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Measurements as a roadblock to near-term practical quantum advantage
in chemistry: Resource analysis
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Recent advances in quantum computing devices have brought attention to hybrid quantum-classical algorithms
like the variational quantum eigensolver (VQE) as a potential route to practical quantum advantage in chemistry.
However, it is not yet clear whether such algorithms, even in the absence of device error, could actually achieve
quantum advantage for systems of practical interest. We have performed an exhaustive analysis to estimate the
number of qubits and number of measurements required to compute the combustion energies of small organic
molecules and related systems to within chemical accuracy of experimental values using the VQE. We consider
several key modern improvements to the VQE, including low-rank factorizations of the Hamiltonian. Our results
indicate that, although these techniques are useful, they will not be sufficient to achieve practical quantum
computational advantage for our molecular set, or for similar molecules. This suggests that novel approaches
to operator estimation leveraging quantum coherence, such as enhanced likelihood functions, may be required.
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I. INTRODUCTION

In the last decade, quantum computers have evolved from
laboratory prototypes of a few qubits to machines with tens
of qubits that are commercially available for researchers and
businesses to use [1,2]. In 2019, Google announced the re-
alization of a quantum supremacy milestone: their 53-qubit
chip accomplished a specific task that would be extremely
difficult to simulate with a classical supercomputer [3], though
recent work improved considerably on initial classical runtime
estimates [4]. This task was specifically designed to be well
suited to the quantum processor and challenging for classical
computers, and does not solve a practical problem. The next
milestone, and arguably the most pressing one [5], is finding
a practical quantum advantage with noisy intermediate-scale
quantum (NISQ) devices [6], that is, running an algorithm
on a NISQ device that provides an improved solution for a
commercially relevant task. This improvement can manifest
in different ways, either as a reduction in the time to solution
or an increase in the quality of the solution. Accomplishing
this goal requires first a steady improvement in the quality of
quantum computing hardware. Fortunately, we are witnessing
a rapid growth in the number of qubits and fidelity of these
machines as indicated by the recent trends in metrics such as
quantum volume [7]: in the past couple of years this went from
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32 in January 2020 [8], to 128 in September 2020 [9], then
2048 in December 2021 [10] and 4096 in April 2022 [11]. The
second requirement towards quantum advantage is identifying
commercially relevant tasks for which a near-term quantum
algorithm can provide a measurable improvement compared
to classical alternatives.

Quantum chemistry has been identified as a likely can-
didate [12–14] for quantum advantage for multiple reasons.
First, electronic structure calculations are used extensively in
the development of many technologies, for example in the
chemicals industry [15], drug development [16], and battery
materials research [17]. Second, electronic structure calcula-
tions rely on the Schrödinger equation, for which a general
exact solution has exponential cost on a classical computer
with all known classical methods. Third, quantum comput-
ers can store exponentially scaling representations of the
wave function on a linear number of qubits and also provide
means to implement Hamiltonian evolution efficiently, giving
rise to quantum algorithms to estimate ground state energies
of some molecular Hamiltonians using polynomially scaling
resources.

Quantum approaches to electronic structure calculations
can be divided into two categories: (1) algorithms based on the
quantum phase estimation subroutine and related techniques
and (2) quantum heuristic algorithms [13], such as the varia-
tional quantum eigensolver (VQE) [18] and related methods
based on different versions of the time-dependent variational
principle [14]. Under certain assumptions, approaches in the
first category can provide an advantage in computational scal-
ing compared to exact classical algorithms, however they
require a fault-tolerant implementation [12,19–23], and there-
fore are not applicable in the near term. In contrast, quantum
heuristics such as the VQE can be implemented on NISQ
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devices thanks to the flexibility in their construction, but
do not provide any proven asymptotic advantage compared
to classical algorithms. Demonstrating a quantum advantage
in this context requires a comparison of the computational
cost and performance of the quantum heuristic against the
state-of-the-art classical approximations for specific problem
instances. Performance metrics might include aspects such as
total runtime and accuracy of the solution. In addition, this
comparison must go hand in hand with an optimization of the
algorithmic choices of the heuristic to maximize performance.
From this perspective, a necessary step towards achieving
quantum advantage in the near term is establishing protocols
for evaluating quantum computational resources for specific
sets of problem instances and target accuracy of the solution,
a procedure we will refer to as resource and performance
assessment (RPA).

While many studies have estimated resource requirements
for quantum chemistry using fault-tolerant algorithms such as
quantum phase estimation [19–24], only a small number have
assessed the resource requirements for NISQ approaches.
McClean et al. have analyzed the asymptotic measurement
requirements of the VQE [25] while Kühn et al. numerically
examined qubit requirements and required circuit depth for
UCC-derived Ansätze [26]. Numerical studies have explored
the VQE measurement costs of diatomic molecules and hy-
drogen chains or rings when applying fermionic marginal
constraints and a low-rank factorization of the Hamiltonian
[27,28]. Elfving et al. estimated the number of spin orbitals
required for industrially relevant calculations and concluded
that the required VQE execution time was prohibitively large,
although the method used to estimate the execution time was
not specified [24].

While these studies provide valuable insight into the per-
formance of the VQE and its variants, several questions about
the feasibility of these techniques for systems of practical
interest remain unanswered. For example, although VQE
measurement requirements have been assessed for small basis
sets, such analysis has not been carried out for the basis
sets required to achieve a useful accuracy with respect to
the infinite basis set limit. Another key question is how
these measurement requirements compare to the runtime of
state-of-the-art classical quantum-chemistry techniques. Fur-
thermore, previous studies have estimated measurements by
employing canonical orbitals, and have not considered frozen
natural orbitals (FNOs) [29–31], which are known to sig-
nificantly reduce both the computational cost of classical
wave-function-based quantum chemistry methods and the re-
quirements on the number of qubits for quantum computing
applications [32,33].

To address these questions, we have performed an RPA to
estimate the number of qubits, number of measurements, and
total runtime required for calculating combustion energies for
small organic molecules to within chemical accuracy (defined
as 4.2 kJ/mol or 1.6 mHa [34]) with a single VQE energy
evaluation, leaving the problem of VQE parameter optimiza-
tion to future work. These estimates consider frozen natural
orbitals as well as measurement reduction techniques such
as Hamiltonian grouping of commuting [35–39] or anticom-
muting [40,41] terms, the application of fermionic marginal

constraints [27], and low-rank factorization of the Hamilto-
nian [28,42].

Our results indicate that between 120 and 260 qubits are
required for chemical accuracy for our benchmark systems.
Under optimistic assumptions about the Ansatz requirements
and the sampling rate of the device, we show that a single
energy evaluation could take several days to weeks, rendering
the calculations impractical and inferior to classical methods,
in particular when considering the large number of such evalu-
ations required for the optimization loop of VQE. Our results
also show that although certain grouping techniques greatly
reduce the number of measurements, they are not enough
to guarantee practical runtimes in the regime where quan-
tum advantage is expected. This suggests that making VQE
practical in the near term requires the use of new approaches
to measurement that leverage quantum coherence to reduce
estimation runtimes, such as the recently proposed Bayesian
likelihood function techniques [43,44].

The rest of the paper is organized as follows: in Sec. II, we
describe our methods for each step of the RPA in detail. In
Sec. III, we present the numerical results for our RPA. There,
we establish accurate classical quantum chemistry reference
values by comparison with experimental reaction energies.
We then truncate the active space to establish the minimal
number of qubits necessary to preserve chemical accuracy.
The last step of our estimation evaluates the number of neces-
sary measurements to reach chemical accuracy on a quantum
computer, including measurement reduction techniques. This
evaluation is made for increasing active space sizes to estab-
lish asymptotic scaling relationships. Finally, we introduce
an empirical extrapolation formula to establish runtime and
resource requirements for more general systems than the ones
specifically studied in this paper. In Sec. IV, we discuss our
results, their implications, and further research avenues.

II. METHODS

In this section we describe our methodology for resource
estimation, starting with an outline of the RPA concept as
applied to VQE, followed by a detailed description of the
methods employed for the estimation of classical and quan-
tum computational resources. All calculations were deployed
using Zapata Computing’s Orquestra workflow management
platform.

A. Outline of the resource and performance assessment

The goal of an RPA is simple: we want to estimate as
accurately as possible the resources, such as number of qubits,
number of measurements, fidelity, among others, needed to
achieve a given quality of solution for a specific choice of
quantum algorithm and a set of problem instances. By fixing a
target quality in the solution, it is possible to compare the cost
with that of state-of-the-art classical approaches, establishing
whether a quantum advantage is possible. The process can be
divided in five stages.

(1) Define a set of problem instances and the quantum
algorithm to be assessed.

(2) Set a target metric for performance. For example,
choose a target quality of solution or time to solution.
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(3) Select a classical approach for comparison, ideally the
state-of-the-art method for the instances of interest, and esti-
mate the amount of classical resources required to achieve the
target performance.

(4) Estimate the amount of quantum computational re-
sources required to achieve the target performance using the
quantum algorithm.

(5) Compare the performances and computational cost of
the quantum and classical approaches. Establish whether a
practical quantum advantage is attainable.

In this paper, the problem under study is the calculation of
the combustion energy for a set of small organic molecules.
We selected the gold standard for quantum chemistry—
coupled cluster with singles, doubles, and perturbative triples
[CCSD(T)]—as our classical algorithm, and evaluated the
cost of estimating combustion reaction energies to chemical
accuracy. This resource estimate includes determining the ba-
sis set and number of spin orbitals needed. The performance
of the classical approach provides the reference to be outper-
formed by the quantum algorithm, setting chemical accuracy
as the target metric for quantum advantage. In principle, it is
also possible to set experimental data as the reference, pro-
vided reliable enthalpic corrections to the electronic energies
are available. In our case, we instead ensured that the classical
approach was reproducing experimental data, and then used
the classical electronic energy results as reference for the
quantum algorithms.

With the target accuracy fixed, we proceeded to estimate
the number of qubits and total number of measurements
needed to achieve such accuracy assuming access to a suffi-
ciently expressive Ansatz and high enough gate fidelity. By
incorporating assumptions about the characteristics of the
variational circuit and the quantum hardware, we established
realistic runtime estimates for achieving chemical accuracy.
Crucially, our analysis takes into account the system and size
dependence of different resource requirements. For this rea-
son, we focus on techniques that can be scaled up to larger
molecules or clusters, which is why considerations of spatial
symmetry for example are not included.

While the most accurate RPA would require executing the
algorithm, this might be too computationally costly. We can
instead take advantage of our knowledge of the algorithm and
the problem to investigate empirical scaling of the resources
with system size in order to establish relationships that allow
extrapolation to larger instances. Some performance metrics,
such as the number of measurements in the VQE, only depend
on properties of the problem instance. More specifically, the
number of measurements to reach a target accuracy can be
predicted from the Hamiltonian of each molecule and clas-
sical estimations for variances (see Sec. II C 3). In the rest
of this section we describe in detail the benchmark data set
chosen for our RPA as well as the methodology for estimating
classical and quantum computational resources.

B. Benchmark data set

In this paper, we aim to establish resource estimates for
computing electronic ground state energies with the VQE.
We wish to apply our resource estimation procedure to a
benchmark set of molecules to facilitate extrapolation to larger

systems. Ideally, this set would be of practical relevance,
contain small enough molecules to allow chemically accurate
classical computations, and correspond to well-established,
accurate experimental data. For these reasons, we chose to
study combustion reactions for the following small hydro-
carbons: methane, methanol, ethane, ethene, ethyne, ethanol,
propane, propene, and propyne (depicted in Fig. S1 in [45]).
For clarity, we explicitly write the general formula for the
reaction’s stoichiometry:

CxHyOz +
(

x + y

4
− z

2

)
O2 � xCO2 + y

2
H2O. (1)

Experimental enthalpies of combustion for the hydrocar-
bons in our benchmark set can easily be calculated from
available enthalpies of formation [46] (see Table S1 [45]).
By combining electronic ground state energies with vibra-
tional, rotational, and translational enthalpic contributions, we
can obtain simulated combustion enthalpies that can be com-
pared to the experimental values. Most of our paper focuses
on getting accurate electronic energies, as harmonic vibra-
tional corrections to enthalpies are obtained from the second
derivatives of the electronic energies. Anharmonic effects are
expected to be important for larger, flexible molecules but
only play a very minor role in our benchmark reactions, as
numerically verified in Table S4 [45].

Algorithms to compute anharmonic vibrational spectra on
quantum computers exist [47–50], and have been argued to be
better candidates than electronic structure for early quantum
advantage [51]. This assessment was based on considera-
tions of scaling of the number of terms and their locality in
the respective Hamiltonians. In addition, the relative magni-
tude of the Hamiltonian coefficients also favored vibrational
Hamiltonians for the systems considered. We hope that our
method for resource estimation provides an accurate picture
of the prospects of electronic structure algorithms on quantum
computers for concrete examples, thus facilitating the com-
parison with prospects of quantum algorithms for vibrational
structure.

Our chosen set of molecules is dominated by dynamical
correlation. As pointed out by Elfving et al., this means that a
very large number of orbitals is needed for accurate treatment
[24]. Hence, a very large number of qubits would be needed
on a quantum computer to rival quantum chemistry capabili-
ties on classical computers. In that sense, systems dominated
by nondynamical correlations would be better candidates for
demonstrations of near-term quantum advantage. However,
we believe that most of our extrapolation and resource estima-
tion results are valid for general molecular systems, whether
dominated by dynamical or by nondynamical correlations. In
particular, our results regarding the scaling of the number of
measurements necessary to reach chemical accuracy with the
size of the system should be transferable to most cases.

C. Methodology for resource estimation

1. Classical benchmarks

The first component of the RPA consists of establishing
a reference classical quantum chemistry approach and eval-
uating the classical resources needed to achieve chemical
accuracy for a benchmark set of molecules. The current gold

033154-3



JÉRÔME F. GONTHIER et al. PHYSICAL REVIEW RESEARCH 4, 033154 (2022)

standard for ground state electronic structure calculations is
the CCSD(T) method [52]. For closed-shell molecules, and
with sufficiently large basis sets, CCSD(T) can reach chemical
accuracy, i.e., an error of 4.2 kJ/mol compared to experi-
mental data [34,53]. Unfortunately, its N7 scaling limits its
application to small systems. For completeness, we note that
approximate CCSD(T) methods were developed [54–57] that
take advantage of the spatial locality of electron correlation,
which allowed computation of much larger systems [57,58]
by reducing the overall asymptotic scaling. However, the ac-
curacy of the local approximations in coupled-cluster methods
was recently questioned [59,60].

We assessed the suitability of CCSD(T) for our benchmark
set. We also explored which basis set was large enough to
reach chemical accuracy for CCSD(T), by performing com-
putations in various aug-cc-pVXZ basis sets (denoted AVXZ)
with X = D, T, Q, or 5 [61] denoting increasing angular mo-
mentum of the basis functions, and in the def2-TZVPPD basis
set [62,63]. The details of our computational methods and
results for this assessment are reported in the Supplemental
Material [45] for the interested reader.

2. Number of qubits

To estimate the minimal number of qubits that can be
used while recovering CCSD(T)/AV5Z results with sufficient
accuracy, we explored different choices of orbitals and active
spaces. In practice, we evaluated the CCSD(T)/AV5Z energy
with and without truncations and we assumed that the result-
ing errors are reflective of those that would be obtained with
an accurate VQE Ansatz.

The simplest choice for orbital truncation is to eliminate
Hartree-Fock canonical virtual (i.e., unoccupied) orbitals with
the highest energy. However, a better choice is known in
the quantum chemistry literature: the FNO [29–31] method.
FNOs have been successfully applied to reduce the number
of qubits needed in quantum chemistry simulations on quan-
tum computers [32,33], however the corresponding number of
measurements has to our knowledge not been estimated. As
is usual, we apply a perturbation theory correction to partly
compensate for the truncated energy, for both canonical and
frozen natural orbitals. Further technical details are reported
in the Supplemental Material [45].

We also note that there exist other methods to reduce the
number of qubits necessary to encode a problem: improved
basis sets [64], exploitation of symmetries [65,66], or parti-
tioning methods [67,68]. We leave their study to future work.

3. Measurement analysis

General considerations. To obtain the energy in the VQE
algorithm, it is necessary to estimate the expectation value
of the Hamiltonian by performing many measurements and
averaging their results. The total number of necessary mea-
surements M can be estimated as follows:

M = K

ε2
, (2)

where ε is the desired precision on the estimation and K is a
proportionality constant that depends on the Hamiltonian, the
state being measured, and the measurement strategy employed

for the estimation [25,69], as described below. Note that in
quantum chemistry, an accuracy of 1.6 mHa with respect to
the exact ground state in the infinite basis set limit is typically
desired, which means that the uncertainty due to sampling
error ε must be less than this amount.

After transformation to the qubit representation, the molec-
ular Hamiltonian takes the form

Ĥ =
∑

i

hiP̂i, (3)

where P̂i is a product of Pauli operators acting on one or more
qubits and hi is the associated coefficient, obtained from the
one- and two-electron integrals calculated with Psi4 [70].

While the simplest approach to estimating the expectation
value of Ĥ would be to measure each P̂i independently, it
is possible to measure two operators P̂i and P̂j at the same
time if they commute, thereby reducing the total number of
measurements needed. In general, measuring two commuting
operators P̂i and P̂j implies multiqubit measurements [37] or
appending a unitary transformation to the circuit [71]. Hence,
we first consider grouping methods that do not increase the
depth of the circuit and rely only on single-qubit measure-
ments, i.e., qubitwise commuting (QWC) groups [36,37].
QWC implies that for both P̂i and P̂j , the Pauli operators acting
on the same qubit individually commute. Finding the optimal
QWC grouping is equivalent to solving the minimum clique
cover graph problem and is NP-hard in the general case [37].
Here we use a heuristic greedy algorithm that goes through
all operators and adds each one to the first group with which
it is qubitwise commuting [35,72,73]. In addition, we sort the
list of operators according to their coefficients hi, so operators
with the largest coefficients are grouped first [74].

We also consider the basis rotation approach to Hamil-
tonian decomposition [28,42,73]. In the variant applied in
this paper, the Hamiltonian terms that only contain Ẑ op-
erators are measured in the usual way, while an eigenvalue
decomposition is used to obtain a low-rank factorization of
the remaining two-body terms. The expectation values of this
low-rank factorization and the remaining one-body terms can
be obtained by applying a linear-depth basis rotation circuit
after the Ansatz.

Other methods to obtain the expectation value of the
Hamiltonian at reduced cost exist [38,39,75,76], for example
it is possible to measure groups of fully commuting Pauli
terms by appending the appropriate circuit to the Ansatz [71],
or to use locally biased [77] or derandomized [78] classical
shadows as an alternative to QWC grouping. In the current
paper, we only assessed the performance of one additional
method based on grouping mutually anticommuting Pauli
terms [40,41]. Our results show that anticommuting grouping
is less performant than QWC grouping (see Fig. S12 [45]),
therefore these results are not included in the main text.
Benchmarking of additional methods like those mentioned
above will be the object of future work. A particularly promis-
ing approach makes use of overlapping Pauli grouping [75].

Measurement estimation. The grouped Hamiltonian can be
rewritten

Ĥ =
∑

C

∑
α∈C

hαP̂α, (4)
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where C indexes groups and α labels terms in a group. Apply-
ing the Lagrangian approach of Rubin et al. [27] shows that
the optimal allocation of measurements to groups gives the
following expression for the proportionality constant K :

K =
⎡
⎣∑

C

√ ∑
α,β∈C

hαhβCovar(P̂α, P̂β )

⎤
⎦

2

. (5)

This measurement allocation scheme assumes that the covari-
ances between all operators P̂α and P̂β are already known,
including the variances Var(P̂α ) = Covar(P̂α, P̂α ). In general,
one does not know the values of these covariances and must
estimate them.

Because K depends on the variances and covariances of
the operators P̂i, K depends on the quantum state being mea-
sured, i.e., it changes through the VQE optimization. To avoid
these complications, and allow estimation of K for up to 80
qubits, we employ some simplifying approximations. For the
variances, we consider two approximations. In the first, we
assume variances to be 1.0, the upper bound. In the second, we
estimate variances from configuration interaction singles and
doubles (CISD) density matrices computed with Psi4 [79].
The variances can be approximated from the expectation value
〈P̂〉 of each operator since P̂2 = 1:

Var(P̂) = 〈P̂2〉 − 〈P̂〉2 = 1 − 〈P̂〉2
(6)

where we approximate the exact expectation value by its CISD
counterpart.

We assume all of the covariances between different terms
are zero. This does not correspond to a worst or best case
scenario, but approximates the effect of a random distribution
of covariances within bounds given by the Cauchy-Schwarz
inequality: ∣∣∣√Var(P̂α )Var(P̂β )

∣∣∣ � Covar(P̂α, P̂β ). (7)

Indeed, covariances can be positive or negative, but their mag-
nitude is bounded by Eq. (7). Hence a random distribution
is expected to have an average around zero. That is exactly
the case when the quantum state being measured is a Haar
random distribution [38]. In practice, we observed that this
approximation resulted in K being overestimated by a factor
of ≈2 relative to estimates using covariances obtained from
circuit simulations of optimized Ansätze. Note that when the
upper bound is used for variances and covariances are set to
zero, the estimated value of K is entirely determined by the
coefficients of the Hamiltonian.

A precise assessment of the number of measurements re-
quired and its scaling with increasing system size for both
QWC and basis rotation grouping is fundamental in predicting
the runtime of energy estimation on NISQ devices. For this
purpose, we computed K for all the molecules in our bench-
mark set with the exception of O2 for technical reasons. For
each molecule, we generated the Hamiltonians from one- and
two-electron integrals obtained from Psi4 for different active
space sizes, where we always used an integer number of qubits
per active electron to facilitate extrapolation. K was computed
for all these Hamiltonians with up to 80 qubits, and a power
fit of K as a function of the number of qubits was used to

extrapolate the number of measurements necessary for the 100
to 200 qubits region. In addition, we performed these estima-
tions for both the upper bound approximation to the variances
and variances computed from CISD. Finally, for each case we
also computed the Hamiltonian coefficients based on canoni-
cal orbitals (as is usual in most VQE publications) and based
on FNOs (consistent with our active space size estimations),
relying on the aug-cc-pVDZ (denoted AVDZ) Dunning basis
set in all cases. This results in a total of eight K estimations
for each molecule and active space, giving us unprecedented
insight into the relative performance of the variants examined.

Variance reduction. Grouping the Hamiltonian terms is
not the only possibility to reduce the total number of mea-
surements needed. The Hamiltonian can also be transformed
so that its overall variance is reduced. Here, we explored
the reduced density matrix constraints (RDMC) method [27]
proposed by Rubin et al. In brief, this method adds operators
to the Hamiltonian that sum to zero and optimizes their co-
efficients to reduce the total variance. We implemented this
method directly in the qubit picture, which was suggested
by Rubin et al. to have better performance than the origi-
nal implementation in the fermionic picture. We present a
comparison of both implementations in Fig. S11 [45] for the
interested reader. We apply RDMC to a small set of molecules,
with up to 20 qubits included in the active space, and examine
the reduction obtained in K for the case of no grouping,
for QWC grouping, and for the basis rotation grouping. The
Hamiltonians examined were computed with FNOs based on
the aug-cc-pVTZ (denoted AVTZ) Dunning basis set and vari-
ances were estimated from CISD density matrices.

In conclusion, our resource and performance assessment
includes a benchmark of classical methods, which can then be
used as a reference to estimate the number of qubits needed to
reach chemical accuracy in the general case. We establish em-
pirical scaling relations for the number of measurements using
state-of-the-art grouping and measurement reduction tech-
niques, various approximations for the variances involved, and
two different molecular orbital bases. These scaling relations
and their prefactors allow us to estimate the number of mea-
surements needed to reach chemical accuracy when the qubit
active space for the molecules in our benchmark reaches 100
to 200 qubits. These relations are also useful as a general
guide for the scaling of QWC and basis rotation methods, and
for the performance of RDMC.

III. RESULTS

A. Benchmarking classical chemistry methods

The main purpose of this section is to establish whether
classical quantum chemistry methods can reach chemical
accuracy for combustion reaction of small, closed-shell hydro-
carbons, and to quantify how much effort is necessary to reach
chemical accuracy. The results of our assessment of classical
resources will establish a reference for the next step of our
resource evaluation which is concerned with the number of
qubits required for chemical accuracy.

The first step in this assessment is to check whether afford-
able computational methods yield accurate enough results,
in which case it would be unnecessary to consider more
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FIG. 1. CCSD(T) combustion enthalpy errors in kJ/mol in var-
ious basis sets and with AVQZ/AV5Z extrapolation. Harmonic
enthalpy contributions are included.

computationally expensive methods. Initial tests showed that
current density functional theory functionals and perturbation
theory were not accurate enough for our purpose, while the
inclusion of harmonic enthalpic contributions is necessary for
comparison with experiments. For details, we refer the reader
to the Supplemental Material [45]. Here, we directly inves-
tigate the “gold standard” of quantum chemistry, CCSD(T)
complemented by the harmonic enthalpic contributions. In
particular, we are looking to select an appropriate basis set
for this method. In Fig. 1, we see that convergence of the
error for CCSD(T) as a function of the basis set angular
momentum is quite slow. At the AVTZ level, errors reach
100 kJ/mol, whereas chemical accuracy is reached for all
reactions at the AV5Z level. We also plotted results with the
def2-TZVPPD basis set, which performs slightly better than
AVTZ in spite of being slightly smaller. Even at the AV5Z
level, the agreement of the sum of CCSD(T) and harmonic
enthalpy contributions with experimental values is somewhat
fortuitous, and the energies are not completely converged yet.
Indeed, a cubic extrapolation of the AVQZ and AV5Z corre-
lation energies increases the error from experimental values,
while providing results that should be closer to the complete
basis set limit. The final extrapolated errors vary between −2
and −10 kJ/mol.

In conclusion, the combination of harmonic enthalpies and
CCSD(T)/AV5Z electronic energies provides combustion en-
thalpies within chemical accuracy. These accurate results may
not transfer to all systems, especially those where high-order
correlation effects become important. Provided Ansätze on
quantum computers can take into account high-order excita-
tions at a sufficiently low polynomial cost, they could provide
a better path to chemical accuracy. However, a significant

FIG. 2. Error relative to CCSD(T)/AV5Z for the FNO method
with a fixed number of qubits and frozen core orbitals. Perturbation
theory correction is included in the results (see Supplemental Mate-
rial [45]).

number of qubits would be needed, as we demonstrate in the
next section.

B. Number of qubits

In this section we explore how truncation of the orbital
active space impacts the combustion energy errors. We take as
reference the CCSD(T)/AV5Z electronic combustion energies
unless indicated otherwise, and compute the energy difference
with respect to the CCSD(T) combustion energy in various
basis sets with truncated virtual spaces. In all cases a pertur-
bation theory correction is included to compensate part of the
truncation error (see Supplemental Material [45]). In our first
experiment, we truncate the virtual space by keeping a fixed
number of spin orbitals: 40, 72, or 128.

As was previously reported in the literature [30], canon-
ical virtual orbitals are not an optimal basis for virtual
space truncation. Indeed, we observe very large errors in that
case even with 128 qubits and the AV5Z basis set, which
are the largest active space and basis sets explored, respec-
tively (see Fig. S6 [45]). The smallest errors range is between
−50 and −200 kJ/mol. Moreover, the errors do not converge
smoothly as the active space size is increased from 40 to 128
qubits.

A better truncation basis for correlated calculations is pro-
vided by FNOs. In Fig. 2, we plot the errors obtained for
different basis sets and active space sizes. We first notice that
combustion energy errors visibly converge towards the full
basis set limit for each basis examined when going from 40 to
128 qubits. However, even in the largest active space chemical
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FIG. 3. Top: Error relative to CCSD(T)/AV5Z for the FNO
method using the FNO threshold for truncation and frozen core
orbitals. Bottom: Largest number of qubits per active electrons
that would be needed to compute the combustion energy for each
molecule in the given active space. Perturbation theory correction is
included in the results (see Supplemental Material [45]).

accuracy cannot be reached and the final errors range from 3
to 13 kJ/mol for AV5Z in 128 qubits.

To facilitate the exploration of active space sizes, our sec-
ond experiment switches to the FNO occupation threshold
as a criterion to select active virtual orbitals. Focusing on
AVQZ and AV5Z, we present results for thresholds of 10−3,
10−4, 10−5, and 10−6. The upper part of Fig. 3 shows that
the combustion energy error is indistinguishable from the full
basis value at a threshold of 10−6. A threshold of 10−5 yields a
maximum deviation of −1.8 kJ/mol from the full basis result,
whereas a threshold of 10−4 results in a maximum error of
−7.1 kJ/mol, larger than chemical accuracy.

To connect the FNO threshold to the size of the active space
in a transferable way, we plot the maximum number of qubits
per active electron for each combustion reaction in the lower
part of Fig. 3. This number is obtained by dividing the number
of active FNO spin orbitals by the number of active electrons
for each target molecule, CO2, H2O, and O2, separately. The
maximum number of qubits per active electron is the largest
result among the four molecules. A threshold of 10−4 corre-
sponds to about 13 qubits per electron, which is the number
we will use to estimate the size of the active space necessary

to reach chemical accuracy. This is an optimistic estimate: the
errors we observe are slightly larger than chemical accuracy
relative to the full basis limit for AV5Z, but this could be
compensated for by including orbital optimization [80], or by
using some of the qubit reduction techniques [65,66] men-
tioned above.

To conclude, our estimation for the number of qubits Nq

necessary to obtain accurate dynamical correlation energies is
at least

Nq ≈ 13Nel (8)

where Nel is the number of active electrons in the system.

C. Measurement estimation

In this section, our aim is to estimate the number of mea-
surements needed for a single energy estimation step in the
VQE procedure. We consider measurement reduction tech-
niques based on QWC of Pauli terms [37] and orbital basis
rotation [28,42], realistic variance estimation, and an efficient
orbital basis so that our final estimates reflect conditions close
to a large experiment. We aim to obtain empirical extrap-
olation formulas for the number of measurements for each
molecule in our benchmark set. This will allow us to extrapo-
late the number of necessary measurements for the large qubit
active spaces needed for chemical accuracy (see Sec. III B).
We also provide empirical scaling relations for two grouping
methods with the size of the system.

1. Hamiltonian decomposition methods

We evaluated the Hamiltonian estimator variance K for
QWC and basis rotation grouping with two different orbital
bases for the Hamiltonian (canonical orbitals or FNOs) and
two different estimates for the variances (upper bounds or
CISD, see Sec. II C 3), giving a total of four different vari-
ants for each grouping method. We ran computations for
all molecules in our benchmark set (Fig. S1 [45]), and also
included H2O and CO2 that are necessary for computing com-
bustion energies. Due to technical limitations in our code at
the time of computation, the open-shell O2 was omitted. For
each molecule, we computed different active spaces with an
integer number of qubits per active electron up to a total of
80 qubits. This represents the most extensive investigation of
the number of measurements in the VQE to our knowledge.
We fit our results to a power law for each grouping method:

K = a(Nq)b (9)

where Nq is the number of qubits, and a and b are fitted
parameters. The obtained scaling exponents b are reported
next to the corresponding curves in Fig. 4.

The number of terms in the quantum chemistry Hamilto-
nian scales as N4, where N is the number of qubits. However,
the QWC grouping method with optimal measurement allo-
cation approximately scales between N5 and N6. The optimal
measurement allocation tends to attribute very little to no mea-
surements to terms with very small Hamiltonian coefficients
that can safely be neglected. Thus, the observed scaling for
QWC grouping only constitutes a modest improvement over
the estimated upper bound of N6 for scaling without grouping
[25].
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FIG. 4. Values of K computed for molecules in our benchmark set using QWC grouping (blue) and basis rotation grouping (orange). The
top row approximates variances with CISD density matrices and the bottom row sets variances to their upper bounds. Covariances are set to
zero in both cases. The left column represents the Hamiltonians in the canonical orbital basis and the right column in the FNO basis. A power
law is fit through the data for each grouping method and the obtained exponent is reported next to the curve.

Basis rotation grouping offers better scaling, as hinted by
the data presented by Huggins et al. for up to 32 qubits [28].
We observe that the scaling varies between N2.3 and N3.6,
a very significant improvement compared to QWC grouping
results. We note that the empirically obtained scaling expo-
nents are very close to the optimal bound of N2 derived for
the measurement of fermionic two-particle density matrices
[81]. In addition, the effect of this improved scaling is already
beneficial at low number of qubits, so that QWC grouping
never appears advantageous in our computed data. The power
law fits indicate that there is a crossover point at which QWC
grouping could be preferred, but it only happens below 15
or 20 qubits. Such an example appears in the next section,
in Fig. 5 for 12 qubits. Basis rotation grouping practically
always yields a lower number of measurements, however it
necessitates the addition of a basis rotation circuit before
measurements are performed. Although this circuit has a very
shallow depth [82], in some situations the additional noise
induced might become excessive.

To facilitate the comparison of K computed with upper
bound and CISD variances, we plotted again the data in Fig. 4
so as to highlight the difference between the two variance
estimation methods in Fig. S7 [45]. As expected, this clearly
shows that CISD variances always yield a lower number of
measurements, albeit by only 20 to 30% when combined with
QWC grouping. With basis rotation grouping, the benefit is
significantly larger and reaches a factor 5 to 10. This shows
that variance approximation is an important aspect to consider

when estimating measurements: errors of an order of magni-
tude can occur when using upper bounds.

The effect of changing the orbital basis of the Hamiltonian
from canonical orbitals to FNOs is visualized in Fig. S8 [45],
which contains the same data as Fig. 4 but highlighting the
difference of interest in color. When computing the number of
qubits needed (see Sec. III B), we showed that FNOs yield sig-
nificantly more correlation energy than canonical orbitals for
the same number of qubits, which allows chemically accurate
results in smaller active spaces. However, this increased accu-
racy comes at a price since the value of K is systematically
higher for FNOs, by a factor of up to 10 in some cases. This is
slightly compensated by a lower scaling exponent (compare
left and right column of Fig. 4), that reflects the fact that K
saturates faster for FNOs. Indeed, when all virtual orbitals are
included, the canonical and FNO spaces are the same and they
must have the same K .

To obtain extrapolations of the value of K for each
molecule, we must choose one of the eight variants inves-
tigated. For variance estimation, the CISD approximation is
closest to what would be experimentally observed. In spite
of the increased number of measurements, we believe the
FNO basis is more advantageous since it yields more compact
active spaces. Finally, we consider that the circuit fidelity is
high enough to afford the orbital rotation circuit from basis
rotation grouping. Hence, we fit Eq. (9) for each molecule
using K computed with basis rotation grouping, FNO Hamil-
tonians, and CISD variances. We report our results in Table I,
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FIG. 5. Values of K computed for various molecules with no
grouping (crosses), QWC grouping (squares), and basis rotation
grouping (circles), both with (orange) and without (blue) RDMC.
Eight qubit data freeze six electrons for CH4 and H2O; others only
freeze core electrons. Hamiltonians were represented with FNOs in
the AVTZ basis set and variances estimated from CISD.

and we also plot the fits in Fig. S9 [45]. The fit to all
molecular data presented in Fig. 4 yielded an exponent of
2.3, while for individual molecules b varies between 1.8 and
2.7. Most prefactors a have the same order of magnitude,
except for H2O where the prefactor is five to ten times larger
than for other molecules. However, H2O also has the lowest
exponent.

The fits presented above represent the scaling of K when
increasing the number of qubits for a fixed molecule, which

TABLE I. Fitting coefficients for K for each molecule with K =
a(Nq )b [Eq. (9)] when using basis rotation grouping, CISD variances
and FNOs. a is multiplied by 100 in the table for clarity.

Molecule b a × 102

H2O 1.8 45
CO2 2.4 4.4
Methane 2.2 5.8
Methanol 2.2 9.0
Ethane 2.5 1.9
Ethene 2.6 1.3
Ethyne 2.5 1.6
Ethanol 2.4 3.8
Propane 2.4 2.5
Propene 2.6 1.6
Propyne 2.7 1.0

is convenient to extrapolate K to the very large active spaces
needed for chemical accuracy. This “virtual scaling” is not
the same as the “size scaling,” where both the number of active
electrons and the number of qubits increase. To investigate
size scaling, we fitted Eq. (9) through our data for increas-
ing numbers of active electrons while keeping the number
of qubits per active electrons fixed. We only have enough
data to obtain meaningful fits for up to five qubits per elec-
trons. Beyond that, the extrapolation gives incoherent results
where larger active spaces would need fewer measurements,
whereas for two, three, four, and five qubits per electrons
the obtained scaling is consistent. Overall, size scalings are
slightly more favorable than virtual scalings (see Fig. S10
[45]). The QWC grouping method scales around N4 to N5.5

in most cases, whereas the basis rotation method scales be-
tween N2 and N2.5. Thus, these data suggest that the basis
rotation method provides a considerable asymptotic improve-
ment in the number of measurements compared to QWC and
related approaches.

2. Variance reduction

We now turn to a method that transforms the Hamiltonian
to reduce the number of required measurements: the appli-
cation of fermionic marginal constraints introduced by Rubin
et al. [27], that we abbreviate as RDMC. RDMC as formulated
in the original publication scales in principle as N4 where N
is the number of orbitals. The implementation we are using
is based on OPENFERMION [73] and formulates RDMC as a
linear program, which takes significant classical resources.
Therefore, we restrict our paper to a few molecules and active
spaces. We note that we expect an optimized implementation
of RDMC to be applicable to much larger systems. Our goal
is to obtain an empirical estimation of the improvement in K
that RDMC yields. Our results are presented in Fig. 5, where
we compare the performance of various grouping methods
combined with or without RDMC. We see that in all cases,
RDMC yields reductions in the values of K . The reduction
factor obtained is about 3 to 5 when no grouping method is
used. In the case of QWC grouping, the reduction provided
by RDMC decreases a bit to a factor of 2 to 3. Basis rotation
grouping usually yields the lowest K and has the best scaling
with molecular size or number of qubits. Even in this case,
RDMC is able to yield an additional improvement to K , of
approximately a factor of 2. We note that the observed per-
formance of RDMC seems to vary significantly among tested
cases, and a factor of 2 is a somewhat conservative estimate.
In general, the smaller reduction factors are obtained for larger
number of qubits.

For low number of qubits, there are some irregularities in
the patterns usually observed. For example, in active spaces of
12 qubits, the QWC grouping method generally performs bet-
ter than the basis rotation grouping. This also happens for H2O
in 16 qubits with RDMC. At this low number of qubits, very
few virtual orbitals are included for each active electron, less
than one for 12 qubits. This makes it difficult to extrapolate the
behavior of the methods examined to large qubit numbers, and
highlights the importance of running systematic benchmarks
on large enough systems.
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As highlighted in Sec. II C 3, our RDMC implementation
performs the Hamiltonian transformation in the qubit picture,
as was suggested in the original work [27]. In Fig. S11 [45],
we compare our results to the original implementation in the
fermionic picture, and confirm that the qubit picture imple-
mentation systematically yields equivalent or better results.
In general, RDMC shows a reduction in measurement count
in all cases tested and therefore it could provide practical
improvements for the implementation of VQE in the near
term. However, a more extensive analysis of the classical
computational cost of this technique and the magnitude of its
improvement when scaled to larger systems would improve
the current assessment.

D. Overall qubit and runtime requirements

In this section, we summarize and gather the previous
results to obtain estimates for the number of qubits, number of
measurements, and runtimes required to reach chemically ac-
curate results for the set of investigated combustion reactions.
The number of qubits Nq is estimated simply from Eq. (8) and
the number of valence electrons in each molecule. The number
of measurements is computed as

M = K

2ε2
(10)

where K is extrapolated for each molecule separately from
Eq. (9) with a and b taken from Table I. The extrapolation
takes into account basis rotation grouping and approximated
variances from CISD and assumes the Hamiltonian is ex-
pressed in the FNO basis. The extra factor of 1/2 in Eq. (10)
approximately accounts for the additional measurement re-
duction provided by RDMC on top of the basis rotation
grouping. We fix ε = 0.5 mHa instead of the usual chemical
accuracy of 1.6 mHa. Indeed, we allow 1.1 mHa for additional
errors arising from truncation of the active virtual space and
from device noise effects. Note that reducing the effect of
device noise to below chemical accuracy in general is still a
subject of research, and the low error we are assuming can
only be achieved on the smallest circuits with the best devices
currently.

To convert the number of measurements to actual run-
times, several additional assumptions are necessary. The first
and perhaps most speculative regards the Ansatz. Although
the UCCSD Ansatz generally yields good results in spite
of deficiencies for strong correlation [83], the correspond-
ing quantum circuit is extremely deep and not appropriate
for NISQ devices. Alternatives have been designed [84,85],
however we will assume here that we can use a shallower,
hardware-efficient Ansatz. Such an Ansatz makes use of
parametrized entangling gates that are taken to be hardware
native or easily compiled to hardware native gates without sig-
nificant overhead. We are assuming a linear connectivity of the
qubit array, in which case a single layer of a hardware-efficient
Ansatz is defined as the circuit of depth 2 that entangles every
neighboring pair of qubits. We further assume that the num-
ber of layers needed to reach the ground state energy scales
linearly with the number of qubits, and for the purposes of
our estimation, we choose the prefactor in the scaling to be
2. It is likely that this depth constitutes a lower bound for the

TABLE II. Estimated runtimes t in days for a single energy
evaluation using the number of measurements M from extrapolated
values of K [Eq. (9) and Table I], with ε = 0.5 mHa and the effect
of RDM constraints included by a factor of 1/2 [see Eq. (10)]. The
number of qubits Nq is computed from the number of active electrons
Nel and our empirical estimations of active space size [Eq. (8)].

Molecule Nel Nq K × 10−3 M × 10−9 t (days)

H2O 8 104 1.9 3.9 2.3
CO2 16 208 16 32 39
Methane 8 104 1.6 3.2 1.9
Methanol 14 182 8.4 17 18
Ethane 14 182 8.5 17 18
Ethene 12 156 6.6 13 12
Ethyne 10 130 3.1 6.2 4.6
Ethanol 20 260 24 48 71
Propane 20 260 16 31 47
Propene 18 234 23 46 62
Propyne 16 208 18 36 44

Ansatz depth that would be necessary in practice. Since our
extrapolation for K assumes the basis rotation grouping, we
also need to add the depth of the circuit for basis rotations,
which is Nq − 3 on a linear array of qubits if α and β spins
can be transformed independently [82]. The final depth of the
circuit would then be 5Nq − 3 in terms of two-qubit gates. Our
final assumption is that runtime is dominated by execution
times of two-qubit gates, which is assumed to be 100 ns, a
value on the faster side of current superconducting gate times
(see Table I in the review by Kjaergaard et al. [86]). The final
formula we use to obtain runtimes t in seconds from the values
of M and Nq reads

t = 10−7M(5Nq − 3). (11)

We report the results of our runtime estimates in Table II.
We also plot our estimated runtimes from the computed K
values of Fig. 4 and their extrapolation in Fig. S13 [45].
The picture painted by these runtimes is very pessimistic for
VQE. The shortest runtime for energy estimation, for CH4, is
1.9 days. This is in spite of using rather optimistic estimates
for the Ansatz depth and the number of qubits needed and
neglecting the time for qubit reset, cloud latency times, or
measurement overheads for error mitigation. Moreover, we
highlight again that this is the time necessary for a single
energy evaluation. Running the full VQE algorithm involves
optimizing the circuit parameters, which requires at least a
few dozen to hundreds of iterations even with excellent opti-
mizers. Hence, the total VQE runtime would be about a month
for the smallest molecules in our test set. Larger molecules
like ethanol already have a runtime of 71 days for a single
energy evaluation.

These runtimes originate essentially in the considerable
number of measurements necessary to obtain chemically ac-
curate energies for molecules. Even on devices where the
error rate would be small enough to warrant reliable VQE
execution, the runtime to solution would be prohibitive for
molecules in our benchmark set. Parallelization of measure-
ments over several quantum devices is a potential solution,
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provided all of these quantum devices are sufficiently similar,
and the distribution of measurements designed to achieve
chemical accuracy. However, parallelization could only bring
a constant factor improvement and will not change the scaling
of the runtimes with molecular size. In the case of sys-
tems dominated by nondynamical correlation, a smaller active
space might be sufficient to demonstrate quantum advantage
over classical computing power. A recent paper [24] proposes
the chromium dimer with a (24, 24) active space as a potential
candidate. At 48 qubits, our extrapolation indicates a runtime
of a few hours (see Fig. S13 [45]), which could allow for a full
VQE optimization with considerable effort. However, Hamil-
tonian coefficients for heavier, strongly correlated atoms like
Cr might be larger, which would result in larger values of
K . Moreover, even if such a computation becomes possible,
the transition to practically relevant advantage could require
active spaces beyond 100 qubits [24].

Focusing on the scaling b and omitting the prefactor a,
our results for the basis rotation grouping technique suggest
that VQE has the potential to scale better with system size
than methods such as coupled cluster. To transform this dif-
ference in scaling into an actual practical advantage, research
should focus on two directions: (1) developing linear scaling
Ansätze that provide sufficient accuracy on NISQ devices and
(2) improving the measurement techniques, in particular to
reduce the dependency of the number of measurements on
the required precision. Regarding the first direction, having
sufficiently accurate Ansätze for the VQE with a circuit depth
scaling only linearly implies an empirical runtime scaling of
N3 to N4, which would be advantageous over the scaling
of approaches such as CCSD(T). A number of Ansätze with
linear scaling have been proposed [82,87], but more stud-
ies should be devoted to investigating their representational
power for chemical systems of interest, their trainability,
and the impact of noise on their accuracy. Along this line,
the development and benchmarking of error mitigation tech-
niques is crucial towards achieving sufficient accuracy on
NISQ devices. Regarding the second direction, methods that
can reduce the dependency of the number of measurements
with respect to the required accuracy should be prioritized
to make the VQE competitive. One such method has been
recently proposed by Wang et al. [43] and Koh et al. [44]
which trade circuit fidelity for a reduction in the number of
measurements.

IV. DISCUSSION

The VQE is a heuristic algorithm, which does not have yet
a demonstrated quantum speedup over classical algorithms
for quantum chemistry. Hence, it is of utmost importance to
adequately benchmark the VQE to evaluate its performance
and prospects for quantum advantage. One significant step
has recently been made in this direction [24] by identifying
what molecules are the most likely candidates for quantum
advantage, and in particular for practically relevant quantum
advantage.

Here, we outlined a general procedure to assess quan-
tum advantage with a quantum heuristic by carrying out a
RPA. We performed a specific RPA for computing a set of
combustion energies with the VQE, but our general method

is also applicable to other variational algorithms. First, it is
essential to assess the performance of state-of-the-art classical
algorithms to check whether they can solve the problem at
hand and estimate the compute resources required. Then, the
number of qubits necessary to obtain a solution that is accurate
enough should be established. Finally, a rigorous estimation of
the number of measurements needed to evaluate expectation
values with sufficient accuracy is performed. Measurement re-
quirements are crucial to obtain approximate runtimes, which
are ultimately decisive for the practicality of the quantum
algorithm.

Our classical benchmarks show that CCSD(T)/AV5Z com-
plemented with harmonic enthalpic corrections is sufficient
to reproduce experimental combustion enthalpies to within
chemical accuracy. CCSD(T)/AV5Z is taken as our reference
energy to estimate the minimal size of the active space that
still yields chemical accuracy. Using the well-known FNO
method for virtual space truncation, we observe that at least
13 qubits per active electrons must be included to obtain
dynamical correlation energies within chemical accuracy. In
practice, early quantum advantage will probably be obtained
by treating only a small active space on the quantum com-
puter and computing the remaining dynamical correlation
energy classically. We believe our results regarding the num-
ber of measurements needed are transferable to that case as
well.

Our RPA results further show that the number of mea-
surements necessary for QWC grouping scales as N5 to N6,
whereas the basis rotation grouping only needs about N2 mea-
surements, at the cost of a small addition to the overall circuit
depth. The application of reduced density matrix constraints
on the Hamiltonian in addition to grouping warrants another
reduction in the number of measurements by a factor of 2.
Unfortunately, the ε−2 precision dependence of measurement
requirements introduces a very large multiplicative factor.
With optimistic assumptions regarding the total circuit depth
and the execution time of quantum circuits, estimating a single
energy for molecules in our benchmark set to chemical accu-
racy would take between a few days and a couple of months.
Combined with the necessity for a large number of energy
evaluations to optimize VQE parameters, this indicates that a
VQE with sample averaging is not currently practical even for
molecules with only a few heavy atoms.

There are several possible ways to resolve this issue. One
is to work on better Hamiltonian decomposition methods, and
hopefully achieve reduction in the prefactor or the scaling
of the number of measurements needed as a function of the
system size. Another would be to work on improving Hamil-
tonian transformations to reduce the Hamiltonian variance
further. Some of these directions have been explored by the
authors without significant success. However, a more concrete
improvement tackles the ε−2 dependence of the number of
measurements. Recently, the use of Bayesian techniques com-
bined with engineered likelihood functions [43,44] offered a
way to exploit better device fidelity to reduce the number
of measurements, bridging the VQE and quantum phase es-
timation in a practical way. Engineered likelihood functions
may then be combined with grouping and variance reduc-
tion techniques to further reduce measurement requirements
and runtime. Any proposed solution to the measurement
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bottleneck for the application of the VQE should be bench-
marked on various molecules and active spaces to assess its
robustness and scaling with system size.
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