as the original principal components are.

In computing the rotated components, we set K = 8.

We add the extra two components and rotate the result.

In Figs 7 and 8, we show four of the resulting ten com-

ponents. The other components contribute little to the

representation of the variation of the spectra. Note that

because functional PCA followed by VARIMAX rota-

tion is data driven, the rotated components that result

will not perfectly match what might be expected from

an understanding of the measurement system. Thus,

we cannot be sure of our interpretation.

Figure 7 shows two components, one that depicts the
variation associated with the leftmost peak and another
that depicts the variation associated with the rightmost
peak. Figure 8 shows two components, one that depicts
the variation associated with two of the middle peaks
(dotted) and one that depicts variation associated with
the trailing edge of the peaks in the interval (dashed).
That one component in Fig. 8 shows variation associ-
ated with peaks at m/z = 8152 and m/z = 8944 sug-
gests correlation between the variations of these peaks.
In other words, if the two peaks were uncorrelated, one
would expect them to rotate into separate components.
If such correlation were large, it would be of interest.
We conclude that the spectral variation shown crudely
in Fig. 4 is largely associated with mechanisms that
influence the heights of the peaks and mechanisms that
influence the widths of the peaks. One could do a more
detailed comparison of the four weight functions shown
with known mechanisms that contribute to the shapes
of SELDI-TOF mass spectra.
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