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We report on an experimental investigation of temporal, scalar power spectra of 
round, high Schmidt number (Sc cz 1.9 x lo3), momentum-dominated turbulent jets, 
for jet Reynolds numbers in the range of 1.25 x lo4 < Re < 7.2 x lo4. At intermediate 
scales, we find a spectrum with a slope (logarithmic derivative) that increases in 
absolute value with Reynolds number, but remains less than 5/3 at the highest 
Reynolds number in our experiments. At the smallest scales, our spectra exhibit no 
k-' power-law behaviour, but, rather, seem to be approximated by a log-normal 
function, over a range of scales exceeding a factor of 40, in some cases. 

1. Introduction 

We report on an experimental investigation of temporal scalar power spectra 
of round, high Schmidt number, turbulent jets. In these experiments, the jet-fluid 
concentration (scalar) power spectra were examined for several reasons. Spectra are 
sensitive diagnostics of the flow, providing information over a wide range of scales. 
Historically, they have been the object of a great deal of attention, partially because it 
is possible to extract predictions for spectral slopes from various turbulence theories 
and models. 

Key among such turbulence theories are the 1941 paper by Kolmogorov (1941), 
with implications for the scalar field in the inertial range discussed by Corrsin (1951), 
Oboukhov (1962), and, for higher wavenumbers, the theory by Batchelor (1959). See, 
for example, discussions in Monin & Yaglom (1975), as well as in the recent review 
by Gibson (1991). Both the Corrsin and the Oboukhov theories yield predictions of 
power-law spectra and of the spectral power-law logarithmic derivative, or slope, as it 
will be subsequently referred to in this paper. Specifically, the Corrsin and Oboukhov 
theories predict a scalar spectrum proportional to k-5/3 in the inertial range, as did 
the 1941 Kolmogorov theory for the energy spectrum. 

For energy spectra, experimental confirmation of these predictions has been docu- 
mented in the past (cf. compilation of data by Chapman 1979). Recent experiments 
by Saddoughi & Veeravalli (1994), in high Reynolds number turbulent boundary 
layers, however, indicate that a -5/3 power-law regime is only approached at the 
highest Reynolds numbers. Specifically, longitudinal velocity spectra recorded at the 
mid-layer (y+ NN 1.6 x lo4) of a turbulent boundary exhibit less than a decade of -5/3 
range at a local Taylor Reynolds number of Re7 2: 600 (outer flow Reynolds number 

t Current address : Lawrence Livermore National Laboratory; PO Box 808, L-022; Livermore, 
CA 94551, USA. 
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of Red = Ue699/v N 7.3 x lo5), with about a decade of -5 /3  range at ReT 1: 1450 
(Red N 3.6 x 106).t Saddoughi & Veeravalli (1994) may also be consulted for citations 
of other recent measurements and theoretical discussions on turbulent energy spectra. 

The situation is less clear concerning scalar spectra, with departures from the 
predicted behaviour continuing to fuel debate about details and refinements of the 
theory. Batchelor (1959) and Batchelor, Howells & Townsend (1959) recognized 
that for Schmidt, or Prandtl, numbers away from unity there exists an additional, 
scalar-diffusion, scale, now referred to as the Batchelor scale, which admits a change 
in the scalar spectral behaviour. The Batchelor theory predicted that the scalar 
power spectrum at high Schmidt numbers would display a k-l dependence beyond 
the Kolmogorov wavenumber, i.e. a spectral slope of -1. Measurements in the 
laboratory (e.g. Gibson & Schwarz 1963) and in the ocean (e.g. Grant et al. 1968) 
were subsequently reported to be in accord with this prediction. On the other hand, 
measurements by Gargett (1985) in the ocean were found not to exhibit a k-' spectral 
range (see, however, discussion by Gibson 1987, 1991). The same result was noted in 
passive scalar mixing measurements in shear layers (Komori et al. 1989) and turbulent 
jets (Miller & Dimotakis 1991b; Miller 1991). Despite adequate resolution in those 
experiments, no k-' range was found at high spatial wavenumbers, or, to be exact, 
temporal frequencies. In addition, questions have been raised about the universality, 
if not validity, of the k-' spectrum predictions at high wavenumbers, in high Schmidt 
number turbulent fluid flows (Dimotakis & Miller 1990). 

The issue of spatial us. temporal spectra should be recognized here. The classical 
theories cited deal with spatial spectra. One could argue, therefore, that comparisons 
of measurements of temporal spectra with predictions of spatial spectra cannot be 
made directly. Two points are noted in response. First, the overwhelming majority 
of experimentally obtained spectra reported to be in accord with the theoretical 
predictions have, in fact, been temporal. Second, developing flows, such as a turbulent 
jet, are not (statistically) spatially homogeneous over the range of spectral scales 
of interest. The notion of a spatial spectrum and the assumption of a statistically 
spatially homogeneous turbulent field, for such flows, are questionable. Temporal 
spectra, derived from point measurements, do not have to contend with this issue. 

2. Experiment 

The experiments investigated the scalar (concentration) field of round, axisymmet- 
ric, momentum-dominated, turbulent jets issuing from contoured nozzles into a large, 
quiescent discharge tank. The measurements were performed in the far field, on the 
centreline of the jet. Details of the experimental apparatus have appeared previously 
(Miller & Dimotakis 1991a, h ;  Miller 19911, so only a brief overview will be presented 
here. 

The experimental facility consists of three major parts: the jet plenum, nozzle, and 
delivery system; a large reservoir that acts as the discharge tank; and the diagnostics, 
consisting of an argon-ion laser, focusing optics, collection optics, detector, signal- 
processing electronics, and the subsequent data processing. The working fluid is water, 
and the scalar is a laser dye (disodium fluorescein) which is homogeneously premixed 

7 The outer flow Reynolds number values were kindly provided by S. Saddoughi (private com- 
munication). 
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with the jet plenum fluid. The resulting Schmidt number, 

V 
s c  = - 

9 '  

where v is the kinematic viscosity (of water) and 9 2: 5.2 x lop6 cm2 s -' the estimated 
aqueous species diffusivity of the fluorescein dye, is 1.9 x 10' (Ware et a!. 1983, 
p. 280). 

The jet flow was established and maintained by pressurizing a downward oriented jet 
plenum with gas. Both sonically metered and blow-down, nearly-constant-pressure, gas 
delivery configurations were used. The internal exit diameter of the jet nozzle is 2.5 mm 
(0.1 in.). The rectangular discharge tank is square in cross-section, approximately 
2m high and 1 m across its base. The tank bottom is over 600 nozzle diameters 
downstream. Large glass windows on all four sides provided optical access (see Miller 
1991 for further details). 

The illumination source was an argon-ion laser (Coherent Innova 90). The par- 
ticular unit was custom selected for its low AM noise figure (- -95dB) over the 
frequency range of interest in these experiments. It was operated at a power of 3.5 W 
in the light-regulation mode. The beam was spatially filtered, expanded, collimated, 
and subsequently focused to a small waist located on the centreline of the jet. A 
low dye concentration was used in the jet plenum (- lop6 M), with correspondingly 
substantially lower concentrations at the measuring stations. A more detailed dis- 
cussion of this and related issues may be found in Miller & Dimotakis (1991b) and 
Miller (1991). The emitted fluorescence intensity was found to be proportional to the 
local scalar (dye) concentration, c(x, t), averaged over the extent of the measurement 
volume. 

The fluorescence emitted from the measurement volume was collected through a 
narrow slit spatial filter. The beam profile and the slit width defined a small, spatially 
averaging volume, roughly spherical in shape and of extent (diameter) k, = 50pm, 
as estimated by Gaussian beam optics and verified by direct observation using a 
cathetometer. Our spectral data also yielded an independent estimate of this quantity, 
as will be discussed below. 

A photomultiplier tube (RCA 8645) was used to detect the fluorescence emitted 
from this volume. Its output signal was amplified by a low-noise transimpedance 
amplifier (custom-designed by Dr D. Lang), low-pass filtered using a third-order 
Butterworth filter, digitized, sampled with some margin with respect to the Nyquist 
frequency, and stored for subsequent processing. 

The measurements to be discussed here were made in the far field, on the axis of 
the jet, for jet Reynolds numbers in the range of 

u . d  
1.25 x lo4 < Re = J < 7.2 x lo4 , 

V 

where u j  is the jet nozzle exit velocity, d = 2.54mm is the nozzle exit diameter, and v 
is the kinematic viscosity. The water temperature in these experiments was (20 k2)"C. 
The jet nozzle exit velocity was estimated in terms of the volume-discharge velocity, 
by measuring the time required to discharge a fixed volume from the jet plenum 
(cf. Miller 1991, tables A.2 and A.4, for actual values). The Reynolds number values 
were estimated to be known within 5 - 10%. Data were also recorded at both lower 
and higher Reynolds numbers. The lower Reynolds number jets, however, behaved 
substantially differently, by any of a number of criteria, and were not accepted as 
representing bona fide turbulence (Miller & Dimotakis 1991b). In the other limit, the 
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FIGURE 1. Sketch of jet-fluid concentration field c(x, t ) ,  convected through 
the measurement volume of extent 8,. 

jet at the higher Reynolds number (Re = 10.2 x lo4) produced a distinct hissing sound. 
This was probably generated by the transient dilatation and subsequent oscillations 
of small air bubbles caused by the rapid reduction in pressure in such bubbles as 
they exited the nozzle, or by cavitation in the jet near-field region, or both (note 
that the plenum gauge pressure is quadratic with Reynolds number). See discussion 
and references in Blake (1986, pp. 452-453) and Young (1989, pp. 205-207), for 
example. As a result, the Re = 10.2 x lo4 jet was exposed to different near-field 
conditions and will not be included in the discussion below. See Miller (1991) for 
further documentation of the data. 

Finally, constraints dictated by resolution and statistical convergence, vis-d-vis total 
number of large-scale structures captured and length-of-run considerations, led to 
measurement stations in the range, 

(3) 
X 

100 < - < 305, 
d 

where x is the distance from the nozzle exit. 

3. Scalar power spectrum estimation 

The fluorescence signal, $(t), representing the photon flux incident on the photode- 
tector, is a linear function of the spatial integral over the measurement volume of the 
convected local jet-fluid concentration field, c(x, 1). It produces a signal that can be 
approximated by a convolution over c(t) = c(xo, t ) ,  the jet-fluid concentration at, say, 
the centre of the measurement volume, xo, i.e. 

$( t )  2: [l h,(t - t’)c(t’)dt’ = h,(t) @ c(t)  . (4) 

In this expression, h,(t) models the impulse response of the measurement process, i.e. 
the temporal signal that would be measured if a spatial delta function of dye was 
convected through the measurement volume at the local flow velocity. See figure 1. 

The fluorescence output $(t) ,  along with fluctuations contributed by the small 
laser intensity fluctuations, convected residual non-uniformities in the jet plenum dye 
concentration, photon shot noise, electronic noise generated by the signal-processing 
chain, etc., was processed by the Butterworth low-pass filter to produce the total 
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FIGURE 2. Sample spectrum of the total signal (solid line: fluorescence + noise) and estimated 
fluorescence spectrum (dashed line: fluorescence), derived from measurements at x/d = 100, 
Re = 1.25 x lo4. Frequency scaled by ~ ( x ) ,  the local large-scale passage time. 

signal 

that was digitized and stored. In this expression, h(t)  = hLP(t) €3 h,(t) is the total 
system transfer function and n(t)  is the total, low-pass-filtered noise. 

Assuming that the system noise n(t) can be modelled as uncorrelated with the local 
dye concentration time history c(t), the spectrum S,(w) of s ( t )  can be expressed in 
terms of the spectrum S+(w) of +(t) and the spectrum Sn(w) of the (low-pass filtered) 
noise n(t) ,  i.e. 

s(t) = hjy(t)  Q +(t) + n(t)  = h(t) Q c(t) + n(t)  , ( 5 )  

&(w)  = S@(d + S n ( 0 )  9 

S + ( d  = I ~ U ( 4 I 2 S C ( 4  > (7) 

(6)  

where, from (4), 

with H,(o)  = FF{ha( t )} ,  the Fourier transform of h,(t). This allows us to relate the 
total signal spectrum, S,fu), to the desired scalar fluctuation spectrum, Sc(co), of c(t), 
i.e. 

Ss(w0) = l M 4 l 2 S ' ( W )  + Sn(w) N I P a ( 4 I 2 S c ( 4  + S*(w) 7 (8) 

where H ( w )  = F F { h ( t ) }  = HLp(o)H,(w).  
For these experiments, the knee of the Butterworth low-pass filter was set substan- 

tially higher than the range of frequencies contained in S+(o). Its main purpose was 
to band-limit the noise and de-alias the digitized measurements, allowing the noise 
floor to be determined, as will be illustrated in the spectra presented below. This is 
the reason why the modulus squared of HLP(w) ,  the transfer function of the low-pass 
filter, can be ignored in (7) and (8), and wherever it multiplies S+(w) and S,(co). 

Figure 2 illustrates these relations by comparing the spectrum S,(w) of the total 
signal s(t), i.e. fluorescence signal 4(t) plus noise n(t), with S@(co), the spectrum of the 
fluorescence signal alone. The latter was calculated by subtracting the estimated noise 
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spectrum, Sn(w), from the total spectrum S,(w). Recalling (6), we have 
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xfJ(4 = &(w) - S n ( 0 )  . (9) 

The noise spectrum was assumed to be white, as was found to be the case in 
separate measurements of this quantity (see also Dowling, Lang & Dimotakis 1989, 
for examples). Nevertheless, one can appreciate that the result is not sensitive to the 
assumed shape of the noise spectrum at low frequencies, where S4(w) dominates. 
The data processed to produce the spectra in figure 2 were recorded at x/d = 100, 
for Re = 1.25 x lo4. Note the high dynamic range of the total signal spectrum, i.e. 
the (logarithmic) difference of the low-frequency power to noise-floor power. Note 
also that the span to one-half the (scaled) sampling frequency is well beyond the 
noise-cross-over frequency. As can be seen, the noise floor is well determined. 

The spectra in figure 2, and throughout this paper, are normalized by F2,  the square 
of the local mean value of c(t), multiplied by the local large-scale passage time, rg(x), 
and plotted in terms of the circular frequency, f, scaled by ra(x). In these coordinates, 
their integral produces the normalized variance, 

The local large-scale passage time, zg, is given by 

where 

is the local outer scale of the flow, here identified with the (measured) mean transverse 
extent, i.e. visual width, of the conical region enveloping the jet fluid (Miller 1991, 
Appendix D), and u,l(x) is the mean centreline velocity. The latter was estimated from 
the relation 

6 ( x )  N 0 . 4 1 ~  (1lb) 

where ui is the jet exit velocity and xi the jet (virtual) origin, as recommended by 
Chen & Rodi (1980). The virtual origin, xi, for these experiments was, in all cases, 
less than two nozzle diameters and, in view of the distances of the measuring stations 
from the jet nozzle, was neglected. This spectrum and frequency scaling was found to 
produce similarity with respect to the downstream coordinate, x/d, in the analysis of 
scalar spectra measured in gas-phase jets (Dowling & Dimotakis 1990). 

The spectrum SJw) of the scalar fluctuations c(t)  can, at least formally, be estimated 
by solving (7), i.e. 

Combining with (6), we obtain a result in terms of experimentally estimated quantities, 

As long as the fluorescence signal, +(t), and the local jet-fluid concentration, c(t), are 
linearly related, an equation of the form of (7) represents the most general expression 
for this relation. However, while (7) follows from (4), the converse is not true. Equation 
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(4) is more restrictive, also prescribing a definite phase relation between c( t )  and $(t) .  

Fortunately, these (unknown) phase relations do not enter in the corresponding 
spectra. We may conclude that ( 7 )  and (12) provide good approximations for the 
corresponding spectra, even though it may not be possible to determine a (fixed) 
time-domain kernel, h,(t) in (4), that provides a correct description of the time history 
of the fluorescence signal, $(t).  

The estimation of the scalar spectrum &(GO), in the frequency range influenced 
by the averaging performed by the measurement process, requires knowledge of the 
H,(cu) transfer function. This can be estimated, in turn, by noting that it is dominated 
by a pole corresponding to the transit time of the flow through the measurement 
volume, i.e. 

H'dO)) = 

with 

7 ,  % 

As a consequence, fluorescence spectra, 

1 

1 f i o z ,  ' 

Sh(o) ,  and local concentration fluctuation 
spectra, S,(w),  can be expected to depart hom each other at normalized (circular) 
frequencies (cf. (10)) in the neighbourhood of 

and above, i.e. at a scaled frequency that is independent of the Reynolds number. 

conditions as feasible, it is possible to compare the two spectra, e.g. p = 1,2, 
Performing two experiments, at different spatial resolutions, under as identical flow 

~s,(w) 2: ~ ~ p ( w ) ~ ~ s c ( o )  + Snp(w) 3 05a) 

corresponding to two different locations of the dominant pole, at, say, z, = 71 and 
z, = z2 > zl, i.e. for p = 1,2, 

If the scalar spectrum, Sc(w), can be assumed to be identical in the two experiments 
and the corresponding noise floors are determined separately in each case, the ratio 
of the two estimated fluorescence spectra, 

will be given by 

independently of the, as yet unknown, scalar spectrum, Sc(w). 

From one such pair of experiments, at x /d  = 100 and Re = 1.25 x lo4, two such 
fluorescence spectra, S+,(w) = SS,(o)  - S,,(w) and S,,(o) = S,,(o) - Sn,(w), were 
obtained. They are plotted in figure 3 (dotted lines). The fluorescence spectrum with 
the larger high-frequency content is the one plotted in figure 2. 

The ratios G(o;zl ,~2) for the pair of spectra, measured at x / d  = 100, at Re = 

1.25 x lo4 (circles) and a pair at Re = 2.55 x lo4 (squares), respectively, are plotted in 
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FIGURE 3. Dotted lines: fluorescence spectra estimated from measurements at x / d  = 100 and 
Re = 1.25 x lo4 at two spatial resolutions. Solid line: estimated concentration spectrum (equation 
(12)) at x / d  = 100 and Re = 1 . 2 5 ~  lo4. Dashed line: estimated concentration spectrum at x / d  = 305 
and Re = 1.2 x lo4. 
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FIGURE 4. Computed ratio, G(o;z~,z~), of fluorescence spectra at x / d  = 100 (equation (16)). 
Circles: Re = 1.25 x lo4, squares: Re = 2.55 x lo4, solid line: least-squares fit for z1 and zz. 

figure 4. As can be seen, the ratios of spectra measured at different Reynolds numbers 
are very nearly the same, in accord with the analysis outlined above, even though, as 
we will see below, the spectra themselves are Reynolds-number-dependent and quite 
different. 

The curve (solid line) in figure 4 is a least-squares fit for 71 and z2 to the lower 
Reynolds number data that were characterized by the higher signal-to-noise ratio, in 
the frequency range 1.0 < fzs d 2.8. The lower limit of the fit range is chosen so as 
to exclude (the small) run-to-run variations at frequencies well below those affected 
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FIGURE 5. Dotted line : fluorescence spectrum. Dashed line: estimated concentration spectrum 
Data recorded at x ld  = 305 and Re = 1.2 x lo4. 

by the spatial averaging. The upper frequency limit is dictated by the less than unity 
signal-to-noise ratio at higher frequencies yet (cf. figure 2). The values for T I  and z2 

estimated by this procedure were 

271 zI/zg II 4.2 x and 2n T Z / T ~  N 6.6 x lop3 , (17) 

respectively. This corresponds to an effective spatial extent of the measurement volume 
of L, N 69 pm for the smaller of the two (equation (14)), in reasonable accord with 
the previously cited, visually estimated value of - 50 pm using the cathetometer. This 
value was used to calculate the concentration spectrum, Sc(o) ,  at x /d  = 100 and 
Re = 1.25 x lo4, plotted as the solid line in figure 3. It was computed from the 
fluorescence spectrum recorded at the higher resolution, using (12) with the estimated 
single-pole transfer function H,(w) of (13), at z, = 71. 

The effective pole locations for data recorded at x /d  = 305 were more difficult to 
estimate. At x / d  = 305, the higher relative spatial resolution pushed the poles closer 
to the noise cross-over point. On the other hand, at x / d  = 305, the (logarithmic) 
difference between the fluorescence and estimated concentration spectra was much 
smaller over the frequency range of interest. Figure 5 plots the fluorescence spectrum 
(dotted line) at x /d  = 305 and Re = 1.2 x lo4 as well as the estimated concentration 
spectrum (dashed line). As can be seen, the effects of compensation, in this case, 
are much smaller (cf. the difference at, say, log,,(fTa) N 2.7 in figures 3 and 5) .  The 
estimated concentration spectrum at x /d  = 305 in figure 5 is the one plotted as a 
dashed line in figure 3. 

The jet-fluid concentration spectra to be discussed below were all estimated in this 
fashion. The power spectra themselves, in this work, were computed numerically using 
a power spectral density estimation methodology that has evolved over the past ten 
years, or so. A documentation of some of its earlier features can be found in Dowling 
(1988). Briefly, the power spectral density estimation program computes spectra of 
data files by means of FFT methods, and incorporates Hanning windowing, contigu- 
ous record overlapping, and parabolic detrending, among other features. Records up 
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to 217 points can be accommodated. For spectra known to be smooth, the program 
can provide third-octave (e 1/10 decade) Gaussian filtering, sampled at 20 points per 
decade, to produce the final spectra. This feature was used for all the spectra plotted 
in this paper, not so much for smoothing, but to reduce the number of points to a 
manageable level for plotting purposes (216 = 65 536). 

The values of T ~ ,  the transfer function time constant used in the compensation 
calculations, were fixed for all the data measured at each x/d axial location (equation 
(17j, for measurements at x/d = 100, depending on which slit width was used to 
record the fluorescence data). A fixed pair of values was also used for all the data 
measured at x/d = 305. 

In summary, the effects of compensation were limited to loglo(fza) 2 2.0 for data 
recorded (in the high-resolution configuration) at x/d = 100, and to log,,(fzs) 2 
2.5 for data similarly recorded at x/d = 305, as dictated by spatial resolution 
considerations (temporal resolution was not an issue for any of the measurements). 
Conversely, the spectra can be regarded as resolved, with respect to the finite spatial 
and temporal resolution of these measurements, without the benefits of compensation, 
for scaled frequencies below these (Reynolds-number-independent) values (cf. (14)). 

In contrast, the spectral extent, as limited by finite signal-to-noise ratio considera- 
tions, i.e. up to frequencies such that the signal spectrum Ss(w) is sufficiently higher 
than the noise spectrum Sn(w) (cf. (6)), is a function of the flow velocity. As a con- 
sequence, as will be evident from the data to be presented below, the highest scaled 
frequency for which the concentration spectra could be determined was a function of 
the flow Reynolds number and x/d. 

4. Results and discussion 

The agreement between the concentration spectra at x/d = 100 (solid line) and 
x/d = 305 (dashed line) in figure 3, up to frequencies limited by signal-to-noise 
ratio considerations, should be noted. A similar independence of the scaled spectra 
with downstream location was also found to hold in gas-phase jets (Dowling & 
Dimotakis 1990), where the relatively larger diffusion scales, for Sc = 1 and compa- 
rable Reynolds numbers, made it possible to estimate the concentration spectra with 
enough spatial resolution directly, obviating the need for the compensation scheme 
employed here. 

It is useful to plot the product of the concentration spectrum with f5I3,  as is 
commonly done. A spectrum described by a -5/3 power law yields a horizontal 
line over the -5/3 frequency range when plotted in this fashion. The product of the 
concentration spectrum and ( f z ~ ) ~ ' ~ ,  derived from the data recorded at x/d = 100 for 
Re = 1.25 x lo4, and x/d = 305 for Re = 1.2 x lo4, is plotted in figure 6 as the solid 
and dashed curves, respectively. Also plotted, for reference, is a straight line with 
a slope (logarithmic derivative) of 2/3, corresponding to the high Schmidt number, 
k-', theoretically predicted spectrum by Batchelor (1959). 

To connect the measurement scales with the flow microscales, we may use the 
definition of the Kolmogorov (1941) scale, i.e. 

where E is the kinetic energy dissipation rate. This can be estimated from the on-axis 
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FIGURE 6. Frequency-scaled concentration spectra. Solid line: x/d = 100 and Re = 1.25 x lo4. Dashed 
line: x / d  = 305 and Re = 1.2 x lo4. Dotted line: reference line at a 2/3 slope, corresponding to a 
k-' spectrum. 

relation proposed by Friehe, Van Atta & Gibson (1971) for a jet, 

&~48(;) a. 3 (-) d , 
x - xj 

to obtain 

(20) - AK NN 0 . 9 5 R e ~ ~ ' ~  . 
6 

At x/d = 305 and Re = 1.2 x lo4, for example, ,IK N 257pm, as compared to the 
spatially averaging length of the measurements, of 8, N 50 - 70 pm. 

To convert the Kolmogorov spatial scale to the frequency scaling employed in the 
spectra in the present discussion, we note that, 

k l K  =wTK =2xfZK 

=2x - f Z g  

=2n - f t s  . 

(3 
(2) 

The Kolmogorov (circular) frequency, corresponding to the wavenumber where 
kAK = 1, is then given by 

or 

where (20) was employed to obtain the last relation. The Batchelor (1959) scalar 
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I~GURE 7. Frequency-scaled concentration spectra. Solid lines: x / d  = 100 data 
(1.25 < Re x < 7.2). Dashed lines: x / d  = 305 data (1.2 < Re x lop4 < 6.5). Individual 
spectra are offset by -2log,,(Re/Reo), with Reo = 1.2 x 104, for clarity. 

diffusion scale, AB, can then be estimated as 

i s  NN iK/Sc"2 N &/43 , (23) 

corresponding to the Schmidt number value for the dye used in these experiments. By 
way of example, for K e  = 1.2 x lo4 this leads to an estimate for the scaled frequencies 
of 

log,,(fn-zfi) N 2.3 and log,,cfBza) 2: 3.9 , (244 

where fB / fK  = & / A B .  Comparing with the (collapsed) spectra depicted in figure 6, we 
see that the spectra are resolved in the present experiments to frequencies extending 
about a decade beyond the Kolmogorov-scale passage frequency, f K ,  at least at this 
Reynolds number. 

We note, however, that the spatial scales where the influence of viscosity is felt 
can be taken as, roughly, an order of magnitude larger than the Kolmogorov scale 
(cf. Chapman 1979). At a given convection velocity, this yields a passage frequency 
of the largest viscous scales of fb ,  = O.lfK. One can similarly argue that scalar 
diffusivity will also manifest itself at spatial scales roughly an order of magnitude 
larger than the Batchelor scale, corresponding to a passage frequency of fg  = 0 . l f ~ .  
This then leads to estimates for the viscous and scalar diffusion passage frequencies, 
for Re = 1.2 x lo4, given by 

log,,(f,za) = 1.3 and loglO(ftzz~) = 2.9 . (24b) 

The solid lines in figure 7 plot spectra derived from measurements at x/d = 100, 
for Re x 10 -4 = 1.25, 1.76, 2.55, 3.6, 5.1, and 7.2. The decrease in the maximum 
scaled frequency in the x/d = 100 spectra (as limited by signal to noise), with 
increasing Reynolds number, is evident. The dashed lines plot spectra measured at 
x/d = 305, for Re x = 1.2, 2.4, 4.0, and 6.5.  The highest frequency captured in 
the x/d = 305 spectra is a much weaker function of Reynolds number, at this station. 
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FIGURE 8. Frequency-scaled concentration spectra derived from data at x/d = 100 and 
1.25 < Re x lop4 6 7.2 (no offsets). See text for line styles. 

Individual spectra for both x/d stations are plotted offset by -2 log,,(Re/Reo), with 
Re0 = 1.2 x lo4, to aid in visualizing the evolution of trends with Reynolds number. 

The statistical convergence of the x/d = 100 spectra is better than the x/d = 305 
spectra, owing to the much larger number of large-scale structures captured at 
the upstream station. On the other hand, the higher relative spatial resolution at 
x/d = 305 allowed the spectrum to be estimated to a higher (scaled) frequency. With 
this in mind, the agreement between the (scaled) spectra at x/d = 100 and x/d = 305 
is very good for all the cases for which data were recorded at the same, or nearly the 
same, Reynolds number at the two stations. 

Following the transition out of the large-scale frequency regime (fza m l), the 
spectra appear to be described by a power law with an exponent that is increasing 
from roughly 1.2 to 1.5 in absolute value, with increasing Reynolds number. This 
progression with Reynolds number is easier to discern in figure 8, which plots the 
concentration spectra at x/d = 100, for Re x = 1.25 (solid line), 1.76 (dashed 
line), 2.55 (dot-dash-dash), 3.6 (dot-dot-dash-dash), 5.1 (dot-dash), and 7.2 (dot-dot- 
dash), with no offsets. The extent of the power-law regime can be seen to increase 
slightly with increasing Reynolds number. 

Estimates of the spectrum slope in the power-law region DS. Reynolds number, 
derived from the spectra in figure 7, as well as three estimates derived from data at 
x/d = 170, are plotted in figure 9 (cf. Miller 1991, figure 5.2, and related discussion). 
A similarly increasing spectrum slope (in absolute value) with Reynolds number was 
also noted in measurements of gas-phase spectra (Dowling & Dimotakis 1990), for 
Re x 

As can be seen by sighting along the spectra in figure 8, the power-law region is 
followed by a different regime at higher frequencies yet. This regime does not support 
the Batchelor (1959) k-' prediction that should apply for over a decade and a half in 
frequency in this case (recall Sc = 1.9 x lo3 for these experiments). This can be seen 
in figure 6, which includes a dotted line with a reference slope of 2/3, corresponding 
to a k-' spectrum. The spectra at increasing Reynolds number depart even further 

= 0.5, 1.6, and 4.0. 
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and x / d  = 305 (circles). Dashed line at top right corresponds to a -5 /3  spectrum slope. 
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FIGURE 10. Local spectrum slope (logarithmic derivative). Solid lines: data at x/d = 100 and 
Re = 1.25 x lo4. Dashed line: x/d = 305, Re = 1.2 x lo4. 

from this slope, as can be seen by comparing the Re = 1.2 x lo4 spectrum with those 
at higher Reynolds numbers in figure 8. It is important to note that this conclusion 
also extends to frequencies below log,,(fz~) N 2, i.e. frequencies that are unaffected 
by spatial/temporal resolution, compensation, and signal-to-noise considerations. 

To facilitate the study of this higher-frequency regime, the slopes (logarithmic 
derivatives) of the spectra were also computed. A plot of spectrum slopes, for the 
lower Reynolds number data, appears in figure 10. These were derived from the two 
x/d = 100, Re = 1.25 x lo4 spectra in figure 3 (solid lines) and the x/d = 305, 
Re = 1.2 x lo4 spectrum (dashed line). Their comparison helps assess issues of 
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FIGURE 11. Local slope (logarithmic derivative) of spectra from data at x/d = 100 and 

1.25 < Re x lop4 < 7.2. Spectra offset as in figure 7. Line types as in figure 8. 

statistical convergence and confidence in this more delicate statistic, as well as the 
effects of spatial resolution and the applied compensation. 

The plots in figure 10 suggest a frequency-dependence of the slope of the spectra 
that is close to a straight line, in these coordinates. The straight line appears to 
be a good representation for frequencies below log,,(fza) = 2, for which the effects 
of compensation were negligible, even for the x / d  = 100 data (cf. figure 3). For 
frequencies above log,,(fzs) N 2, the same straight line also describes the behaviour 
for both the x/d = 100 and x/d = 305 data, which were affected by resolution (and 
compensation) to a different extent (cf. figures 3 and 5). 

A straight line for the slope (logarithmic derivative) of the spectrum corresponds to 
a spectrum that is parabolic in log-log coordinates, or log-normal in linear coordinates, 
i.e. 

Sc(fz*)  ac exp{-i [a  ln(fz6) + 6l2} . (25) 

This expression, rather than a k-’ power law, seems to provide a better description 
of our jet-fluid concentration spectra at high frequencies, over a range of frequencies 
at least as large as S C ” ~ ,  i.e. a decade and a half, in this case. Notably, this spectral 
regime can be seen to span a range of frequencies, 1.2 5 log,,(fza) 2 2.8, in reasonable 
accord with the passage frequencies for the viscous and scalar diffusion scales, at this 
Reynolds number (cf. (246)). 

Figure 11 plots the local slope (logarithmic derivative) of the spectra in figure 8. The 
offset scheme employed in figure 7 and line types employed in figure 8 were also used 
here. Straight lines can be seen to be a good representation for the spectrum slope at 
high frequencies, with Reynolds-number-dependent values of the parameters a and 6 
in (25). The end of the power-law regime and the beginning of the log-normal range 
can be seen to shift to higher frequencies with increasing Reynolds number. Our data 
admit a Kolmogorov scaling for the Reynolds number dependence of this transition 
frequency, i.e. - Re3/4, but corresponding to the convection (passage frequency) of 
a physical scale roughly 80 times larger than the estimated Kolmogorov scale (cf. 
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(18) and discussion following), i.e. frequencies that are close to the estimated viscous- 
scale transition frequency, f v  (cf. (24b)). This transition is not very well defined, 
however, and other Reynolds number scaling possibilities cannot be ruled out. It is 
not possible to assess the Reynolds number dependence of the upper bound of this 
frequency regime, owing to resolution and signal-to-noise limitations with increasing 
Reynolds number. 

Several other reports in the literature document temperature, or scalar species, 
concentration spectra in turbulent flows with 'bump' features at high wavenumbers 
similar to the ones found in the experiments reported here. These include: measure- 
ments of temperature fluctuations in turbulent jets (Clay 1973; Chevray & Tutu 1978), 
of smoke concentration in turbulent jets (Shaughnessy & Morton 1977), tempera- 
ture measurements in tidal channels (Grant et al. 1968; Gargett 1985), concentration 
measurements in grid turbulence (Gibson & Schwarz 1963), and temperature mea- 
surements in an atmospheric boundary layer (Williams & Paulson 1978). In addition, 
similar bump features have been observed in both velocity- and temperature-derivative 
spectra (Champagne et al. 1977; Williams & Paulson 19781, as well as in velocity spec- 
tra in large, well-resolved boundary layers (Mestayer 1982; Saddoughi & Veeravalli 
1994). 

Those experiments did not report scalar spectra with any significant k-' region 
at high wavenumbers. Two explanations have been, typically, offered to date: that 
probe resolution was insufficient, or that the Schmidt/Prandtl number was not large 
enough. The resolution of our measurements (recall comparison of compensated 
and uncompensated spectra measured at different x/d stations, figures 3 and 6), is 
sufficient to have resolved at least the beginning, if not a good part, of a k-l  region, 
if one existed. Therefore, probe resolution is not a factor in these measurements and 
does not impact on this result. Secondly, the Schmidt number in our experiments was 
high, specifically, of order 2000. In contrast, bumps qualitatively similar to the ones 
found in our spectra were documented in spectra computed from flows with Prandtl 
numbers as low as 0.7 (temperature in air). According to the Batchelor (1959) theory, 
the extent of the viscous-convective kP1 range should scale like S C ' / ~ ,  i.e. a factor of 
53 more than the Prandtl number 0.7 case. Nevertheless, no k-' region was round. 

Finally, we should note that we are aware of at least one report in the literature of an 
extensive -1 slope region in a scalar spectrum, by Nye & Brodkey (1967). A fibre-optic 
probe was used in those experiments to measure the concentration of dye injected 
into turbulent pipe flow. and found 1.5 decades of -1 slope in the concentration 
spectrum, 36 diameters downstream, but no -5/3 slope (or inertial) range. It is 
possible, however, that this lower-wavenumber behaviour arises for similarity reasons 
in outer boundary-layer and pipe-flow spectra, where one can argue that w y / U ,  
where o is the temporal frequency, y is the distance from the wall, and U is the outer 
flow velocity, is the appropriate dimensionless frequency in the dynamics. Perry & 
Abell (1975) put such a scaling argumcnt forth to explain a large o-l region in their 
own turbulent-pipe-flow longitudinal-velocity spectra. 

5.  Conclusions 

This work has investigated temporal scalar (jet fluid concentration) power spectra 
on the centreline of high Schmidt number turbulent jets, in the Reynolds number 
range 1.2 < Re x < 7.2. Our spectra exhibit a power-law regime at frequencies 
above the local large-scale passage frequency, with a Reynolds-number-dependent 
exponent increasing (in absolute value) from roughly -1.2 to -1.5 over the Reynolds 
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number range investigated. This corroborates a similar finding for gas-phase jet- 
fluid concentration spectra measured at comparable Reynolds numbers (Dowling & 
Dimotakis 1990). At higher frequencies, the spectra are well represented by a log- 
normal relation with Reynolds-number-dependent coefficients. While our data admit 
a Kolmogorov-like scaling for the beginning of the log-normal region in the spectrum, 
i.e. - Re3I4, other possibilities cannot be ruled out. 

Our results are at odds with the classical picture of high Schmidt number scalar 
spectra. In particular, our spectral data do not exhibit a -5/3 power-law regime, 
even though recorded at Reynolds numbers where such behaviour has previously 
been reported for high Schmidt number jet-fluid scalar spectra (e.g. Becker, Hottel 
& Williams 1967). Nevertheless, the data do not preclude a -5/3 spectral slope in 
the limit of higher Reynolds numbers yet (cf. figure 9). Finally, despite adequate 
resolution and signal-to-noise ratio, our data do not support the Batchelor (1959) k-' 
power-law prediction for the spectrum describing small-scale dynamics. Specifically, 
we found no constant k-' slope at high frequencies, or even a spectral slope that 
locally attains a value of -1. 

On the whole and as noted above, however, our scalar spectra are similar, in 
many respects, to previous scalar as well as to velocity spectra derived by other 
experimenters in a variety of flows. In conjunction with those data and analyses, 
the current results raise further questions about the universal descriptions of scalar 
spectra, and their applicability to some of the canonical flows, including turbulent 
jets. 
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