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Abstract

In this work, we present detailed measurements of the Casimir-Lifshitz force between two gold

surfaces (a sphere and a plate) immersed in ethanol and study the effect of residual electrostatic

forces, which are dominated by static fields within the apparatus and can be reduced with proper

shielding. Electrostatic forces are further reduced by Debye screening through the addition of

salt ions to the liquid. Additionally, the salt leads to a reduction of the Casimir-Lifshitz force

by screening the zero-frequency contribution to the force; however, the effect is small between

gold surfaces at the measured separations and within experimental error. An improved calibration

procedure is described and compared to previous methods. Finally, the experimental results are

compared to Lifshitz’s theory and found to be consistent for the materials used in the experiment.

PACS numbers: 12.20.-m
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I. INTRODUCTION

The prediction of an attractive, quantum electrodynamic force between two electrically

neutral metal plates in vacuum has been of great scientific interest since Hendrik Casimir

originally proposed the effect in 1948 [1]. A number of reviews describe various aspects

of this and other effects resulting from the boundary conditions imposed on the quantized

electromagnetic fields [2, 3, 4]. The early work of Derjaguin [5, 6], Sparnaay [7], and van

Blokland and Overbeek [8] demonstrated the effect; however it was not until the experiment

of Lamoreaux [9] that a precision measurement of the Casimir force was made. Several

additional experiments further confirmed the effect using a variety of techniques [10, 11, 12].

A more general theory was developed by Lifshitz, Dzyaloshinskii and Pitaevskii, which

takes into account the non-ideal reflectivity of real metals, and allows for the calculation of

forces between bodies of arbitrary dielectric function separated by a medium, which need not

be vacuum [13, 14]. This formalism, which is based on the fluctuation-dissipation theorem,

completely describes the van der Waals force at short range [15, 16, 17] and simplifies to

Casimir’s result for ideal metal plates separated by vacuum.

Recently, there has been interest in the measurement of long-range quantum electrody-

namic forces between solids immersed in a fluid to test both the generality of Lifshitz’s

theory as well as the technological feasibility of incorporating these forces into nano- and

micro-devices. It is of theoretical interest to better understand the applicability of the

electromagnetic stress tensor to dissipative media used for such calculations [18] . From a

technological viewpoint, tailoring these forces could lead to methods for reducing stiction in

MicroElectroMechanical Systems (MEMS) [19] and to the development of ultralow friction

devices and sensors [2].

Two of the current authors (JNM and FC) recently reported measurements of the Casimir-

Lifshitz force between two metal surfaces in a fluid [20]. In response to criticism that

electrostatic effects were not adequately taken into account [21], we reported additional

experiments that showed that residual electrostatic contributions to the total force were

small and that they could not be due to work function differences alone between the metal

films but were likely due to stray fields associated with trapped charges [22].

In this paper, we describe in detail the origin of the electrostatic forces in our experiments,

show how they can be reduced, and present detailed experimental procedures for conducting
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Casimir-Lifshitz force measurements between a metalized sphere and plate separated by

fluid.

II. EXPERIMENTAL SETUP

The setup used for this experiment is shown schematically in Fig. 1 and is described in

Ref. [20]. A 39.8 µm diameter polystyrene sphere is attached to a commercially available

cantilever (MikroMasch model CSC38) using silver epoxy. A 5 nm titanium adhesion layer

is evaporated onto the sphere and cantilever followed by a 100 nm gold layer. The cantilever

chip is then inserted into a commercially available Atomic Force Microscope (AFM) [24]

with fluid chamber. One major difference in this setup over the one used previously [20]

is the addition of a conductive coating [23] over the plastic cantilever chip holder (Fig. 1).

This was done to reduce the effect of stray electrostatic fields originating from static charge

trapped on the plastic holder. This is discussed in detail in Section IV.

Standard cleaning procedures are performed on all surfaces prior to measurements. The

gold plate and fluid cell are ultrasonically cleaned in ethanol for 30 minutes followed by

drying in nitrogen airflow. The cantilever chip is rinsed with ethanol without ultrasonic

cleaning to avoid damage to the cantilever. For all experiments, the cantilever is completely

submerged in ethanol (Sigma-Aldrich), which is filtered through a 0.2 µm PTFE filter.

Light from a superluminescent diode is reflected off the back of the cantilever and is

detected by a four-quadrant photodetector, which is used to monitor the deflection of the

cantilever, as in standard AFM measurements. The difference signal between the top two

quadrants and the bottom two quadrants is proportional to the vertical deflection of the

cantilever. A piezoelectric column within the AFM is used to advance the cantilever and

sphere toward the plate, and the piezoelectric column’s advance is detected using a linear

variable differential transformer [24], which minimizes nonlinearities and hysteresis inherent

in piezoelectrics. As the sphere approaches the plate, any force between the two will result

in a deflection of the cantilever, which will then be detected in the difference signal from the

four-quadrant detector. The sampling rate for data acquisition is chosen so that a minimum

of 2 data points per nm are collected and varies from 2 to 8 kHz.

The photodetector difference signal is proportional to the distance the cantilever has

bent, which obeys Hooke’s law: Fspring = −kdcantilever, where dcantilever is the distance the
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tip of the cantilever has bent and k is the spring constant of the cantilever. The external

force exerted on the sphere, and hence the cantilever, balances the elastic force Fspring and

is therefore given by: Fext = CVdet, where C is the force constant which is used to convert

the photodetector difference signal, Vdet, into a force signal. To determine C, a known force

is applied between the plate and the sphere as the sphere approaches the plate, and C is

determined from a fit to this force.

III. CALIBRATION

In order to average the data collected from consecutive runs (typically ∼50 data sets are

acquired), vertical drift between the sample and the cantilever, which is common in AFM

measurements [25], is compensated by defining the zero of piezo displacement with reference

to the surface of the plate as described below. Figure 2(a) shows the photodetector difference

signal versus piezo displacement for two runs with a piezo velocity of 45nm/s. The scans

were performed approximately 1 min apart and show vertical drift, which is typical of all

scans. For large piezo displacements, there is no force between the sphere and the plate.

This corresponds to no deflection of the cantilever and Vdet = 0. As the sphere approaches

the plate, an attractive interaction between the sphere and plate results in a bending of the

cantilever until contact is made. At contact, the cantilever is bent. As the piezo column

continues to advance, the cantilever unbends (see Fig. 2(a)). The point at which the sphere

is in contact with the surface and the cantilever is in the unbent state corresponds again to

Vdet = 0. We define this contact point between the sphere and the plate, when the cantilever

is unbent, to be a piezo displacement of zero. The experimental points, which were originally

offset horizontally by 3 nm, now coincide at the point of contact (Fig. 2(b)). In this way, a

large number of data sets from different runs can be consistently averaged.

The photodetector difference signal is proportional to the force exerted on the cantilever

plus an additional offset, which is linear with piezo displacement but independent of the

actual surface separation. This linear contribution to the signal is due to the relative motion

of the cantilever with respect to the laser [20]. We can write the total force signal as:

Ftotal(d, v) = F0(d) + Fhydro(d, v) + Ad + B, (1)

where F0(d) is the Casimir-Lifshitz force (and possibly other non-velocity dependent forces,
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e.g. electrostatic forces as discussed in the next section), Fhydro(d, v) is the hydrodynamic

force, and A and B are constants. The hydrodynamic force between a sphere of radius R

and a plate separated by a distance d, in the limit R ≫ d, is given by [28, 29]:

Fhydro(d, v) = −6πηv

d
R2, (2)

where η is the fluid viscosity and v is the velocity of the sphere relative to the plate (the

sign of the velocity is taken to be negative as the sphere approaches the plate). The fact

that the sphere is attached to a cantilever does not influence this force because the distance

between the cantilever and the plate is large compared to the separation between the sphere

and the plate. Thus, the hydrodynamic drag on the cantilever results in only a constant

offset in the force signal, which does not depend on the surface separation.

The fluid viscosity, η, is determined using a Falling Ball Viscometer (Gilmont Instru-

ments) at 21.0 ◦C. The viscometer is calibrated to the data of Ref .[30] using deionized H2O.

For ethanol, we find η = 1.17 ± 0.06 mPa s by averaging 10 sets of data. For ethanol solu-

tions with salt (see Section IV), we find η = 1.19 ± 0.08 mPa s and η = 1.19 ± 0.02 mPa s

for NaI concentrations of 0.3 mM and 30 mM, respectively.

By performing measurements at different piezo velocities and then combining the results,

we can determine the various contributions to the total force independently. To determine

the hydrodynamic force at a velocity v, we make two measurements: one at v1 and one at

v2, such that v = v2 − v1. Subtracting the results, we get, from Eq. 1:

Ftotal(d, v2) − Ftotal(d, v1) = Fhydro(d, v). (3)

Similarly, F0(d) + Ad + B is determined by performing a third measurement at a velocity

2v1 and combining the data as:

2Ftotal(d, v1) − Ftotal(d, 2v1) = F0(d) + A d + B. (4)

The linear contribution (A d + B) to the total force signal is measured with the sphere far

away from the surface so that F0(d) is determined.

To convert the photodetector difference signal into a force signal, calibration is performed

using the hydrodynamic force [20, 31]. Figure 3(a) shows the photodetector signal versus

piezo displacement for the hydrodynamic force with a velocity of 3.150 µm/s. Grey dots in

Fig. 3(a) correspond to the average of 51 runs using the methods described above at two
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different velocities, v2 = 3.600 µm/s and v1 = 0.450 µm/s. The bending of the cantilever

dcantilever is taken into account by adding dcantilever, as determined from the deflection signal,

to the piezo displacement prior to combining the data obtained with different piezo speeds.

The force constant C and the actual sphere-plate separation at contact d0 are determined

by fitting the cantilever deflection data to Eq. 2 with d = dpiezo + dcantilever + d0, where

dpiezo is the piezo displacement and dcantilever is the amount the cantilever has bent. For

two ideally smooth surfaces, d0=0; however, once contact is made for surfaces with nano-

metric roughness, the peaks in surface roughness will preclude further advancement of the

surfaces toward each other. d0 is a constant that takes this into account. The fit (solid line

in Fig. 3(a)) is performed for piezo displacements between 0.1 and 1.5 µm, which leads to

C = 14.5 ± 0.1 nN/V and d0 = 12 ± 1 nm. The residual shows no systematic error in the

least-squares fit (Fig. 3(b)). Figure 3(c) shows that the cantilever velocity is nearly constant

as a function of piezo displacement. At the smallest separations the velocity becomes slightly

reduced due to the bending of the cantilever caused by the force.

Varying the fit range for the data has little effect on the calibration. The fit range is

chosen so that a majority of the data is above the noise level and that the modification

to the cantilever velocity due to bending is small. Fits are also performed over a slightly

larger range and give rise to a modification of C by ∼2% and d0 by ∼3.5 nm (Table I) when

the fit range incorporates data where the velocity is not constant. Table I also shows that

a fit at slightly larger separations results in negligible change to C and d0. We note that

in addition to the uncertainty in the force due to the calibration constant C, there is an

additional uncertainty of of 2-7% in the force due to the uncertainty in η.

The Casimir-Lifshitz force between the two gold surfaces in ethanol is determined using

the methods described above (Eq.4) with v1 = 450 nm/s. The circles in Fig. 4(a) show the

experimental results averaged for 51 runs. The solid line in Fig. 4(a) is the value of the

force obtained with the same sphere using the method of Ref. [20], which corresponds to

reducing the piezo velocity to a small value (45 nm/s) rather than subtracting the data for

different speeds. Figure 4(b) shows the difference in force using these two methods. The

results using a slow piezo velocity appear to be ∼20 pN weaker at a distance of 50 nm. This

can partially be understood by the residual hydrodynamic force (dashed line), which is still

present in this data; however, 20 pN is also comparable to the spread in the data. Finally,

the advantage of the method described in this paper is that the drift in the sphere-plate
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separation is reduced by an order of magnitude because the measurement time is shorter at

larger piezo velocities.

IV. ELECTROSTATIC FORCES

The effect of residual electrostatic forces has been a concern since the earliest experi-

ments to measure the Casimir effect [7, 8]. Ideally, there would be no electrostatic force

between two identical metals connected through a common ground; however, in real world

experiments, two metallic films will have variations in their work functions, which lead to

residual electrostatic forces. Variations in the work function over the surface of a metal

can lead to position dependent electrostatic forces and patch potentials [32], which cannot

easily be compensated. Further, stray charges and fields from the surroundings can lead

to additional electrostatic forces. To quantify such effects, a series of experiments are con-

ducted to determine the contribution of electrostatic forces to the total measured force in

our experiment.

For measurements of the Casimir force in vacuum or air, a bias voltage is applied to the

sphere, while the plate is grounded, to determine the voltage, V0, needed to compensate

and minimize the electrostatic force [8]. Using a plastic cantilever chip holder without a

conductive coating, V0 appears to vary with surface separation by ∼140 mV over ∼2 µm

(Fig. 5(a)). We attribute this variation to stray charge on the plastic cantilever chip holder.

A conductive coating [23] is applied to the holder and grounded (Fig. 1). This reduces the

value of V0 and its distance dependence (Fig. 5(b)). These results support our original claim

that stray charges and fields were the dominant source of residual electrostatic forces in

our previous experiment [20, 22]. For the experiments presented in this paper, the holder

with the conductive coating is used and the sphere and plate are grounded unless otherwise

stated.

The effect of grounding the sphere and plate is investigated during force measurements in

fluids and found not to affect the net force for piezo displacements above 30nm (Fig. 6(a,b)).

It is likely that the V0 measured using the conductive cantilever holder results from the work

function difference between the sphere and the plate [26]. The electrostatic force in ethanol

due to the work function difference can be written as:

FES = −πRǫethanolǫ0V
2
0

d
e−d/λD , (5)
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where ǫethanol = 24.3 is the dielectric constant of ethanol and λD is the Debye screening

length. For λD between 20 nm and 100 nm (which is typical for commercially available

ethanol [27]), the electrostatic force at 30 nm is between 6 pN and 21 pN.

To further ensure that electrostatic forces are negligible, varying amounts of sodium iodide

(NaI) were added to the ethanol to decrease the Debye screening length, λD. Figure 6(c)

shows the cantilever deflection versus piezo displacement for three difference concentrations

of NaI in ethanol: (1) no added NaI, (2) 0.3 mM NaI corresponding to λD = 10 nm,

and (3) 30 mM NaI corresponding to λD = 1 nm. The difference in the deflection signal

between the data acquired with no added salt and the data acquired with salt is within

the experimental error for the measured piezo displacements (Fig. 6(d)); however, small

variations are expected in the Casimir-Lifshitz force as a result of the added salt as discussed

in Sections V and VI.

The specific conductivity of the solution is found to increase nearly linearly with increasing

salt concentration. Figure 7 shows conductivity data for NaI in ethanol (circles), normalized

to the value at a concentration of 0.05 M, versus molar concentration obtained using a

bench conductivity meter (VWR). The solid line is a linear fit to the data showing that

the fluid/salt mixture has not saturated, consistent with Kohlrausch’s law [35, 36]. The

grey arrows indicate salt concentrations used for experiments and corresponding screening

lengths.

V. THEORY

The experimental data are compared to Lifshitz’s theory for a gold sphere of radius R

and a gold plate separated by a distance d in ethanol. For this configuration at temperature

T , Lifshitz’s theory can be written as (see for example Ref. [3]):

FC-L(d) =kBTR

∞
∑′

m=0

∫ ∞

k=0

k[ln(1 − rTE
3,1 rTE

3,2 e−2k3d)

+ ln(1 − rTM
3,1 rTM

3,2 e−2k3d)]dk

(6)

where kB and c are the usual fundamental constants, and the primed summation gives half

weight to the m = 0 term. rp
3,i is the reflection amplitude at the interface between material

i and material 3 for radial wave vectors of magnitude k and polarization p, given by
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rTE
3,i =

ki − k3

ki + k3

and rTM
3,i =

kiǫ3 − k3ǫi

kiǫ3 + k3ǫi

(7)

where

ki =

√

k2 +
ǫiξ2

c2
. (8)

ǫ1, ǫ2, and ǫ3 are the dielectric functions of the sphere, plate, and intervening medium,

respectively, evaluated at imaginary frequencies iξ = i2πkBT
~

m according to:

ǫi(iξ) = 1 +
2

π

∫ ∞

x=0

x Im[ǫi(x)]

x2 + ξ2
dx. (9)

The dielectric function for gold is obtained using the optical data of Palik [37] for ω from

0.125 to 9184 eV and the Drude model,

ǫ(ω) = 1 −
ω2

p

ω(ω + iγ)
, (10)

where ωp = 7.50 eV and γ = 0.061 eV for ω < 0.125 eV. The Drude parameters are obtained

from Ref. [38], where the data of Palik were extrapolated to lower frequencies by a fit to

Eq. 10 for the mid-infrared. For ethanol, a two-oscillator model is used [42, 43]:

ǫ(iξ) = 1 +
CIR

1 +
(

ξ
ωIR

)2 +
CUV

1 +
(

ξ
ωUV

)2 (11)

where ωIR = 6.60×1014 rad/s and ωUV = 1.14×1016 rad/s are the characteristic absorption

angular frequencies in the infrared and ultraviolet range, respectively, and CIR = 23.84 and

CUV = 0.852 are the corresponding absorption strengths.

It has been shown that the natural variability in the optical properties of materials can

give rise to a significant variation in the Casimir force, which can be >10% [22, 38, 39].

For this reason, Lifshitz’s theory will not completely describe the measured force unless

the optical properties of the actual materials used in the experiment are determined over a

large frequency range for the sphere, plate and fluid. Such measurements are a significant

experimental challenge and have led to the adaption of tabulated data for calculations [40].

The salt concentration further modifies Eq. 6 in two ways. First, the salt will partially

screen the zero-frequency component of the Casimir-Lifshitz force. To account for this, the

zero-frequency contribution in Eq. 6 is replaced by [3]:
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FC-L|m=0 =
kBTR

2

∫ ∞

k=0

k ln[1 −
(ǫ1k − ǫ3

√
k2 + κ2

ǫ1k + ǫ3

√
k2 + κ2

)

×
(ǫ2k − ǫ3

√
k2 + κ2

ǫ2k + ǫ3

√
k2 + κ2

)

e−2d
√

k2+κ2

]dk,

(12)

where κ = 1/λD. Second, the salt can modify the optical properties of ethanol. As a first

order correction to the dielectric function at non-zero frequency, a plasma term [41] was

added to Eq. 11 for ionic species of sodium and iodine. The effect of the salt on the optical

properties using this approximation is negligible.

Surface roughness further modifies the calculation of the force. The total Casimir-Lifshitz

force including this correction can be calculated as [44]:

F (d) =
∑

i,j

σ
(sp)
i σ

(pl)
j FC-L[d − (δ

(sp)
i + δ

(pl)
j )], (13)

where σi is the fraction of the surface area of the sphere (sp) or plate (pl) displaced a distance

δi from an ideally smooth surface and are measured over a 2 µm by 2 µm area using an

optical profiler (Fig. 8).

VI. RESULTS

Figure 9 shows the Casimir-Lifshitz force in ethanol between the gold-coated sphere and

gold-coated plate. The data for 51 runs are shown (dots) along with the average of these

data (circles) and the theory described in Section V for ethanol with no added salt (solid

line). The theory describes the data well, despite the uncertainties in the optical properties.

Note that both the theory and the experimental data follow a ∼ d−3 dependence for the

force in the presented distance range, as expected due to retardation effects (e.g. tables

P.1.b.3 and L2.2.B in Ref. [3]). Histograms of the force data from the 51 runs show an

approximately Gaussian distribution at all separations and no evidence of systematic errors

(Fig. 10). Deviations between the theory and experiment below 30nm are likely due to the

inability of the theory to accurately describe the surface roughness on these scales and the

uncertainty in the optical properties.

The Casimir-Lifshitz force for different salt concentrations is shown in Fig. 11 along with

Lifshitz’s theory without corrections due to electrostatics or zero-frequency screening. The
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data is shown for experiments with no added salt (circles), 0.3 mM NaI (squares), and

30 mM NaI (triangles) and is obtained by averaging 51 data set for each concentration.

The inset shows a log-log plot of the data. The difference between the forces due to the

modification of the zero-frequency contribution and the Debye screening are greater for

smaller separations and both are calculated to be ∼15 pN; however, the sensitivity of our

apparatus is not adequate to distinguish a significant difference between these curves. While

the averaged data follows the theoretical curve well, the standard deviation in the data is

relatively large and varies from ∼90-130 pN in the range from 80-30 nm. Any variation in the

three data sets (circles, squares, and triangles) is much less than the standard deviation and

is not distinguishable in this experiment. In our previous work [20], the standard deviation

was ∼45-50 pN for separations of 80-50 nm, which is comparable to the error estimated in

Ref. [45] for Casimir force measurements in air obtained by considering the propagation

of calibration errors. While the method presented in this paper reduces errors associated

with drift and hydrodynamic forces over the previous method [20], it has a larger standard

deviation as a result of the subtraction of data from different force runs. Despite the large

standard deviations, the averaged data is well described by Lifshitz’s theory.

VII. CONCLUSIONS

We have conducted detailed measurements of the Casimir-Lifshitz force in a fluid using

an improved experimental setup and have considered various electrostatic contributions to

the total force. NaI was added to ethanol to further reduce electrostatic interactions. No

significant variation is found in the force upon modification of the grounding between the

sphere and the plate or the increase of ionic concentration. Further improvements to the

sensitivity are necessary to determine possible force differences at short range. Results are

found to be consistent with Lifshitz’s theory despite the relatively large uncertainties in both

the experiment and the optical properties of the materials used.
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detector diode
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FIG. 1: Experimental setup. A polystyrene sphere is attached to an AFM cantilever and coated

with gold. A laser beam is directed through a few mm opening in the conductive coating of the

cantilever holder and is reflected off the back of the cantilever to monitor its motion.
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FIG. 2: The zero of piezo displacement is defined with respect to contact between the sphere

and plate with the cantilever unbent. (a) Two data sets are shown without defining a zero of

piezo displacement which is common to both measurements. The x-marker represents the contact

between the sphere and plate with the cantilever undeflected and is shown for each of the two

runs. The x-markers are offset from each other due to drift between the sample and the sphere

as described in the text. (b) By defining the zero of piezo displacement as the point of contact

between the sphere and plate when the cantilever is in the undeflected state (see insets (a)), data

sets are given a consistent x-axis and can be averaged.
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FIG. 3: The hydrodynamic force is used for cantilever calibration by a fit to the raw deflection

vs. piezo displacement data. (a) Dots are the deflection data corresponding to an effective piezo

velocity of 3.150µm/s using the calibration methods described in Section III. Solid line is a least-

squares fit to the data. (b) The residual shows no systematic error to the fit. (c) The cantilever

velocity is constant over the distance range used for the calibration (0.1-1.5µm).
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FIG. 4: Two methods are compared to determine the Casimir-Lifshitz force and are found to be in

reasonable agreement. (a) Solid line corresponds to the force determined using a slow piezo velocity

(45 nm/s), where the hydrodynamic force is small. Circles correspond to force data obtained using

the method described in Section III. (b) Force difference is calculated between these two methods

and is comparable to the residual hydrodynamic force resulting from the piezo velocity of 45 nm/s.
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FIG. 5: Variation in V0, the applied voltage needed to minimize the electrostatic force, with distance

is found to result from static charge on the cantilever chip holder. (a) The applied tip voltage that

yields minimum deflection of the cantilever, V0, is plotted for various surface separations. With

the plastic holder, V0 is found to vary with surface separation. (Inset) Typical deflection versus the

applied voltage on the tip relative to the grounded sample. (b) Same as (a) but with a conductive

coating on the cantilever chip holder. The variation in V0 with distance is minimized.
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FIG. 6: The effect of the grounding and salt concentration on the total force is small. (a) Can-

tilever deflection with and without grounding the sphere and plate in ethanol. (b) Difference in

deflection signal between data with and without grounding. (c) Deflection data with various salt

(NaI) concentrations in ethanol. (d) Deflection difference between the data with various salt con-

centrations and no added salt. Insets: Selected points from the main graph show vertical error

bars that represent standard deviation for 51 measurements. No horizontal error bars are shown;

however, the uncertainty in d0 from the hydrodynamic fit is 1 nm.

21



0.01

0.1

1

10

10
-4

10
-3

10
-2

10
-1

NaI Molarity (M)

6789

1
23456789

10

Debye length (nm)

1
/1

0
.0

5
 m

M

FIG. 7: Conductivity is found to vary nearly linearly with molarity. Circles represent measure-

ments, and the solid line is a linear fit to the data (log-log scale). Grey arrows represent the two

largest salt concentrations used for force measurements.

22



8

6

4

2

0

-10 -5 0 5 10

10

8

6

4

2

0

-4 -2 0 2 4

sphere

plate
N

u
m

b
er

 o
f 

P
o

in
ts

N
u

m
b

er
 o

f 
P

o
in

ts
/(sp) (nm)

/(pl) (nm)

(a)

(b)
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Lifshitz’s theory.
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Force data is collected and combined from 51 runs as discussed in the text. Distances are rounded

to be in steps of 1 nm.
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Fit range (µm) C (nN/V) d0 (nm)

0.05 − 1.00 14.2 ± 0.1 15.5 ± 0.5

0.10 − 1.50 14.5 ± 0.1 12 ± 1

0.15 − 1.50 14.5 ± 0.1 12 ± 2

TABLE I: Values of the fit parameters obtained using different fit ranges for the deflection data of

the hydrodynamic force.
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