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In this article we review some generalizations of classical theories of measurement for concatenation 

(e.g., mass or length) and conjoint structures (e.g., momentum of mass-velocity pairs or loudness of 

intensity-frequency pairs). The earlier results on additive representations are briefly surveyed. Gen

eralizations to nonadditive structures are outlined, and their more complex uniqueness results are 

described. The latter leads to a definition of scale type in terms of the symmetries (automorphisms) 

of the underlying qualitative structure. The major result is that for any measurement onto the real 

numbers, only three possible scale types exist that are both rich in symmetries but not too redundant: 

ratio, interval, and another lying between them. The possible numerical representations for conca

tenation structures corresponding to these scale types are completely described. The interval scale 

case leads to a generalization of SUbjective expected-utility theory that copes with some empirical 

violations of the classical theory. Partial attempts to axiomatize concatenation structures of these 

three scale types are described. Such structures are of interest because they make clear that there is 

a rich class of nonadditive concatenation and conjoint structures with representations of the same 

scale types as those used in ph)~ics. 

Many scientists and philosophers are well aware of what the 

physicist E. P.· Wigner in 1960 called "the unreasonable effec
tiveness of mathematics in the natural sciences." Some, like Wig-· 

ner, have remarked on it; a few, like the ancient philosopher 
Pythagoras (c. 582-500 B.c.) have tried to explain it. Today as 

throughout much of history, it is still considered a mystery. There 
is, however, a part of applied mathematical science that is slowly 
chipping away at a portion of the mystery. This subfie1d, usually 

called "measurement theory," focuses on how numbers enter 

into science. Part of the field searches for rules-axioms-that 
allow one to assign numbers to entities in such a way as to capture 
their empirical relations numerically. Another part attempts to 

use such qualitative axioms to understand, to some degree, the 
nature and form of a variety of empirical relations among various 

dimensions. Such relations, when stated numerically, are com

monly called "laws." In recent times, a few leading mathema

ticians, philosophers, physicists, statisticians, economists, and 
psychologists have developed new processes for measurement. 
This work has resulted in the detailed mathematical development 

of new structures, has provided scientists with a greater under
standing of the range of mathematical structures they are likely 

to encounter and .use in their science, and has generated some 
long-lasting controversies that are only now beginning to be re
solved. For surveys that go into far more technical detail than 

this article, see Krantz, Luce, Suppes, and Tversky (1971, in 
press), Narens (1985), Pfanzagi (1968, 1971), and Roberts (1979). 
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Origins of Measurement Theory 

Empirical Structures for Concatenations 

The origin of modern measurement theory can be traced back 

at least to the investigations in the late 19th century by H. v. 

Helmholtz, the eclectic physician-physicist, into the formal nature 
of certain basic physical attributes, such as mass and length, 
which he recognized as having the same intrinsic mathematical 

structure as the positive real numbers together with addition and 
their natural order <':. We denote tliis system by (Re+, <':, +). 
I n such cases, one can observe a natural empirical ordering re

lation, ;::, over a set of objects, where the order reflects qualita
tively the degree or amount of the to-be-measured attribute that 
is exhibited by the objects. One can also find a natural empirical 

operation, 0, that combines any two objects exhibiting the at

tribute into a composite object that also exhibits the attribute. 
For example, for mass one can use an equal-arm pan balance in 
a vacuum to establish the order. (To he sure, it is rare now to 

order masses in this way, but conceptually such a procedure un
derlies mass measurement.) When two objects, x andy, are placed 

in separate pans and the balance fails to tilt, they are said to 
exhibit mass to the same degree, that is to be equivalent in mass, 

which is written x - y. Otherwise, the object in the pan that 
drops, say x, is said to have the greater mass, which is written 
x >- y. Placing two objects x and y in the same pan constitutes 

the operation of combining, and the result is denoted x • y. In 
the abstract model, the combining operation goes under the ge

neric name of concatenation. If we let X denote the set of all 
objects under consideration, including all the combinations that 
can he formed using ., then the potential observations from the 

pan balance yield the mathematical structure % = (X, ;::, 0). We 

call this a qtullitative structure, whereas a possible representing 

structure such as (Re+, :>:, + > is called a numerical (representing) 

structure. 
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One reason for studyjng the abstract nature of such measure

ment is that the same mathematical system can apply to a wide 

variety of attributes. We have already mentioned that the struc

tures under consideration serve as a basis for measuring a number 

of the basic physical quantities: mass, length, duration, and 

charge. Less obvious (see below) is that much the same structure 

underlies the measurement of probability. 

Additive Representations 

Helmholtz (1887) stated physically plausible assumptions 

about the structure-assumptions about :::, about ., and about 

their interplay-and showed that when the assumptions are true, 

measurement can be carried out in the following sense: There 

exists a mathematical mapping, 'P, called a homomorphism, from 

X into positive real numbers such that for each x and y in X, (a) 

x ::: y if and only if 'P(x) 2: 'P(Y), and (b) 'P(x • y) = 'P(x) + <p{y). 

We usually say that "under the mapping 'P, the ordering relation 

maps::: into 2: and the qualitative operation. into +." Such 

homomorphisms of % into <Re+, 2:, + > are called additive rep

resentations. (For a formal statement of the concept of homo

morphism, see Appendix I.) Equally important, he showed that 

such structure-preserving measures are relatively unique: Any 

two differ only by a numerical mUltiplicative factor, and multi

plying anyone measure by a positive numerical factor yjelds 

another measure. These facts are often summarized by saying 

the measurement is uniquc once a unit has been selected. The 

more contemporary summary statement is that the set of all 

such homomorphisms forms a ratio scale. I Such a complete de

scription of the uniqueness of the representation is called a 

uniqueness theorem. 

Axioms for Extensive Quantities 

In 1901 HOlder, a mathematician, published an improved ver

sion of the theory in which, among other things, he introduced 

the highly important concept of an Archimedean ordered group. 

In this work he made significant use of an axiom, dating back 

to the Greek mathematician Archimedes (d. 212 BC), which 

captures the idea of commensurability within a physical attribute 
by asserting that no object is infinitely larger than another for 

any physical attribute. Archimedes had introduced it, in part, 

to provide a more rigorous basis for the notion of a continuum 

and, in part, to avoid some of the paradoxes described by the 

philosopher Zeno. In our notation this property may be for

mulated as follows. For the sake of concreteness, consider the 

measurement oflength for a set X of rods for which the ordering 

::: is determined by placing two rods side by side and observing 

which spans the other, and concatenation is determined by plac-

I The term scale is used loosely in the literature and with much am
biguity and imprecision. Many authors, for example, refer to the usual 
set of representations for length as "a ratio scale for length" and speak 
of "the scale type of length measurement as being ratio" while simulta
neously referring to individual representations as "scales," as in "the 
meter scale for length." We have chosen to disambiguflte by calling the 
entire set of representations a "scale" and by using the term representation 
for the other use of "scale." Within this usage, concepts like "a ratio scale 
for. . ," and "the scale type of. . ." are sensible and retain their usual 

meanings. 

ing two rods end to end to form another rod. For each rod x, 
find another rod, say x" equivalent (in length) to x. Then find 

a rod~x2 equivalent to XI " x, and another X3 equivalent to X2 • 

x, and so on. The sequence XI, X2, ••. , x. is called a standard 

sequence based on x. The Archimedean axiom asserts that for 

any two rods x and y, there is some member x. of the standard 

sequence based on x that is larger than y. Or put another way, 

every bounded subsequence of a standard sequence is finite. 

In addition to the Archimedean axiom, HOlder assumed 

% = <X, :::, "> satisfies five other properties closely resembling 
the following. 

I. Weak ordering. The relation ::: is transitive (x ::: y and 

y ::: z imply x ::: z for all x, y, z in X) and connected (either 

x ::: y or y ::: x holds for all x, y in X). 

2. Monotonicity. The ordering and operation interlock ln 

such a way that the concatenation of objects preserves the or

dering; that is, for all x, y, w, z in X, if x ::: y and z ::: w, then 

x. z::: y" w. 

3. Restricted solvability. For each x, y in X, if x >- y, there 

exists some z in X such that x >- y • z. (This together with the 

other axioms implies the existence of arbitrarily small objects.) 

4. Positivity. All objects combine to form something larger 

than either of them alone; that is, for all x, y in X, both 

x • y >- x and x • y >- y. 

5. Associativity If one is combining three or more objects, 

it matters not at all how the grouping by pairs occurs so long as 

their order is maintained; that is, for all x, y, z in X, 

x " (y • z) ~ (x • y) • z, 

An Archimedean structure satisfyjng Properties 1-5 is referred 

to as extensive, and using Holder's method each such structure 

can be shown to have a representation, exactly like Helmholtz's, 

into the ordered set of positive real numbers with addition. 

It should be noted that the axioms are of two quite distinct 

types. Axioms I, 2, 4, 5, and the Archimedean property must 

hold if an additive representation exists, that is, they are necessary 

conditions given the representation. Axiom 3 is said to be struc
tural because it limits our attention to a subset of structures 

possessing additive representations. 

Refinements: Difference Sequences and 
Partial Operations 

Throughout this century, Holder's axiomatization has been 

refined and generalized. For example, by recasting the Archi

medean axiom in terms of difference sequences satisfying the 

recursive relation Xi + I • U - Xi • v for some v >- u, Roberts and 
Luce (1968) formulated necessary and sufficient conditions for 

an additive representation, and Narens (1974) showed that the 

Archimedean axiom can be dropped if one is willing to permit 

additive representations into a generalization of the real number 

system called the nonstandard real numbers. A particularly im

portant modification for measurement was the generalization to 

concatenations that are not necessarily defined for every pair of 

objects (Luce & Marley, 1969). There are at least two good rea

sons for modifying the theory to deal with such partially defined 

operations. One is that it is usually impractical to concatenate 

arbitrarily large objects-pan balances collapse, and rods con-
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catenate properly only on flat platforms which necessarily are 

bounded. Another is that some important systems are inherently 

bounded from above and do not-even in theory-permit un

limited concatenation. Qualitative probability is one example. 

Here uncertain events are ordered by a relation of "more likely 

than," and the union of disjoint events is taken to be concaten

ation, that is, if A and B are events with A n B = 0, then 0 is 

defined to be A 0 B = A U B. Measurement in this situation 

consists in finding a function P from uncertain events into the 

closed unit interval such tltat P preserves the "more likely than" 

relation, and for disjoint A and E, 

peA 0 B) = peA U B) = peA) + PCB). 

In the literature, the term extensive is often applied to the gen

eralization where not all concatenations are defined as well as 

to closed operations, as in HOlder's original system. 

Nature of Fundamental Measurement 

1940 Commission Report: Only Extensive Measures 

Witlt the successful axiomatization of extensive structures and 

the recognition oftlteir importance for the foundations of physics, 

a curious debate ensued during the 1920s and 30s about what 

else is measurable. Some philosophers of physics--especially 

Campbell (1920, 1928) but also Bridgman (1922, 1931) and later 

Ellis (1966)-expounded the position that measurement from 

first principles is necessarily extensive in character. Campbell 

referred to scales resulting from such measurements as "fun

damental," all else being "derived." Thus, momentum, density, 

and all other physical measures whose units can be expressed as 

products of powers of the fundamental units of mass, length, 

time, temperature, and charge were treated as derived. Altltough 

these derived measures were clearly a crucial part of tlte total 

measurement structure of physics, especially as formulated in 

dimensional analysis, no very careful analysis was provided of 

tltem. They together with a basis of extensive measures form the 

finite dimensional vector space of physical measures that is rou

tinely invoked in dimensional analysis. However, this vector space 

was not developed from entirely qualitative observations; rather 

it was postulated as descriptive of the way numerical physical 

measures interlock. Ellis, in particular, clearly understood that 

something more was needed, and altltough he hinted at the so

lution, he failed to work it out. 

At the same time, psychologists and economists were pursuing 

other approaches to measurement that more or less explicitly 

ran afoul of the dictum that fundamental measurement rests on 

associative, monotonic operations of comhination. The debate 

reached its intellectual nadir with the 1940 Final Report of a 

Commission of the British Association for Advancement of Sci

ence (Ferguson et a\., 1940) in which a majority declared fun

damental measurement in psychology to be impossible because 

no such empirical operations could be found. Campbell, a mem

ber of the Commission and probably a major force in its creation 

8 years earlier, wrote, "Why do not psychologists accept the nat

ural and obvious conclusion that subjective measurements of 

loudness in numerical terms. . . are mutually inconsistent and 

cannot be the basis of measurement?" 

Stevens's Reply: Scale Type, Not Addition 

Stevens, whose work on loudness measurement witlt Davis in 

1938 was, in part, at issue, was independently considering the 

same question in a series of discussions in the late 1930s with a 

distinguished group of scientists and philosophers: G. D. Birkhoff, 

R. Camap, H. Feigl, C. G. Hempel, and G. Bergmann. Out of 

this arose his now widely accepted position tltat a key feature of 

measurement is not only the empirical structure and its repre

sentation, but the degree of uniqueness of the representation as 

is reflected in the group of transformations that take one rep

resentation into another. In contrast to Campbell, Stevens 

claimed tltat the nature of the transformations taking one rep

resentation into anotlter was the important feature of the rep

resentation, not the particular details of any axiomatization 

of it. 

In his 1946 and 1951 pUblications Stevens singled out four 

groups of transformations on the real or positive real numbers 

as relevant to measurement: one-to-one, strictly monotonic in

creasing, affine, and similarity (see Table I). And he introduced 

the corresponding terms of nominal, ordinal. interval, and ratio 
to refer to the families of homomorphisms, or scales, related by 

these groups. Later he added a fifth group, the power group 

Table I 

Measurement Scales 

Transformations of R 

x- /(' 
(k fixed and positive. n 

ranges over integers) 

X---'I rx 

(r ranges over positive reals) 

x -> /('X + s 
(k fixed and positive, n 

ranges over integers, s 
ranges over reals) 

x-> s:x!" 
(k fixed and positive, n 

ranges over integers, s 

ranges over reals) 

X-I'X+S 

(r ranges over positive feals, 
S ranges over reals) 

x -> s);' 
(r and s range over positive 

reals) 

x -> I\x) 
(f ranges over strictly 

increasing functions from 
RontoR 

x -> I\x) 
(f ranges over one-to-one 

functions from R onto R) 

Scale 

Absolute 

Discrete 
ratio 

Ratio 

Discrete 
interval 

Log discrete 
interval 

Interval 

Log interval 

Ordinal 

Nominal 

R 

Re or Re+ 

Re orRe+ 

Re or Re+ 

Re 

Re 

Re or Re+ 

Re or Re+ 

Note. Suppose % = (X, ~, S" ... ,S.) and .'1i = (R, 0>0, R" . .. , 
R.) are relational structures, R = Re or R = Re+, and S is the set of 
representations of % into 'fl.. (8 is called the scale from % into 'fl..) 
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(x -> sx', S > 0, r > 0), applicable only to measurement in the 

positive reals, and he referred to the corresponding scale as log
interval. As late as 1959 he remarked about this latter scale that 

"apparently it has never been put to use," which as we shall see 

reflects a common misunderstanding of classical physics, which 
in fact is full oflog-interval scales that are conventionally treated 

as ratio scales by making specific choices for the exponents. 

Although these groups of transformations played an important 

role in geometry and physics and seemed to encompass much 

of what was then known about measurement structures, Stevens 

offered no argument as to why these and not others should arise, 

and thus his analysis was more descriptive than analytical. By 

the 1950s it began to be clear that there are measurement struc

tures that do not fit the scheme. As we shall see below, consid

erable progress toward understanding this question has been made 

in the past 4 years. 

Having characterized scales by the type of transformation in

volved, Stevens went on to emphasize that scientific propositions 

(he was especially concerned about statistical ones) formulated 

in terms of measured values must exhibit invariance of meaning 

under the admissible transformations characterizing the scale 

type. As Luce (1978) showed, this concept ofa meaningful prop

osition was a generalization of the familiar assumption in di

mensional analysis that physical laws must be dimensionally in

variant under changes of units. A full understanding of the con

cept of meaningful scientific proposition still remains a challenge. 

It is by no means clear what the circumstances are for which 

invariance under admissible transformations is an adequate cri

terion for meaningfulness, nor is it known what other criteria 

should be used when it is not. However, these involved issues are 

a matter for another article (Narens & Luce, in press). 

Stevens's second thrust was to devise an empirical procedure 

for the measurement of subjective scales in psychophysics that 

does not presuppose an associative operation. The method, which 

he dubbed "magnitude estimation," has been moderately widely 

used because it produces quite systematic results. Nevertheless, 

it has proved extremely difficult to defend his assumption that 

the method of magnitude estimation actually results in ratio 

scales. Although he recognized more than anyone else at the 

time the significance of scale type in contrast to the particular 

structures exhibiting it, he seemed not to appreciate that, in fact, 

the concept of scale type is a theoretical one that can only be 

formulated precisely in terms of an explicit axiomatic model of 

an empirical process. He failed to acknowledge that it takes more 
than one's intuitions to establish that a measurement process, 

such as magnitude estimation, leads to a ratio scale. 

Early Alternatives to Extensive Measurement 

At about the same time and continuing through the next two 

decades, others were working on alternative measurement ax

iomatizations that accorded better with Stevens's view of the 

scope of measurement than with those of the British philosophers 

and physicists. Four of these developments are worth mentioning. 

Beginning as early as HOlder (190 I), difference measurement 

has been axiomatized. Here one has an ordering of pairs of ele

ments and the representation is as numerical differences or ab

solute values of differences (e.g., see Krantz et aI., 1971, Chap. 

4). Because these structures are typified by line intervals identified 

by their end points, it is clear that they can readily be reduced 

to extensive measurement, and so they were not really considered 

an important departure from the dictum that fundamental mea

surement is equivalent to extensive measurement. 

The second was the investigation into structures having an 

operation that is monotonic with respect to the ordering but that 

is neither positive nor associative. In particular, Pfanzagi (1959) 

axiomatized structures that satisfied the condition ofbisymmetry 

[(x 0 y) • (u • v) - (x. u) • (y. v)], which is a generalization of 

associativity. He showed that such structures have a linear rep

resentation of the form ",,(x. y) = a",,(x) + h<p(y) + C, where a 

and b are positive. When. is also idempotent (x • x - x, for all 

x), then c = 0 and b = I - a and the model is one for any process 

of forming weighted means. An important physical example is 

the temperature that results when two gases of different tem

peratures are mixed in fixed proportions. In addition, of course, 

averaging is important throughout the social sciences. 

The third development, which was oonceptually closely related 

to this although technically quite different in detail, was the earlier 

axiomatization by Von Neumann and Morgenstern (1947) of 

expected utility. Here the operation was, in essence, a weighting 

with respect to probabilities of a chance event and its oomple

ment. Strictly speaking, this is a form of derived measurement 

because numbers (probabilities) are involved in the underlying 

structure; however, by the mid-I 950s purely qualitative theories 

were developed, of which the most famous is that of Savage 

(1954). The resulting large literature on this topic has, almost 

without exception, led to interval scale representations of some 

form of averaged utilities. 

Conjoint Measurement 

Perhaps the clearest demonstration of nonextensive structures 

for which interval-scalable, fundamental measurement is possible 

was the creation in the 19608 of the theory of additive conjoint 

measurement. Although the earlier examples had convinced 

many specialists that the scope of fundamental measurement is 

broader than Campbell had alleged, it was only with the intro

duction of conjoint measurement-with its simple techniques 

and its possible applicability throughout the social sciences as 

well as physics-that this view became widely accepted. A con

joint structure simply consists of an ordered structure that can 

be factored in a natural way into two (or more) ordered sub

structures. Typical examples of such structures are: the ordering 

by mass of objects characterized by their volume and density; 

the loudness ordering provided by a person for pairs of sounds, 

one to each ear; and the preference ordering provided by an 

animal for amounts of food at certain delays. 

Observe two things about the above examples. First, the fae

torizable orderings are very closely related to the concepts of 

trade-offs and indifference curves that are widely used throughout 

science: in each case, the equivalence part of the ordering de

scribes the trade-off between the factors that maintains at a con

stant value the amount of the attribute in question, be it mass, 

loudness, or preference. Second, no empirical concatenation op

eration is involved in a conjoint structure. Yet, as Debreu (1960) 
showed by using a mix of algebraic and topological assumptions 

and as Luce and Tukey (1964) showed using weaker and entirely 

algebraic assumptions, such structures can sometimes be rep

resented multiplicatively on the positive real numbers. 
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More formally, assume that there are two factors, and let A 

denote the set of elements forming the first one and P those 

forming the second one. Thus, the set A X P, which is composed 

of all ordered pairs (a, p) with a any element in A and p any 

element in P and is called the Cartesian product of A and P, is 

the set of objects under consideration. The set A X P is assumed 

to be ordered by the attribute in question. Let "I'::" denote this 

ordering. For example, if A consists of various possible amounts 

of a food and P consists of the various possible delays in receiving 

the food, then an attribute of interest is the preference of some 

animal (or breed) for various (amount, duration) pairs. Thus 

(a, p) I':: (b, q) in this case means that the amount a at duration 

P is preferred or indifferent to the amount b at duration q. The 

interesting scientific questions are: What properties do we find 

(or expect) ~ to satisfy, and are these such that they lead 

to a nice numerical representation of the data? 

The two most basic assumptions often made about ~ are that 

it is a weak order (see Axioms jor Extensive Quantities and Ap

pendix 2) and that it exhibits a form of monotonicity that, in 

this context, is called independence. One important consequence 

of independence is that the order ~ induces a unique order on 

each of the factors. What independence says is that if the value 

of one factor is held fixed, then the ordering induced by I':: on 

the other factor does not depend on the value selected for the 

fixed one, or put more formally, for all a and b in A and p and 

q in P, 

(a, p) ~ (b, p) if and only if (a, q) ~ (b, q), 

and 

(a, p) ~ (a, q) if and only if (b, p) ~ (b, q). 

Note that in the first statement, the value from the second factor, 

P, is the same on both sides of an inequality, whereas in the 

second statement the fixed value is from the first factor, A. The 

orderings induced in this fashion on A and P are denoted, re

spectively, ;:::A and ;:::p and are defined by 

and 

a ~A b if and only if for some (and so for all) p, 

(a, p) ;::: (b, p), 

p ;:::p q if and only if for some (and so for all) a, 

(a, p) t (a, q). 

It is easy to verify that they are weak orders if I':: is. 

On the assumption of weak ordering and independence, the 

next question is under what additional conditions do there exist 

real-valued mappings '/IA on A and '/Ip on P and a function F of 

two real variables that is strictly monotonic in each such that 

for all a and b in A and p and q in P, 

(a, p) ~ (b, q) if and only if 

F[I/IA(a), I/Ip(q)] ;;,; F[I/IA(b), I/Ip(q)]. 

The two '/I functions are, in some sense, measures of the two 

components of the attribute, and F is the rule that describes how 

these measures trade off in measuring the attribute. 

The first case to be studied in detail was the one of interest in 

classical physics, namely, the one for which the '/Is map onto the 

positive real numbers and F displays a multiplicative trade-off 

so that 

(a, p) ~ (b, q) if and only if 

I/IA(a)I/Ip(p) ;;,; I/IA(b)I/IP(q). 

Moreover, the representations form a log-interval scale (see Table 

I), which means that for each positive a and fl, a(>/tApt is an 

equally good representation and any two multiplicative repre

sentations are so related. 

In psychology and economics a different, but equivalent, rep

resentation is more usual; it is additive rather than mUltiplicative 

and is defined on all of the real numbers. This representation is 

obtained simply by taking the logarithm of '/IA'/IP in the above 

multiplicative representation. Because of this, in the social sci

ences the qualitative theory is usually referred to as "additive 

conjoint measurement" (even when a multiplicative represen

tation is being used), and we follow this practice in the remainder 

of this article. 

Recoding COrUoint Structures as Concatenation Ones 

The proofs of the original conjoint measurement theorems, 

although correct, were not especially informative and, in partic

ular, failed to make clear that the problem could be reduced 

mathematically (although not empirically) to extensive mea

surement. This was established first by Krantz (1964), who de

fined an operation on A X P, and later by Holman (1971), who 

defined an operation on just one component. The latter con

struction has the advantage of generalizing to nonadditive struc

tures. Suppose, for the moment, that the structure is sufficiently 

"regular" (e.g., continuous) so that any equation of the form 

(a, p) - (b, q) can be solved for the fourth element when the 

other three are specified. This condition is called unrestricted 
so!yability. Turning to Figure I, fix ao in A and Po in P, and 

consider any a and b in A such that, in terms of ordering I'::A 
induced by t on the A component, a >- A ao and b >-A ao. The 

goal is to find a way to "add" together the "intervals" from ao 
to a and from ao to b. The strategy is to map the ao to b interval 

onto a comparable interval on the second component that begins 

at Po, and then to map the latter interval back onto the first 

factor, but this time with a as its starting point. The map to the 

second factor is achieved by solving for the element called 'II'(b) 

in the equation (ao, 'II'(b» - (b, Po). And the return mapping is 

achieved by solving for the element called a • b in the equation 

(a • b, Po) - (a, 'II'(b». What Holman discovered was that a 

necessary condition for the conjoint structure to be additive is 

for this induced concatenation operation. to be associative. This, 

in turn, is equivalent to the following property, called the Thom
sen condition, holding throughout the conjoint structure: when

ever both (a, r) - (c, q) and (c, p) - (b, r) hold, then so does 

(a, p) - (b, q). In essence, this says that the common terms c 

and r cancel out, as is true of the corresponding simple additive 

equations involving real numbers. 

A further condition, an Archimedean one, is also needed in 

order to prove the existence of an additive representation. Ba

sically that axiom simply says that the induced operation meets 

the usual Archimedean property of extensive measurement, al

though it can be stated directly in terms of ~ without reference 

to the operation. So, in sum, conditions that are sufficient to 
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construct an additive representation of a conjoint structure are: 
weak ordering, independence, the Thomsen condition, unre

stricted solvability, and the Archimedean property. What Krantz 
( 1964) and Holman (1971) did was to show that, despite the fact 

that there is no empirical operation visible in an additive conjoint 
structure, the trade-off formulated in that structure can be recast 
as an equivalent associative mathematical operation. This allowed 

the earlier representation theorem for extensive structures to be 
used to prove the existence of an additive conjoint representation. 

This construction is such that it can actually be mimicked in 
practice by constructing standard sequences and using these to 

approximate, within a specified error, the desired measure. In 
the early 1970s such constructions were carried out for loudness 
by Levelt, Riemersma, and Bunt (1972) and by Falmagne (1976). 

Generalizations: Restricted Solvability 
and Nonassociativity 

Since the early I 960s, many variants of extensive and additive 

conjoint measurement have been used by scientists in a number 
of fields. We are not able to go into the details here, but the 
contributions of J.-c. Falmagne, P. C. Fishburn, D. H. Krantz, 

R. D. Luce, F. S. Roberts, P. Suppes, and A. Tversky deserve 

Factor P 

special note, because they repeatedly emphasized the need to 

understand explicitly how measurement arises in science and 
clearly demonstrated its potency in a number of theoretical and 

experimental domains. 
The original theory of additive conjoint measurement and its 

reduction to extensive measurement was quickly seen to be too 
restrictive in two senses. First, in many social science situations 
involving trade-offs-even ones with "continuous" factors-un

restricted solvability fails to hold. For example, the loudness of 

a pure tone depends both on signal intensity and frequency 
(which is the reason for loudness as well as gain controls on an 
amplifier), but the limits on human hearing are such that it is 

not always possible to match in loudness a given tone by adjusting 
the frequency of another tone of prescribed intensity. (The reasons 

for this have to do with the processing limits of the human ear.) 
What does hold, however, is a form of "restricted solvability," 
which says, for example, that with b in A and p and q in P given, 

then there is an element a in A that solves the equivalent 

(a, p) - (b, q) provided that we know there exist elements a' 

and a" in A such that (a', p) >- (b, q) >- (a", pl. So, for example, 
letting the first component be the intensity of a tone and the 
second its frequency if (b, q) is a given tone, and p is a given 

frequency then the question is whether there is an intensity a so 

Po 
. ................................................... 

a b aOb 

Factor A 

Figure 1. A graphic depiction orthe solutions 'lr(b) and a • b in a conjoint structure whose components are 

mapped on a continuum. (The solid curves are indifference curves. Various values on factor A are denoted 

I/o, a, b, and a • b, and those on factor P by Po and .. (b». 
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that the tone (a, p) is equal in loudness to (b, q). Although it is 

not always possible to find such an intensity, it is certainly plau

sible that it exists whenever there are intensities a' and a" so that 

tone (a', p) is louder and the tone (a", p) is less loud than (b, q). 

It turns out, although the argument is more complex, that one 

can still prove the existence of an additive representation with 

restricted solvability substituted for unrestricted solvability (see 

Krantz et aI., 1971, Chap. 6). In terms of Holman's induced 

operation mentioned above, this change of assumption renders 

the operation a partial one, that is, one that is defined only for 

some pairs of elements. Because it is possible to work out a version 

of extensive measurement for partial operations (see Rrjinements: 

Difference Sequences and Partial Operations)-indeed, such is 

necessary to understand probability as fundamental measure

ment-it is still possible to carry out the construction for the 

conjoint structure. 

Second, the property of additivity, captured in the Thomsen 

condition, does not always hold. Fortunately, Holman's definition 

of an operation, or a partial operation in the case of restricted 

solvability, does not in any way depend on the Thomsen con

dition. Thus, in general, any conjoint structure gives rise to a 

concatenation structure in which the induced operation satisfies 

monotonicity. Such induced operations are associative in exactly 

those cases in which the Thomsen condition holds. Moreover, 

one can show that a very great variety of nonassociative operations 

arise as induced operations of conjoint structures. This in itself 

was adequate reason to study nonassociative concatenation 

structures, which began in the mid-I 970s. In trying to understand 

the uniqueness of nonassociative representations, a more com

plete theory of scale types (described in Scale Type: General 

Definition) had to be developed. 

Narens and Luce (1976) showed that any concatenation struc

ture meeting all of the conditions for an extensive structure except 

for associativity has a numerical representation in terms of some 

nonassociative numerical operation. Their proof was not con

structive. Rather it rested on the classic result of the mathema

tician Cantor (1895), to the effect that a totally ordered set X (a 

weakly ordered set in which equivalence is equality) is isomorphic 

to a subset of real numbers under;,; if and only if it includes a 

subset Y comparable to the rational numbers in the sense that 

it is countable (Y can be put in one-to-one correspondence with 

the integers) and order dense in X-which means that for any 

two distinct elements of X it is possible to find at least one element 

from Y that is between them. The key to the proof was to use 

the axioms of the nonassociative structure to show the existence 

of such a countable, dense subset. Since then, Krantz has de

veloped a constructive proof (Krantz et al., in press). 

At the time, Narens and Luce (1976) were much concerned 

by their failure to characterize fully the family of representa

tions-the scale. They were able to show that when two homo

morphisms into the same numerical system agree at a point, 

then under weak conditions they are identical. This result does 

not, however, establish how two different homomorphisms relate. 

That question was resolved by Cohen and Narens (1979) who 

showed that the group of automorphisms of this kind of con

catenation structure, and so the group of transformations that 

describe its scale type (see Table I), can be ordered in such a 

way that the Archimedean axiom holds. Thus, by what HOlder 

had established, the transformation group is isomorphic to a 

subgroup ofthe multiplicative group of the positive real numbers. 

When the subgroup is actually the entire group, we have what 

Steven~ called a ratio scale. The other subgroups had not been 

previously encountered as measurement scales, but Cohen and 

Narens were able to give numerical examples of each type. We 

return to questions of scale type later (see Scale Type: General 

Definition). 

Distribution of Concatenation Operations 
in Conjoint Structures 

Once it is realized that conjoint measurement, which treats 

those structures Campbell spoke of as "derived," is just as free 

from prior measurement as is extensive measurement, a problem 

arises that understandably went unrecognized by the earlier in

vestigators. An attribute, such as mass, can be fundamentally 

measured in more than one way. For example, the mass ordering 

of substances, S, and volumes, V, yields a conjoint representation 

!/Is!/lv, which is a measure of mass (Figure 2). At the same time, 

the usual extensive structure of concatenation of masses leads 

to the standard additive measure 'Pm. Obviously, "'s!/lv must be 

an increasing function of 'Pm because both measures preserve 

the mass ordering. Furthermore, hecause volumes can also be 

concatenated, an extensive measure of volume, C('v, also exists, 

and the conjoint measure of volume, !/Iv, is a monotonic in

creasing function or it. From what is known about physical mea

surement, a particular !/I8, call it 'Ps, can be chosen so that 

'Pm = 'Ps'Pv. This is the representation that is customarily used 

for this conjoint structure, and the particular substance measure 

'Ps is called the "density" of the substance. Note, however, that 

from the point ofview of conjoint measurement, for each positive 

real", and (3, 0/( 'Ps)~( 'Pv)~ is an equally valid representation, and 

so ('Pst is an equally valid measure of density. Thus by selecting 

the exponent {3 to be I (or equivalently, by identifying !/Iv with 

'Pv), we have by fiat altered what is really a log-interval repre

sentation density into one that appears to be a ratio scale. (This 

means that in order to force density actually to be a ratio scale, 

more physical structure than the ordering of the density-volume 

pairs is needed,) As we noted earlier, Stevens (1959) failed to 

recognize the use of such conventions when he remarked that 

log-interval scales were scarce. Quite the contrary, they are ex

ceedingly common, but are often lost sight of by the practice of 

making certain arbitrary choices of exponents. 

The reason why the extensive and con.ioint measures of the 

same attribute are often powers of each other is that the two 

structures are interlocked qualitatively by what are called "laws 

of distribution." In the example above, two such laws hold-one 

between mass and the conjoint structure and the other between 

volume and the conjoint structure. Such laws take the following 

form for an operation on a component: Let <:: he the conjoint 

ordering of A X P, <::A the order induced on the first component, 

and ° A a concatenation operation on A such that <A, <::A, • A> is 

an extensive structure. Following Narens and Luce (1976) and 

Ramsay (1976), we say that '4 is distributive in the conjoint 

structure provided that the following condition holds for all a, 

b, c, d in A and p, q in P: whenever 

(a, p) - (c, q) and (b, p) - (d, q), 

then 
(a 0A b, p) - (c 'A d, q). 
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When the operation is on A X P, a somewhat diffc:rent but equiv

alent formation is needed. It is not difficult to show that if the 

extensive and conjoint measures ort the A component are related 

by a power function, then this qualitative distribution condition 

must hold. It derives from the usual numerical distribution 

(x + y)z : xz + pz. 

A major obseI-vation of Narens and Luce (1976) was that the 

convene is also true. The dislributive interlock is a qualitative 

condition, which togcthcf' with the propcrtica of extensive and 
additive corUoint structures underlies the entire structure of 

physical dimensions. In fact, Narens (198Ia) cstablished a far 

more general result than the one mentioned above: One need 

not assume that - ,4 is associative; it is sufficient that the structure 

involving the concatenation operation has a ratio scale repre
sentation (exactly what that entails is described in SMle 'l jme: 
General De/milion and Possible RepresenJlJliOfis o[CONXJ1enaJion 
SlnlClures). Moreover, onc need not assume that the conjoint 

structure has a multiplicative representation, as that follows from 

the other assumptions. 

General Representation Theory 

Representations and Scales 

As the various examples of mcas~ment discus,<;cd above ap

peared after World War II , it began to be fully appreciated that 

CONTAINERS (Volume.) 

V, v, 

(V,,5,) < (V, ,5,) 

they arc all SPCcial cases of a general method of mcas~ment 

thai has come to be referred 10 as "representational tbeory." 

This view, whose earliest explicit formulations were probabty 

those of Scott and SuPpes ( 1958) and Suppes and Zinncs ( 196]), 

holds thai measurement is possible whenever the following ob

tains: First, the underlying empirical situation is characterized 

as an ordered relational structure % - (X, t. S! , ... , S ... ). where 

~ ,S, .... , S" are the p,imiti~ '#!S ofthc structure (Appendix I). 

These primitives are empirical relations (including possibly op.. 

ttatioos) on X that characterize the empirical situation under 

consideration. Second, there arc restrictions-axioms-on the 

structure that reflect truths about the empirical situation. These 

are to be considered as putative empirical laws. Third, there is 

specified a numerically based relational structure 'R ." (R, ~ , 

R, •... , R1). where R is a subset of the real numbers and the 
HI are relations and operotions of compurable types to the cor

responding empirical ones. Finolly. the fourth feature, which 

accomplishes measurement, is the proof of the existence of a 

struClure preserving mapping from % into 'fl. We refer to % as 

the empirical or quLllital{I'e structure, :Ii as the representing 
structllre. and the stru(,1urc-preserving mapping as a homo

morphism ora represenJaJiun. Thecollection of alt homomorph

isms into the same representing structure is referred to as a scale 
(see Footnote I). 

The basic aim of representational theory is flrst, to use the 

axioms to show that the scale is not the empty set-this is called 

LIQUIDS (Subllance.) 

5, 5, 

(V, ,5,) - (V, ,5,) 

Plgurt 2. A pan ballInce determinatH.lIl orthe mus ordering of vo]wne-5ubswot pairs. 
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0----.. ·y,Z 

• X 

A 

Figure 3. Observer B lives on Object 1 and perceives Object 2 as having 
velocity y; whereas observer A perceives Object 1 (and its resident, observer 
B) as having velocity x and Object 2 as having velocity z. (The concate
nation operation. is defined by x. y = z.) 

the existence or representation theorem-and second, to char

acterize how these mappings (homomorphisms) that constitute 

the scale relate to one another-this is called the uniqueness 

theorem. In the classical case of extensive measurement, it is 

shown that a nonempty scale exists and is characterized as a 

ratio scale in the sense that <p and <p' are both in the scale if and 

only if there is a positive real constant r such that <p' = "1'. 

It should be realized that the representing structure is not 

itself unique; there always are a variety of alternative ones, and 

different ones are used for different purposes. Velocity provides 

an example of this. Suppose X is a set of constant velocities in 

a given direction that are ordered by the distances traveled in a 

fixed time interval. Concatenation of velocities x and y is the 

velocity that is obtained by superimposing x on y. That is, x • Y 
is the velocity of a body that an observer on another body moving 

at velocity x would judge to have the velocity y. (Figure 3.) In 

classical physics X is taken to be all possible velocities, whereas 

in relativistic physics it is convenient to restrict X to velocities 

less than that oflight. Except for that difference, the two structures 

are assumed to be extensive; however, in their measurement very 

different representations are used. In the classical case the usual 

additive representation is used, but in the relativistic case one 

selects c > 0 to represent the velocity of light and maps 

(X, i::;, 0) into «0, c), <!, EIlc), where EIlc is defined as follows: 

for all u and v in (0, c), 

u+v 
u EB c v = -:----:-:; 

1 - uv/C'- . 

It can be shown that these two numerical representing structures 

are in fact isomorphic, the isomorphism beingj(u) = tanh-1(u/ 

c), u in (0, c). If in the relativistic case • were represented additively, 

the velocity of light would be assigned the value 00. The real 

reason for changing the representation from an additive one is 

not to avoid 00, but rather to maintain the usual relation among 

velocity, distance, and duration, namely, that the former is pro

portional to distance traversed divided by the duration. 

Homogeneity and Uniqueness 

With the results about nonassociative structures as a stimulus 

and working within the general representational framework, Na

rens (1981 b) proposed a method for classifying scale types which 

has proved useful in describing the possible representations that 

can arise. Although the two concepts needed, homogeneity and 

uniqueness. are formulated in a rather abstract way, only the 

former seems illusive. So we focus on it both here and in the 

next section. 

Many of the most familiar mathematical structures used in 

science, such as Euclidean space, exhibit the property of being 

homogeneous. Like homogenized milk, each part of the space 

looks like each other part. This is the general intuitive concept: 

Every element in the domain of the structure is, from the point 

of view of the properties defining the structure (its primitives), 

just like every other element. There is no way of singling out an 

individual element as different from the others. To formulate 

this precisely and generally, two things are needed: (a) a very 

general concept of what we mean by a structure, and (b) the 

concept of an automorphism of a structure. The latter permits 

us to say when the structure looks the same from two points of 

view. 

To describe the situation, a very general model of measurement 

is used. First, % = (X, ~, Sb ... , Sn> is a relational structure 

that characterizes the empirical situation in the sense that ~ is 

a total ordering of X (i.e., a weak ordering for which indifference, 

~, is actually equality) and Sb ... , Sn are other empirical re

lations. Second, :R = (R, <!, R I , ••• , Rn) is the representing 

numerical structure. And third, ~ is a scale for %. In many 

important scientific applications, R is either the real numbers or 

the positive real numbers and the elements of 3 are isomorphisms 

of % onto :R. We assume this situation throughout the rest of 

this article unless stated otherwise. 

An automorphism is simply an isomorphism of a structure 

with itself, that is, a one-tn-one map of the structure with itself 

that preserves all ofthe primitives. Intuitively, an automorphism 

corresponds to what we usually refer to as a symmetry of the 

structure, namely, a mapping ofthe structure so that things look 

the same before and after the mapping is completed. So, for 

example, if the structure is a sphere, we know that it is sym

metrical in the sense that it looks exactly the same before and 

after any rotation about its center. Thus, for the sphere, rotations 

are automorphisms. The general concept applies, of course, to 

any relational structure. It is easy to verify that for each auto

morphism ct of% and for each <p in 3, the mapping<p. ct, where 

• denotes function composition [i.e., for x in X, <p • a(x) = 

<p(ll'(x»), is also in 3, and if <P' is also in ~, then a = <p-1 • <p'is 

an automorphism of %. Thus, there is a one-to-one correspon

dence between the scale ~ and the automorphism group, and so 

a classification of the one is equivalent to a classification of the 

other. The following classification of the automorphism group 

in terms of its richness (called "homogeneity") and of its redun

dancy (called "uniqueness") has proven to be very useful. The 

structure is said to satisfy l-point homogeneity if and only if for 

each x, y in X, there exists an automorphism a of the structure 

such that ll'(x) = y. This means that the structure exhibits a good 

deal of symmetry, because the automorphisms of a structure 

capture its symmetries. In geometry, this concept is equivalent 

to the concept of" I-transitivity," which has been extended there 

to apply to any M distinct points mapped by a continuous trans

formation to any other M distinct points of %, in which case it 

is called .oM-transitivity." For measurement, the generalization 

that is relevant is that each set of M ordered elements can be 

mapped by some automorphism into any other set of M com

parably ordered elements. This latter condition is called M-point 
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homogeneity. For M > 1 it is different from the geometric concept 

of M-transitivity. When a structu~ is M-point homogeneous for 

every positive M, it is said to be oo-point homogeneous. 

It is convenient to abbreviate" I-point homogeneity" just to 

"homogeneity," but we are careful to distinguish clearly other 

values of M-point homogeneity. 

To capture the idea of redundancy in the automorphism group, 

we say that the structure satisfies N-point uniqueness if and only 

if whenever two automorphisms agree at N distinct points, then 

they agree everywhere. If the structure is not N-point unique for 

any finite N, it is said to be oo-point unique. 
Several simple observations: Suppose a structure is infinite, 

M-point homogeneous, and N-point unique. Then M :0; N; if 

M' :0; M, then the structure is M'-point homogeneous and if 

N' ;>c N, then it is N'-point unique. Thus, in particular, all M

point homogeneous structures, M;>c 1, are I-point homogeneous, 

that is, homogeneous. 

Testing for Homogeneity 

Although homogeneity is a concept about the structure, it is 

in fact usually not obvious how to recast it in terms of qualitative 

properties that can be readily studied empirically. In some cases, 

particularly when there is a primitive binary operation, such 

logical equivalences are known (see Possible Representations of 
Concentration Structures). (It should be mentioned that the proofs 

of such equivalences are usually not easy and generally require 

much mathematical machinery or the use of a nontrivial rep

resentation-uniqueness result.) Quite often homogeneity need 

not be explicitly stated because it follows as a consequence of a 

representation theorem. For example, in the extensive case for 

which there is a representation onto the positive real numbers, 

I-point homogeneity easily follows from the existence and 

uniqueness results for additive representations. In such cases or 

in ones in which an empirical equivalent is known, homogeneity 

does not pose a serious empirical problem. Yet in many impor

tant scientific applications no such structural equivalences are 

known; in such cases homogeneity is simply postulated directly 

as a theoretical concept. Nonetheless, because of its power, it is 

often easy to devise simple tests to show that it does not hold 

even though we may not know how to test affirmatively for when 

it does hold. The following is one of the more useful such tests. 

Suppo,;e % = <X, S" ... , Sn) is a relational structure and that 

P is a property (one place relation) about X that is definable from 

the primitives S" ... , Sn using ordinary first-order predicate 

logic. It can be shown that if % is I-point homogeneous, then 

either p(x) is false for every x in X or p(x) is true for every x 

in X. 

Tbe following examples iliustrate its use. Suppose % is a qual

itative structure for probability (see Refinements: Difference Se

quences and Partial Operations), and A I:; B stands for "A 
is at ler.st as likely as B." Consider the predicate 

peA): for all B, A I:; B. 

Observe that peA) is true for A = the sure event and false for 

A = the null event. Thus, we know that qualitative probability 

is not homogeneous. This contrasts with the usual extensive 

models for length and mass, which are homogeneous. As a seoond 

example, consider a structure «0, I), R) in which (0, 1) is the 

open interval of real numbers between ° and and R is the 

ternary relation on (0, I) defined by: 

R(x, y, z) if and only if x, y, z are in (0, I) 

and x + y = z. 

Consider the predicate 

P(x): there exists a z such that R(x, x, z). 

Because P(I/3) is true and P(2/3) is false, the structure «0, I), 

R) is not homogeneous. 

As we shall see in the next section, the only other important 

case of finite point homogeneity is 2-point. Unlike I-point ho

mogeneity, it has proved very difficult to find qualitative equiv

alences to 2-point homogeneity that are empirically realizable 

and hold across a wide range of interesting structures. So, in 

practice, one either simply postulates it as a theoretical assump

tion or derives it (usually through a complicated mathematical 

argument) from the particular primitive relations under consid

eration. As with I-point homogeneity, there are ways to show 

that it fails: (a) Because structures that are 2-point homogeneous 

are also I-point homogeneous (see the end of Homogeneity and 
Uniqueness), the definitional test for I-point homogeneity can 

be invoked. (b) Because a I-point unique structure cannot be 

2-point homogeneous (see the end of Homogeneity and Unique
ness), it suffices to show the structure is I-point unique, and 

sometimes that is easy to do. (c) As we describe in Possible Rep
resentations of Concatenation Structures, the special case of a 

2-point homogeneous structure with a primitive monotonic op

eration necessarily has a very restrictive form of numerical rep

resentation, and it may be possible to show by empirical tests 

that such a representation is simply too restrictive to model the 

empirical situation. 

Scale Type: General Definition 

Recall that in infinite structures, there is a largest value, K, of 

homogeneity and a smallest value, L, of uniqueness. These are 

referred to, respectively, as the degree of homogeneity and 

uniqueness. This pair of numbers, (K, L), is useful for classifying 

the type of scale exhibited by a structure; it is called the scale 
type. 

It is easy to verify that if S is a ratio scale, then S is of type 

(1, I); if S is an interval scale, then S is of type (2, 2); and if S 
is an ordinal scale, then S is of type (00, (0). Narens (l98Ia, 

1981b) established the following converse of these observations. 

Suppose a structure has a representation onto the real numbers. 

If its scale is of type (1, I), then a representing structure can be 

found such that its representations form a ratio scale; and if the 

scale is of type (2, 2), then it has a representing structure such 

that its representations form an interval scale. In addition, he 

showed that it is impossible for the scale to be of type (M, M) 

for 2 < M < 00. There are (00, (0) cases that do not have ordinal 

scale representations; however, this does not much matter because 

the oo-point homogeneous cases-including the ordinal scalable 

ones-simply do not arise in empirical situations for which there 

is a reasonable amount of structure. Alper (1984, 1985) has 

shown that the only cases of structures with representations onto 

the positive real numbers and of scale type (K, L) with ° < K < 
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L and I ,,;; L < 00, are the ones in which K = 1 and L = 2, and 

in that case a discrete interval scale (Table I) exists. These results 

give considerable insights into why so few scale types have arisen 

in the development of the sciences. 

The whole issue of how intelligently to classify structures with 

either K = 0 or L = 00 is wide open. 

Possible Representations of Concatenation Structures 

For the important and widely applicable case of concatenation 

structures of the form % = <X, <::, 0), where <:: is a weak ordering 

on X and • is a binary operation on X, comparable results to 

those given for general structures hold without the assumption 

that % can be mapped onto the real or positive real numbers. 

Luce and Narens (1983, 1985) have shown that if such a con

catenation structure is of scale type (K, L) with K > 0 and L < 
00, then only types (I, I), (I, 2), and (2,2) can occur. The latter 

two necessarily are idempotent, and the (1, I) type is either 

idempotent, weakly positive (x 0 x >- x, for all x), or weakly 

negative (x 0 x -< x, for all x). An important sufficient condition 

for L to be finite is that the structure have a representation onto 

the positive real numbers for which the numerical operation is 

continuous. Continuity of an operation is usually judged to be 

an acceptable scientific idealization. For these three scale types, 

it is desirable to describe all possible candidate numerical rep

resenting structures. So, using Narens's (198 la, 1981b) results, 

it suffices to consider concatenation structures on the positive 

reals with ratio, log-interval, or log-discrete interval scales (Table 

I). Suppose that e denotes the representing operation. Luce and 

Narens (1985), extending the results of Cohen and Narens (1979), 

have shown that in all these cases there exists a function f from 

the positive real numbers into itself such thatfis strictly increas

ing, f(x)jx is strictly decreasing, and the operation is given by 

x €a Y = yj(x/y). 

It is worth noting that the only cases in which the above

mentioned homogeneous structure can be positive (x 0 y >- x, 

x 0 y >- y) or negative (x 0 y -< x, x 0 y -< y) are the (I, I) ones 

with f( I) + I. All the remaining structures are intensive in the 

sense that x • x - x and if x >- y, then x >- x 0 y >- y. (Formal 

properties of concatenation structures are summarized in Ap

pendix 3.) Clearly, the above operation e is invariant under ratio 

scale transformations. The (I, 2) and (2, 2) cases simply impose 

additional restrictions on f. For example, consider the equation 

such that for all x > 0, 

[(x") = [(x)". 

The (I, I) case is characterized by the equation holding if and 

only if p = I; the (I, 2) case by its holding if and only if for some 

fixed k> 0 and variable integer n, p = k"; and the (2, 2) case by 

its holding for all p > O. In this situation, the (2, 2) case is equiv

alent to the existence of constants c, d, 0 < c, d < I such that 

{ 

xCyl-C, if x >- y, 

x €a y = x, if x - y, 

Xdyl-d if x -< y. 

The last representation, called the dual bilinear representation, 

shows that the (2, 2) case is highly restrictive, and that all (2, 2) 

operations are nothing more than two pieces of two bisymmetric 

operations. 

So far as we know, the dual bilinear representation, except for 

c = d, has not arisen in physics, but recently Luce and Narens 

(1985) have used it to formulate a generalized theory of expected 

utility, which appears to overcome a number of the empirical 

disconfirmations of the classical theories of the subject. This is 

described in the next section. 

Before turning to that, we consider two further questions: ax

iomatization of general concatenation structures and conditions 

equivalent to homogeneity. Narens and Luce (1976) showed that 

concatenation structures satisfying all of the axioms of extensive 

structures except possibly associativity had a numerical repre

sentation. Such structures, called PCSs, play an important role 

in measurement theory. Luce and Narens (1985) have provided 

a comparable axiomatization for general intensive structures. 

Much is known about axiomatizing homogeneity for concaten

ation structures. First, on the assumption of a representation 

onto the real numbers, certain basic algebraic properties such as 

associativity, bisymmetry, and right autodistributity [(x. y) 0 

z - (x 0 z) 0 (y 0 z)] all force homogeneity to hold.' Second, for 

a wide variety of PCSs, homogeneity is equivalent to the following 

structural condition: For all elements x and y and all positive 

integers n, 

(x. yin = Xn 0 Yn, 

where x" denotes the nth element of a standard sequence based 

on x (see Axioms for Extensive Quantities). Luce (1986) has 

shown that a closely related, although perhaps less useful, cri

terion exists for homogeneity in intensive structures. The third 

method for establishing homogeneity is to axiomatize directly 

all concatenation structures of a given type. For the (2, 2) case 

this is equivalent to axiomatizing the dual bilinear representa

tions, which was done in Luce (1986). 

These techniques for characterizing concatenation structures 

by scale type can, of course, be extended to nonadditive conjoint 

structures, as Luce and Cohen (1983) showed; however, matters 

are a bit more complex than one might first anticipate. In par

ticular, automorphisms of the conjoint structure need not always 

factor into automorphisms ofthe orderings induced on the com

ponents, and even when they do the scale types are not usually 

the same. We do not go into these complex details here. 

Dual Bilinear Utility 

A theory of preferences among gambles can be based on the 

idea that gambles can be "concatenated" in a special way to 

form other gambles, and that rationality considerations need be 

applied only to the simplest concatenations of gambles with 

gambles (Luce & Narens, 1985). When rationality considerations 

are more broadly invoked, even marginally, this theory reduces 

to the usual subjective expected utility model used throughout 

the social sciences. 

2 It is worth noting that many times when an axiom is added to a 
general concatenation structure that has a numerical representation, it 
can be formulated numerically as a functional equation. In some cases, 
solutions are available in the literature; a good starting point for finding 
such solutions is Aczel (1966). 
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More specifically, suppose x and yare gambles and A is an 

event. Then x 0A y denotes the gamble in which x is the outcome 

when A occurs and y when A fails to occur. It is assumed that 

there is a preference ordering t over gambles. The Luce and 
Narens model ends up with a utility function U over the gambles 

(i.e., a real-valued function such that gl t g2 if and only if 
Ulg.] ;;,; Ulg2]) and two weighting functions, S+ and S-, defined 
over events such that 

U(x °A y) 

{

U(X)S+(A) + U(y)[l - S+(A)], if U(x) > U(y), 

= U(x), if U(x) = U(y), 

U(x)S-(A) + U(y)[l - S-(A)], if U(x) < U(y). 

The weighting functions, S+ and S-, need not be probability 

functions. This model is called the dwi bilinear utility model. 
The standard subjective expected utility model (SEU) arises when 
S+ = S- = a (finitely additive) probability measure over the set 

of events (see Fishburn, 1981, for a detailed summary ofSEU). 

The dual bilinear model may seem a little artificial at first. How
ever, it follows from an almost universally used assumption about 
utility functions, namely, that the representations of an individ

ual's utility function over gambles form an interval scale, together 

with some very natural and weak assumptions about 0A and t. 
An additional reason for considering the dual bilinear model 

is that it is weaker than the SEU model, and there is an abundance 
of empirical data showing that SEU fails to describe behavior. 

A summary of many of the problems was given by Kahneman 
and Tversky (1979). Basically, the failures are concerned with 

three types of "rationality." The first is transitivity of preference, 

which has been shown to fail under some circumstances by Lich
tenstein and Slovic (1971, 1973) and Grether and Plott (1979). 

No model, such as the present one, which associates utility with 
gambles can account for this. The second type of failure has to 
do with what Luce and Narens call "accounting equations" and 

Kahneman and Tversky refer to as the "framing" of gambles. 
An example of an accounting equation that is implied by the 
dual bilinear model is 

where A and B are independent events, such as A is an even 

number corning up on a roll of a die and B is a red number 
coming up on a turn of a roulette wheel. Observe that x is the 

outcome on both sides if in independent realizations of the events 
both A and B occur, in that order on the left and in the opposite 

order on the right. An example of another accounting equation 
is 

where successive 0A mean independent realizations of the event 
A (e.g., the first "A" refers to an even number coming up on a 
roll of a die, the second "A" as an even number coming up on 

a different roll of the same die, etc.). This holds in the bilinear 
model if and only if S+ = S-, which is true for SEU but not in 

general for the dual bilinear model. The earliest discussion of 

failures of accounting equations was by Allais (1953; see also 
Allais & Hagen, 1979). A third type offailure is also one of the 
accounting type, but it is more subtle because it involves a kind 

of monotonicity of events. Suppose C is an event that is disjoint 

from events A and B, then the assertion is 

X "A Y ;:: X "8 Y if and only if x "AUC y t X "BUC y. 

In essence, then, the pair of gambles on the right is obtainable 

from the pair on the left by shifting the assignment of outcomes 

over C and y to x. Ellsberg (1961) pointed out that this often 
fails for people's preferences, and this has been repeatedly con

firmed. In the dual bilinear model, this equivalence holds if and 
only if the two weights exhibit the property that for C disjoint 
from A and B, 

Si(A) ;0,; Si(B) if and only if 

SiCA U C) 2 Si(B U C), i = + or -. 

This is true of the SEU model because of the Ss are probabilities 
and so SiCA U C) = SiCA) + Si(C). The basic distinction between 

the two types of accounting equations has to do with forcing the 
two weights to be identical in one case and to be probability 
functions in the other. 

It should be noted that this model is in many ways similar to 

and more completely specified than the prospect theory of 
Kahneman and Tversky (1979), as was discussed in some detail 

in Luce and Narens (1985). As yet, no empirical studies have 
been reported that are targeted directly at the dual bilinear model. 

Conclusions 

In summary, a great deal is now known about the scales for 
inherently symmetrical, one-dimensional attributes and about 

how they interlock to form the systematic structure of multidi
mensional physical quantities. Perhaps the major milestones of 
the past 25 years are these: First, the development of conjoint 

structures, which not only provided a deep measurement analysis 
of the numerous nonextensive, "derived" structures of physics, 
but also provided a measurement approach that appears to have 
applications in the nonphysical sciences and has laid to rest the 

claim that the only possible basis for measurement is extensive 
structures. Second, the development of the distributive interlock 
between ratio scale concatenation structures and conjoint struc

tures, which serves to explain why physiCal measures are all in
terlocked as products of powers of a few ratio scales. Third, the 
growing recognition of the importance of automorphism groups 

in classifying measurement structures, and the explicit definition 
of scale type in terms of degree of homogeneity and degree of 
uniqueness. Fourth, the application of that classification to or

dered structures with a concatenation operation and to conjoint 
structures, thereby providing a complete catalogue for these sit
uations of the possible representing structures for the homoge

neous cases. 
A number of important problems remain unresolved. For one, 

we do not have an adequate axiomatization of the general class 
of homogeneous intensive structures except for the interval scal

able ones. Second, we do not have comparable results for non

homogeneous structures, even ones witb concatenation opera
tions. This is not an esoteric question because any totally ordered 

structure with a partial operation-such as probability when 
looked at the right way-has only one automorphism, the identity 
map. Thus, in such cases the automorphism group fails to em-
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body any structural information. Nevertheless, despite their lack 

of global symmetry, such structures often appear to be quite 

regular in other aspects, and this needs to be captured in some 

fashion and studied. Third, there are some important cases of 
interlocking concatenation and conjoint structures that are not 

covered by the distribution results mentioned, perhaps the most 
striking example being relativistic velocity as a component of 

the distance conjoint structure with time as the other component. 
Because many psychological attributes appear to be bounded, 

understanding this physical case may be more pertinent than it 
first might seem. 
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Appendix I 

Some Structure Preserving Concepts 

x ~ (X, so, s" ... ,S.) is said to be a relational structure if and only 

if X is a nonempty set and So, S" .•. , S. are relations or operations 

onX. 

'" is said to be a homomorphism of the relational structure X = (X, 

So, SI •... , S".) into the relational structure .n = (R, Ro. R", .. , Rn) 
if and only if", is a function from X into R, for k = 0, ... , n, S. and Rk 

have the same number, ik, of arguments, and for all x" ... , x" in X, 

Six!' ... ,Xi.) if and only if Rk[r,o(Xj), ... , r,o(Xik)]' 

if Sk is a relation, and 

r,o[SiXj, •.. , XiJ] = R,Jc,o(Xj), ... , r,o(Xik)] 

if Sk is an operation. If R is a subset of reals and Ro is the usual ordering, 

2, of the reals (restricted to R), then in measurement theory homo

morphisms of X into :Ii are called representations. 
'" is said to be an isomorphism of X onto :Ii if and only if '" is a 

homomorphism of% into :Ji, <p is onto :Ji, and f(J is a one-to-one function. 

<{! is said to be an automorphism of X if and only if", is an isomorphism 

of X onto itself. 

The set of automorphisms, G, of a relational structure X is closed 

under the operation of composing functions, •. (a • i3 is defined by 

" • (3(x) = a[{3(x)].) It is easy to show that (G, .) is a group. (G, .) is 

called the automorphism group of %. 

Appendix 2 

Some Concepts About Conjoint Structures 

Let ;: be a binary relation on the Cartesian product A X P and 13 = 

(A X P, ;:). 

13 is said to be a conjoint structure if and only if the following two 

conditions are satisfied. (a) Weak ordering: ;: is transitive and connected. 

(b) Independence: For all a, b in A, if for some p in P (a, p) ;: (b, p), then 

for all q in P (a, q) ;: (b, q); and for all p, q in P, if for some a in A 

(a, p) ;: (a, q), then for all b in A (b, p) ;: (b, q). 

Suppose 13 is a conjoint structure. Define ;:A on A as follows: For all 

a, b in A, a ;:A b if and only if for some p in P (a, p) ;: (a, q). It is easy 

to show that ;:A is a weak ordering of A. Similarly, a weak ordering ;:p 
can be defined on P. 

13 is said to satisfy (unrestricted) solvability if and only if for all a, b 
in A and p, q in P, there exist c in A and r in P such that (c, p) - (b, q) 

and (a, r) - (b, q). 

13 is said to satisfy restricted solvability if and only if for all a', a", and 

binAandp, qin P, 

if (a', p) <:: (b, q) <:: (a", p), 

then for some a in A (a, p) - (b, q); 

and for all a, b in A and p', p', and q in P, 

if (a, p') <:: (b, q) <:: (a, p"), 

then for some pin P (a, p) - (b, q). 

(Appendixes continue on next page) 
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Appendix 3 

Some Concepts About Concatenation Structures 

Let % ; <x. ?:, .). where?: is a binary relation on X and 0 is a binary 

operation on X. 

% is said to be a concatenation structure if and only if ?: is a total 

ordering and 0 is strictly monotonic. that is. x ?: y if and only if x • z ?: 

y. z if and only ifz. x?: z. y for all x, y. and z in X. 

% is said to be a weakly ordered concatenation structure if and only if 

t is a weak ordering (i.e., a transitive and connected relation) and 0 is 

strictly montonic. 

% is said to be positive if and only if x 0 y >- x and x 0 y >- y for all 

x.yinX. 

% is said to be idempotent if and only if x 0 x ~ x for all x in X. 

% is said to be intern if and only if x >- y implies that x >- x 0 y >- y 

and x >- yox >- x. 
% is said to be intensive if and only if it is idempotent and intern. 
o is said to be bisymmetr;c if and only if (x 0 y) 0 (u 0 v) ~ (x • u) 0 

(y. v) for all x. Yo u. and v in X. 
Note that "averaging" operations $. on the real numbers of the form 

r$.s; ar + (I - a)s, where 0 < a < I, are intensive and bisymmetric. 
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