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Abstract. Diurnal variation of number size distribution (par-

ticle size 3–800 nm) and modal parameters (geometric stan-

dard deviation, geometric mean diameter and modal aerosol

particle concentration) in a highly polluted urban environ-

ment was investigated during October and November 2002 in

New Delhi, India. Continuous monitoring for more than two

weeks with the time resolution of 10 min was conducted us-

ing a Differential Mobility Particle Sizer (twin DMPS). The

results indicated clear increase in Aitken mode (25–100 nm)

particles during traffic peak hours, but towards the evenings

there were more Aitken mode particles compared to the

mornings. Also high concentrations of accumulation mode

particles (>100 nm) were detected in the evenings only. In

the evenings, biomass/refuse burning and cooking are possi-

ble sources beside the traffic. We have also shown that nu-

cleation events are possible in this kind of atmosphere even

though as clear nucleation events as observed in rural sites

could not be detected. The formation rate of 3 nm particles

(J3) of the observed events varied from 3.3 to 13.9 cm−3 s−1

and the growth rate varied from 11.6 to 18.1 nmh−1 showing

rapid growth and high formation rate, which seems to be typ-

ical in urban areas.

1 Introduction

Numerous aerosol number size distribution and number con-

centration measurements has been conducted in urban envi-

ronments in developed countries like United States, United

Kingdom, Germany and Finland (Hämeri et al., 1996;

Williams et al., 1998; Shi et al., 2001; Woo et al., 2001;

Wehner et al., 2002; Longley et al., 2003). The studies

that have examined number size distribution or number con-
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centration of aerosols in Asia, Latin America or Africa are

very few (Baumgardner et al., 2000; Jayaratne and Verma,

2001; Mitra and Sharma, 2002; Mönkkönen et al., 2004a;

Mönkkönen et al., 2004b; Mönkkönen et al., 2005) even

though the air pollution problem is particularly serious in

the mega cities of South and East Asia. Especially the cities

like Delhi, Kolkata (Calcutta), Mumbai (Bombay), Dhaka,

Karachi, Bangkok, Beijing, Shanghai, Jakarta, and Manila

are concerned to be one of the most polluted cities (Bal-

sano et al., 2003; Faiz and Sturm, 2000). In India, most

of the aerosol number size distribution measurements have

been carried on Indian Ocean and Arabian Sea (de Reus et

al., 2001; Kamra et al., 2003; Krishnamoorthy et al., 2000;

Krishnamoorthy et al., 1997) and only short experiments at

inland and coastal stations have been performed (Murugavel

and Kamra, 1999; Rao et al., 1999).

The major source of particulate matter (PM) and air pol-

lution in the South and East Asia region is due to rapid ur-

banization and increasing vehicle density (Faiz and Sturm,

2000). For example the vehicular population in New Delhi

has increased from 235 000 from 1975 to 2 629 000 in 1996.

An estimate as high as 6 000 000 vehicles in year 2011 has

been proposed by Ministry of Environment and Forest of In-

dia (Goyal and Krishna, 1998).

Traffic has been observed to be one major primary source

of nucleation mode (Dp<25 nm) particles (Longley et al.,

2003; Shi et al., 2001) and it is also the major source

of ultrafine particles in New Delhi (Mitra and Sharma,

2002). One solution for decreasing air pollution in New

Delhi has been applying Compressed Natural Gas (CNG)

engine technology. We might speculate that applying CNG

technology to transportation will not bring solution for the

level of fine and ultrafine particles, since CNG and diesel

engines have been found to be the major source of fine

(Dp<1000 nm) and ultrafine (Dp<100 nm) particles (Ris-

tovski et al., 2000; Ristovski et al., 1998; Kittelson, 1998).
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Fig. 1. The location of the sampling site in New Delhi.

In India, atmospheric aerosols are also emitted from com-

bustion of fossil fuels (e.g. coal and liquefied petroleum gas

(LPG) and biofuel (e.g. wood, dung-cake, crop waste) both

in industrial and domestic sector. Emissions from fossil

fuel combustion are localized to large point sources (util-

ities, refineries and petrochemicals, cement and fertilizers)

and major cities while emissions from biofuel combustion

are area sources spread all over India (Reddy and Venkatara-

man, 2002a; Reddy and Venkataraman, 2002b).

The formation of new particles has been observed at a

number of sites around the world. However, there are much

less experiments performed in urban than rural locations

(Kulmala et al., 2004b). One reason for this might be that

the formation of new particles in the urban atmosphere is ex-

pected to be far less favoured than in the rural atmosphere

due to the high existing surface area for condensation of non-

volatile materials needed for homogeneous nucleation. Even

though the identification of new particle formation is more

difficult due to the large background particle concentrations

(Alam et al., 2003), nucleation events have been observed

polluted environments like Mexico City (Dunn et al., 2004).

New particle formations in urban environments has also been

observed Atlanta (Woo et al., 2001), Birmingham, UK (Alam

et al., 2003), St Louis (Shi et al., 2002), and Pittsburg (Stainer

et al., 2002).

The main objective of this study is to determine the di-

urnal variation of number size distribution (3–800 nm), the

total number concentration and the modal parameters of ur-

ban background aerosols. The formation of nucleation mode

particles in highly polluted Asian mega city is studied for the

first time.

2 Methods

The field experiment was performed at India Habitat Centre

(IHC/TERI) in New Delhi from 26 October to 9 November

2002. The measuring site located next to a traffic line in a

residential area at the altitude of 15 m. Other similar type of

office building located right to IHC building, but there were

only small individual private houses locating opposite of the

IHC building. The location of the site is shown in Fig. 1.

Aerosol number size distributions were measured over the

size range 3–800 nm using a twin differential mobility par-

ticle sizer (DMPS). The twin DMPS system consists of two

Vienna-type DMAs (lengths 11 and 28 cm; see Winklmayr et

al., 1991), two CPCs, TSI 3025 (Stolzenburg and McMurry,

1991) and TSI 3010 (Quant et al., 1992). The DMAs were

used for the electrical mobility diameter size classification of

the particles and CPCs measured the total particle number

concentration after the classification. The sheath air volume

flow rates of the DMA’s were equal to 5.4 and 17.5 L/min

covering the subranges 3–10 nm and 10–800 nm. The time

resolution for the whole size range was 10 min. The sheath

flows of DMAs were maintained using a closed sheath-air

loop using critical orifices (Jokinen and Mäkelä, 1997). The

relative humidities of the sheath flows were kept below 25%

with dryers.

The DMPS system was placed in the fifth floor next to a

window. The inlet tube was placed outside of the window so

that the inlet was 15 m above the ground level and 0.5 m from

the wall of the building.

The sample air was led through a vertically-placed, 60-mm

steel tube with a total flow of 26.5 L/min. The sample was

taken from the main flow and led to instruments trough a 30-

cm-long stainless steel tube having a diameter of 6 mm. All

the CPC’s and DMA’s were calibrated before the campaign.

The calibration method has been described in detail by Aalto

et al. (2001).

We used the same data inversion and fitting procedure in

our investigation as Mäkelä et al. (2000a) in their analysis

of typical continental air masses in Southern Finland. In our

analysis we also describe the aerosol size distribution by a

few well chosen parameters. These parameters are the geo-

metric mean diameter (GMD), the geometrical standard de-

viation (σ ) and the modal aerosol particle concentration (N).

The weather conditions were stable during whole experi-

ment. Days were sunny, but hazy, and no rain was observed.

Diurnal maximum and minimum temperature and relative

humidity is presented in the Table 1. The effect of a long

range transport to New Delhi’s climate from other polluted

regions was studied with help of NOAA HYSPIT trajectory

Model. The analysis of the trajectories indicated low impact

of other air masses to New Delhi’s climate during the mea-

suring period.
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Table 1. Diurnal maximum and minimum temperature and relative humidity during the measuring period.

Date Day of year Tmax (◦C) Tmin (◦C) RHmax (%) RHmin (%)

26 Oct 299 32 17 80 35

27 Oct 300 32 17 86 35

28 Oct 301 32 16 90 35

29 Oct 302 33 16 92 39

30 Oct 303 32 19 88 41

31 Oct 304 32 18 89 41

1 Nov 305 31 17 92 39

2 Nov 306 31 16 91 36

3 Nov 307 32 16 86 34

4 Nov 308 – – – –

5 Nov 309 30 15 – –

6 Nov 310 29 16 90 42

7 Nov 311 29 16 92 47

8 Nov 312 28 15 93 47

9 Nov 313 – – – –

3 Results and discussion

3.1 Diurnal variations of the number size distribution and

the number concentration

Figures 2 and 3 presents the measured particle size distribu-

tion (Figs. 2a and 3a) and the number concentration (Figs. 2b

and 3b) from 28 October to 1 November 2002 (Fig. 2) and

from 4 November to 8 November 2002. (Fig. 3). These

selected days present typical variations both in particle size

distribution and number concentration of New Delhi’s cli-

mate during the measuring period. The substantial pollu-

tion event observed 4–5 November (Day of Year 308–309)

is reported by Mönkkönen et al. (2004b). The number size

distribution changed and the number concentration increased

during the morning traffic peak hour (7–9 a.m.) and again in

the evenings (6–10 p.m.). After the morning peak hour the

number concentration decreased rapidly. This phenomenon

can be explained by mixing within the developing bound-

ary layer. Similar changes in the aerosol particle number

concentrations were obtained also during different seasons

(Mönkkönen et al., 2004a). It is evident that the evening

peak hour was also influenced by the traffic, but as we can

see from Fig. 2a, the number size distribution differs between

the morning and the evening. Especially during 28, 30 and 31

October (#301, 303 and 304, respectively) we clearly are able

to see that there were less Aitken mode (25–100 nm) parti-

cles at morning compared to the evening. From Figs. 2 and

3 we are also able to see a large background aerosol popula-

tion in New Delhi. During the measuring period the aerosol

number concentration varied between 20 000 (4 Nov., #308,

3 p.m.) to 250 000 particles cm−3 (6 Nov., #310, 8 a.m.). A

highest measured 24-h average was (6.28±1.78)×104 cm−3.

This average was more than two times higher compared to

results measured by Shi et al. (1999) at roadside in UK and

almost five times higher compared to average measured in

three communities in East Germany between 1993 and 1999

(Pitz et al., 2001).

Figure 4 presents selected diurnal number size distribu-

tions (1 h mean) on 28 October 2002. Figure 4a presents the

size distributions before noon and Fig. 4b after noon. From

Fig. 4a we can clearly see the increase in Aitken mode parti-

cles during traffic peaks hours (7–9 a.m. and 4–5 p.m.). Dur-

ing this day the concentration of Aitken mode particles re-

mained almost the same level even between 10–11 a.m. Af-

ter this point, the concentration of Aitken mode particles de-

creased until the concentration increased again after 4 p.m.

Towards the evening the geometric mean diameter (GMD)

of the particles increased so that at 10–11 p.m. there were a

lot of accumulation mode (Dp>100 nm) particles in the at-

mosphere. The increase of GMD and number concentration

of the particles towards the evening in discussed in the next

chapter. During the whole measuring period, high concen-

trations of accumulation mode particles were detected in the

evenings and after midnight only. The decrease of accumu-

lation mode particles after midnight could be explained by

gravitational settling. Also in the evenings there were more

Aitken mode particles compared to the mornings. Hence,

there must be also another source at evenings, which beside

the traffic, which is frequently repeated every day.

3.2 Diurnal variations of modal parameters

Table 2 summarizes the calculated arithmetic mean (30 min)

and Figs. 5a–c present the calculated geometric mean

(30 min) of the diurnal variations of modal parameters for

each mode obtained from the fitting procedure. The mean

values are calculated from the whole measuring period.
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Fig. 2. Measured aerosol number size distribution (Fig. 2a) and number concentration (Fig. 2b) from 28 October to 1 November 2002. The

x-axis represents the time and y-axis in the Fig. 2a particle diameter (m) and in Fig. 2b particle concentration (cm−3) for the same period.

The color in the Fig. 2a represents particle concentration (dN/d log Dp).
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Fig. 3. Measured aerosol number size distribution (Fig. 3a) and number concentration (Fig. 3b) from 4 to 8 November 2002.
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Table 2. Diurnal arithmetic averages of the nine size distribution parameters during the measuring campaign obtained from the fitting

procedure. The standard deviation of each quantity is given is parentheses.

Nucleation mode Aitken mode Accumulation mode

Time of day GMD (nm) Ntot (cm−3) σ GMD (nm) Ntot (cm−3) σ GMD (nm) Ntot (cm−3) σ

0.0128 9,7 (1,8) 587 (1130) 0.4 (0.6) 43.7 (7.5) 19924 (9766) 1.6 (0.2) 138.0 (16.2) 41762 (10278) 1.8 (0.1)

0.0335 12,3 (4,1) 352 (709) 0.5 (0.9) 44.2 (7.1) 18727 (6160) 1.7 (0.2) 142.5 (17.4) 38682 (9461) 1.8 (0.1)

0.0544 12,4 (5,0) 736 (2091) 0.7 (1.3) 50.2 (12.1) 16978 (5903) 1.8 (0.2) 150.7 (21.0) 35210 (9491) 1.7 (0.1)

0.0751 7,2 (3,9) 254 (934) 0.4 (1.1) 52.2 (13.5) 15515 (5779) 1.9 (0.3) 154.0 (19.3) 31782 (10425) 1.7 (0.2)

0.0958 9,2 (2,3) 95 (319) 0.2 (0.4) 55.2 (17.0) 14537 (8605) 1.9 (0.3) 161.9 (19.8) 28895 (12545) 1.7 (0.1)

0.1165 10,6 (2,2) 114 (336) 0.2 (0.4) 52.0 (17.6) 14059 (7779) 2.0 (0.4) 160.2 (17.9) 27715 (9950) 1.7 (0.1)

0.1378 8,3 (1,0) 102 (307) 0.2 (0.6) 54.9 (20.2) 10772 (6437) 2.0 (0.4) 163.4 (18.7) 26443 (9019) 1.7 (0.1)

0.1585 9,7 (2,3) 690 (2167) 0.3 (0.7) 46.0 (16.2) 8264 (3634) 1.9 (0.5) 158.1 (20.1) 27936 (6829) 1.7 (0.1)

0.1794 14,0 (6,9) 442 (1246) 0.3 (0.7) 47.2 (16.3) 8471 (4275) 1.9 (0.4) 161.8 (17.5) 26443 (6814) 1.7 (0.1)

0.2004 14,8 (10,0) 308 (870) 0.2 (0.6) 48.3 (16.9) 9874 (5458) 2.0 (0.3) 163.7 (20.3) 25471 (5140) 1.7 (0.1)

0.2212 7,8 (2,2) 969 (2193) 0.3 (0.6) 36.9 (10.0) 12714 (7206) 1.8 (0.2) 160.6 (20.0) 25831 (5732) 1.8 (0.2)

0.2416 8,8 (1,1) 1756 (4744) 0.3 (0.6) 34.9 (9.2) 17431 (11313) 1.7 (0.2) 153.1 (30.1) 25779 (4048) 1.8 (0.2)

0.2629 8,6 (0,5) 1181 (2802) 0.4 (0.6) 35.3 (6.5) 27356 (13821) 1.7 (0.2) 158.1 (20.7) 24914 (4935) 1.8 (0.2)

0.2835 8,7 (1,8) 1644 (3285) 0.4 (0.6) 38.1 (8.2) 46515 (20914) 1.7 (0.2) 154.5 (22.2) 24859 (5550) 1.8 (0.2)

0.3046 10,4 (2,1) 1733 (3135) 0.4 (0.7) 40.4 (6.5) 53314 (25958) 1.7 (0.2) 151.2 (36.7) 27683 (9581) 1.8 (0.3)

0.3250 11,4 (3,4) 2057 (3836) 0.7 (1.0) 39.3 (4.6) 50011 (29021) 1.6 (0.2) 131.6 (30.0) 36601 (17991) 1.9 (0.3)

0.3460 11,3 (4,4) 1243 (2214) 0.7 (0.9) 39.0 (5.6) 52352 (33900) 1.7 (0.1) 140.1 (39.0) 34254 (17833) 1.9 (0.3)

0.3669 12,4 (4,8) 1320 (1649) 1.0 (1.1) 42.1 (6.1) 40598 (18768) 1.7 (0.1) 146.0 (34.4) 28321 (9769) 1.9 (0.2)

0.3878 12,7 (3,4) 1148 (1527) 1.0 (1.2) 41.3 (7.6) 38004 (15372) 1.7 (0.1) 137.9 (29.2) 27941 (11304) 1.9 (0.2)

0.4086 9,8 (3,0) 1633 (2297) 0.9 (0.8) 40.1 (8.9) 32915 (16132) 1.7 (0.2) 132.2 (30.5) 27607 (13676) 1.9 (0.3)

0.4295 10,0 (3,5) 1311 (1488) 1.2 (0.9) 39.1 (5.2) 32543 (13493) 1.7 (0.1) 130.7 (19.2) 25008 (9644) 1.9 (0.2)

0.4501 10,2 (3,2) 1821 (1992) 1.2 (0.9) 39.7 (4.9) 28021 (12174) 1.7 (0.1) 135.8 (22.1) 20760 (8884) 1.9 (0.2)

0.4709 10,2 (3,3) 1823 (2362) 1.2 (0.9) 38.3 (7.1) 25454 (10031) 1.7 (0.1) 138.8 (24.1) 19548 (8618) 1.9 (0.3)

0.4912 9,3 (2,3) 1839 (1458) 1.4 (0.8) 35.5 (6.1) 23793 (10607) 1.7 (0.1) 138.7 (29.8) 17662 (5806) 1.9 (0.2)

0.5130 9,7 (3,5) 4191 (4720) 1.5 (0.5) 35.3 (5.1) 23194 (9373) 1.7 (0.2) 139.9 (27.6) 14559 (5887) 1.8 (0.2)

0.5337 8,2 (2,8) 4254 (6378) 1.3 (0.7) 33.6 (6.7) 27622 (12522) 1.7 (0.3) 145.2 (27.0) 13351 (6052) 1.8 (0.3)

0.5545 8,5 (4,8) 3004 (3883) 1.4 (0.5) 35.7 (9.8) 31473 (15458) 1.8 (0.3) 152.8 (27.4) 12147 (5812) 1.7 (0.2)

0.5748 8,4 (4,2) 7145 (15859) 1.4 (0.5) 36.2 (9.1) 29268 (16450) 1.6 (0.1) 145.4 (29.4) 12281 (4894) 1.8 (0.2)

0.5952 9,7 (2,5) 7908 (17993) 1.6 (0.6) 35.4 (7.9) 28117 (15039) 1.6 (0.2) 149.0 (29.7) 10713 (4133) 1.8 (0.2)

0.6155 9,8 (2,9) 6028 (14031) 1.6 (0.6) 36.7 (9.9) 30010 (13237) 1.7 (0.2) 148.4 (25.1) 10211 (3050) 1.8 (0.2)

0.6375 11,1 (6,2) 4087 (6427) 1.4 (0.6) 37.9 (12.1) 35243 (15728) 1.7 (0.2) 145.3 (23.6) 10501 (3688) 1.8 (0.2)

0.6580 11,0 (4,7) 2425 (1770) 1.4 (0.5) 39.1 (12.1) 36056 (14364) 1.7 (0.2) 134.9 (22.6) 11904 (4433) 1.8 (0.2)

0.6792 11,7 (4,7) 1917 (2293) 1.0 (0.7) 42.4 (14.0) 45419 (16543) 1.6 (0.1) 135.7 (26.7) 14857 (10222) 1.8 (0.3)

0.7001 10,7 (7,1) 1117 (1516) 0.8 (0.9) 44.8 (11.9) 57499 (22525) 1.6 (0.1) 147.6 (28.9) 14165 (7191) 1.7 (0.3)

0.7208 12,8 (8,2) 1177 (1798) 0.6 (0.8) 48.3 (11.2) 60905 (28698) 1.7 (0.1) 154.5 (24.2) 13017 (5204) 1.7 (0.2)

0.7414 20,1 (11,2) 2483 (8344) 0.5 (0.7) 54.0 (11.9) 66914 (27873) 1.7 (0.1) 155.1 (23.4) 14567 (6010) 1.6 (0.2)

0.7618 20,3 (12,3) 839 (1112) 0.7 (0.9) 56.7 (12.4) 67317 (32073) 1.7 (0.1) 157.9 (28.6) 15990 (7612) 1.7 (0.2)

0.7830 13,4 (10,2) 394 (813) 0.4 (0.7) 58.4 (11.0) 65126 (28913) 1.7 (0.1) 154.2 (33.4) 20318 (14157) 1.7 (0.2)

0.8043 13,1 (10,2) 363 (926) 0.3 (0.6) 58.1 (11.3) 61064 (23910) 1.7 (0.1) 144.4 (34.8) 28379 (19539) 1.7 (0.2)

0.8251 20,0 (11,1) 662 (2004) 0.4 (0.7) 60.5 (13.8) 55963 (26333) 1.8 (0.2) 135.5 (36.6) 32127 (21381) 1.7 (0.2)

0.8459 22,8 (13,4) 863 (2477) 0.3 (0.6) 58.9 (14.8) 61053 (33866) 1.8 (0.2) 128.8 (26.9) 36038 (23082) 1.7 (0.2)

0.8661 19,5 (2,5) 436 (1892) 0.1 (0.4) 57.8 (13.5) 54456 (32384) 1.9 (0.3) 129.2 (18.0) 36818 (21814) 1.7 (0.2)

0.8878 19,7 (6,5) 339 (1639) 0.3 (1.2) 54.3 (15.8) 48003 (32529) 1.8 (0.2) 123.3 (20.1) 41539 (21550) 1.7 (0.3)

0.9087 9,1 (0,4) 154 (616) 0.1 (0.3) 48.0 (13.6) 31942 (24434) 1.7 (0.3) 117.6 (26.8) 48162 (17210) 1.8 (0.2)

0.9294 14,5 (3,9) 274 (915) 0.1 (0.3) 49.3 (13.4) 36015 (25413) 1.7 (0.2) 130.8 (18.7) 45551 (19259) 1.7 (0.2)

0.9502 12,4 (7,5) 119 (560) 0.1 (0.4) 49.7 (10.3) 32600 (17969) 1.7 (0.2) 138.0 (22.0) 43895 (17964) 1.7 (0.1)

0.9708 4,8 (4,3) 167 (678) 0.2 (0.5) 50.4 (12.8) 28890 (18120) 1.7 (0.2) 147.3 (27.4) 41197 (17834) 1.7 (0.1)

0.9915 8,4 (3,1) 808 (1760) 0.3 (0.6) 45.0 (10.7) 28374 (15769) 1.7 (0.2) 145.4 (14.1) 39934 (13401) 1.7 (0.1)

Figure 5a presents the σ , Fig. 5b the GMD and the Fig. 5c

the aerosol particle concentration. The most clear diurnal

variation of the parameters can be seen in Fig. 5c. An in-

crease of Aitken mode number concentration started around

6 a.m. (7500 cm−3, at 4 a.m.) and continued through to about

7.30 a.m. At the same time also the number concentration of

nucleation mode increased. After this point the number con-

centration of both modes decreased until the concentration

of Aitken mode increased again after 2 p.m. continuing to

6 p.m. reaching the concentration almost 60 000 cm−3. The
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Fig. 4. Diurnal number size distributions (1 h mean) on 28 October

(#301) in New Delhi 2002. The Fig. 4a presents the size distribu-

tions before noon and the Fig. 4b size distributions after noon.

concentration of accumulation mode particles varied from

10 000 (at 3 p.m.) to 40 000 (at 0.15 a.m.) cm−3. A slight

increase of accumulation mode particles was observed at

mornings (7–8 a.m.) and more clear increase at evenings (6–

10.30 p.m.).

There are several possible sources in New Delhi from

where these particles are emitted to atmosphere. Firstly,

the diurnal variations of the number concentration of Aitken

mode particles at mornings and evenings indicate that these

particles could be emitted from traffic. Ristovski et al. (1998)

measured a typical number size distribution in the range of

15–750 nm (GMD close to 40 nm) for the unleaded gasoline

engine and for the CNG engine in the range of 15–200 nm

(GMD of 59 nm) (Ristovski et al., 2000). In New Delhi,

CNG technology is widely used in buses, taxis and auto-

rickshaws since the Supreme Court of India ordered on 28

July 1998, that entire city bus fleet to be steadily converted

to single fuel mode on CNG by 31 March 2001 (Dursbeck et

al., 2001).

Secondly, we might consider that the traffic was not the

only source of these particles. The maximum GMD of

Aitken mode particles was higher at evenings (60 nm at

8 p.m.) than at mornings (40 nm between 6–8 a.m.). The

GMD could increase at evenings as a result of burning

biomass and refuse. This speculation is supported both by

Pagels et al. (2003) and Sharma et al. (2003). Pagels et

al. (2003) found unimodal number size distribution when

combusting moist forest residue. The GMD of the number

concentration varied between 85–110 nm. Hence, it is possi-

ble that biomass burning increased the GMD at evenings in

New Delhi. A very interesting result was found by Sharma et

al. (2003). They analyzed chemical composition of organic

species present in PM10 collected exactly at the same site

as our DMPS measurements were conducted. Their study

suggests that vehicular emissions and biomass and/or refuse

burning are significant contributors to the organic fraction of

PM10 in New Delhi’s atmosphere.

Other possible sources beside vehicular emissions and/or

refuse burning at evenings in New Delhi could be cooking.

Few studies indicate that cooking with gas/LPG has a sig-

nificant contribution to indoor number concentration levels

(Dennekamp et al., 2001; Mönkkönen et al., 2004c). In New

Delhi, LPG and burning biomass/other fossil fuels are the

only form of cooking. Hence, the impact of cooking to the

ambient air quality cannot be neglected while speculating the

aerosol (Dp<1000 nm) emissions in New Delhi.

3.3 Observations of nucleation mode particle formation

An example of particle nucleation event day, 29 October

2002 (#302), is highlighted in Fig. 6, in which the evolu-

tion of the size distribution and total number concentration

is shown as a function of time. New particles appeared at

the lower end of the size spectrum at 3 nm around noon, and

grow rapidly thereafter. These can be used to analyze useful

features of the events, such as particle formation and growth

rates.

Table 3 summarizes the observed nucleation events during

the measuring campaign. The table presents the starting time

of the event, event class, calculated particle formation rate for

3 nm particles (J3), growth rate (GR), condensation sink (CS)

as well the concentration of condensable vapour C and their

source rate Q (Kulmala et al., 2001) and concentrations of

SO2 and NO2. CS and the concentration of SO2 and NO2 are

given from the starting time of the event. Condensation sinks

determines how rapidly molecules will condense on a pre-

existing aerosol. The events are classified in three different

classes (Mäkelä et al., 2000b). During the measuring period

we observed eight events.

Most of the events are classified as class 3 type events.

This means that even though the event could be detected,

the formation and growth of nucleation mode particles are

disturbed by high aerosol background concentration. All

events occurred usually at noon or afternoon when the solar
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Fig. 5. Calculated geometric diurnal variations (30 min mean) of the modal parameters for each mode during the measuring campaign.

Figure 5a represents the geometrical standard deviation (σ ), Fig. 5b the geometric mean diameter (GMD) and the Fig. 5c the aerosol particle

number concentration in mode.

Table 3. Observed nucleation events in New Delhi from 26 October to 9 November 2002.

Day Day of year Starting time Event class J3 (cm−3 s−1) GR (nmh−1) CS (s−1) (at start) C (cm−3) Q (s−1 cm−3) SO2 (µgm−3) NO2 (µgm−3)

27 Oct 300 16:00 3 3.3 14.9 5e-2 20.3e7 1.0e7 5.6 133.5

28 Oct 301 14:00 2 4.6 18.1 5e-2 24.6e7 1.2e7 12.7 72.1

29 Oct 302 12:00 2 8.3 11.6 6e-2 15.8e7 0.9e7 9.7 38.9

3 Nov 307 15:00 3 5.6 15.1 6e-2 20.5e7 1.2e7 16.6 122.9

5 Nov 309 11:00 3 5.6 16.0 5e-2 21.8e7 1.1e7 11.4 49.7

7 Nov 311 12:00 3 12.5 14.9 5e-2 20.3e7 1.0e7 8.0 83.0

8 Nov 312 15:00 3 4.9 13.8 7e-2 18.8e7 1.3e7 14.6 64.2

9 Nov 313 14:00 3 13.9 15.0 7e-2 20.4e7 1.4e7 12.1 49.7

radiation is most intensive. Similar event starting times were

also observed in Atlanta (Woo et al., 2001) and daytime nu-

cleation events were also reported in Mexico City (Dunn et

al., 2004).

Unfortunately clear results on the connection between

different trace gases and new particle formation cannot be

achieved from our data set. The SO2 and NO2 concentrations

were relatively high during the whole campaign. Since the

time resolution to measure these gases was 4 h, conclusions

of their role in formation and growth of nucleation mode
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Fig. 6. Evolution of particle number distribution and total number

concentration as a function of time for 29 October 2002.

particles in New Delhi cannot be made. However, the sul-

phuric acid might play a significant role in New Delhi as it

plays important role in Mexico City (Dunn et al., 2004).

Figure 7 presents an example of the calculated condensa-

tion sink and aerosol surface area values from 27 to 29 Octo-

ber (#300–302). It is important to note that at the event start-

ing time for both the condensation sink and aerosol surface

area was in its minimum initiating a new particle formation

event to occur. Similar results were also obtained from Mex-

ico City. The analysis by Dunn et al. (2004) suggested that

particle formation events occur in New Mexico when PM10

mass concentration were at a significantly lower level than

their averages hence decreasing condensational surface area.

The formation rate varied from 3.3 to 13.9 cm−3 s−1

which were similar magnitude with formation rates observed

in Atlanta (McMurry et al., 20051). The growth rates varied

11.6 to 18.1 nmh−1, which were slightly higher that rates (0.5

to 9 nmh−1) reported for Mexico City (Dunn et al., 2004).

The Q value is significantly higher (about 100 times) than in

the rural forest in Hyytiälä, Finland. Also the growth rate and

1McMurry, P. H., Woo, K. S., and Shi, Q.: in preparation, 2005.
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Fig. 7. Condensation sinks and aerosol surface areas as a function

of time from 27 to 29 October 2002 (#300–302).

C are around 5 times higher and CS around 20 times higher

than in Hyytiälä (Kulmala et al., 2001; Kulmala et al., 2004).

This shows that in polluted urban environments high source

rates of condensable vapours are necessary so that the con-

densational growth wins the aerosol dynamical competition

with coagulation sink.

4 Conclusions

In this study we have for the first time presented the diurnal

variation of the number size distribution (3–800 nm) and the

modal parameters of urban background aerosols in a highly

polluted Asian mega city.

We have also shown that nucleation events are possible

in highly polluted urban environment. Observed formation

events were disturbed by high pre-existing aerosol popula-

tion, and hence, as clear nucleation events than observed in

rural background areas (e.g. Hyytiälä, Finland) could not be

detected. The observed formation rate (J3) and the growth

rate showed rapid growth and high formation rate, which

seems to be typical in urban areas (Kulmala et al., 2004).

In the case of every observed event, the condensation sink

was at minimum during event starting time. The source

of condensable vapour molecules is seen to be 100 times

higher than corresponding source in rural area (Kulmala et

al., 2001). This shows that the formation of new secondary

aerosol particles in polluted urban environment is possible,

but requires high vapour sources in order to be able to over-

come high coagulation sink (Kulmala et al., 2004a).
The analysis of diurnal modal parameters revealed that

there is also another source in the evenings, which beside
the traffic is frequently repeated every day. Based on the
diurnal variation of aerosol number size distribution and
modal parameters presented in this study and the study
conducted by Sharma et al. (2003), vehicular emissions
together with biomass and/or refuse burning might have
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significant contribution to New Delhi’s atmosphere. Also
the impact of cooking and new particle formation cannot be
neglected.

Edited by: U. Lohmann
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vasan, D., Hämeri, K., and Kulmala, M.: Death of nucleation

and Aitken mode particles: Observations at extreme atmospheric

conditions and their theoretical explanation, J. Aero. Sci., 35,

781–787, 2004b.

Mönkkönen, P., Pai, P., Maynard, A., Lehtinen, K. E. J., Hämeri, K.,
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