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Within the last year CESR  (Cornell Electron Storage
Ring) has changed its mode of operation from 7 nearly equally
spaced bunches in the two counter-rotating beams to 9 trains
of 2 bunches in each of the beams as the next step in the
upgrade of the facility toward higher beam currents and
increased luminosity.  The upgrade program has included work
to understand and document the transverse stability of a single
beam composed of trains of bunches.  Initial results from this
work will be reported here.

EIGEN MODES OF OSCILLATION
FOR TRAINS OF BUNCHES

One of the most common methods for studying single
beam collective effects consists of observing the change of the
tune and of the damping rate for each of the eigen modes of
oscillation of the beam as a function of the beam current.  To
make these measurements the eigen modes for trains of
bunches and the eigen mode frequencies must be known.
Although for brevity the following arguments will treat
transverse dipole modes of oscillation, these arguments can be
trivially generalized to higher transverse head-tail modes as
well as to longitudinal modes of oscillation.

Following the formulation by Siemann[1], we may
describe the betatron motion of a single bunch of particles
driven by a sinusoidal excitation from a kicker as observed at a
single beam position monitor (BPM) in the ring.  On time
scales much longer than the bunch length, the position signal
from the BPM, d(t), can be represented as a complex phasor
proportional to a sequence of delta-functions spaced at the
revolution period T  and modulated by the average position of
the bunch times its current,

d(t) = x0 Qb e jωβt ∑
n=-∞

∞
 δ(t + nT)

where x0 is the betatron oscillation amplitude at the angular
frequency ωβ and Qb is the charge in the bunch.  The
frequency spectrum of this dipole moment d(ω) is calculated
by Fourier transformation to be

d(ω ) = x0 Qb ∑
n=-∞

∞
 e j nT(ωβ-ω) = x0 Qb ω r ∑

n=-∞

∞
δ(ω -{ω β + nω r})

where ωr = 2 π / T.  This is a line spectrum with the lines
occurring at the upper betatron sidebands of the rotation
harmonics.  When this signal is connected to a spectrum
analyzer, negative frequencies are not observed directly but are
reflected about zero into the positive frequency domain causing
the negative frequency part of the spectrum to occur at the
lower betatron sidebands of the rotation harmonics.

For the case of Nt trains of Nb bunches having a uniform
spacing in time of T/Nt between the lead bunches of
subsequent trains and a spacing of Tbb between the bunches
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within each train, the time domain signal will be the sum of
dipole moments for each of the bunches giving us Nt times
Nb sets of these delta-function sequences.  The eigen modes of
the betatron oscillations for this ensemble of bunches (charge
Qb per bunch) will be occur as stationary temporal patterns of
displacements having the same maximum for each bunch in
the beam.  A stationary pattern of displacements means that
each eigen mode must excite the bunches in an oscillation
pattern that, if on one given turn the kicker's excitation was in
phase with one of the bunches in the ensemble, a change of
this excitation to be in phase with some other bunch would
simply translate the pattern; this implies the displacements
must satisfy periodic boundary conditions.  The lowest eigen
frequency of each eigen mode must then have a constant phase
advance between lead bunches in adjacent trains of 2π (L/Nt)
where L = 0,1,...,Nt-1 and a constant phase advance between
bunches within the train of 2π (K/Nb) where K = 0,1,...,Nb-
1.  Thus the dipole moment of the ensemble of bunches,
dNt,Nb

(L,K,t), driven at the lowest eigen frequency specified by

mode parameters (L,K)  is
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where the last two terms in the exponential arise from the
phase advances from train to train and from bunch to bunch
within each train.  The Fourier transform of dNt,Nb

(L,K,t) is

dNt,Nb
(L,K,ω ) = S(ω β,L)  I(ω,K)

In this form S(ωβ,L) selects the spectral lines which are
associated with the mode parameter L and these identify what
we will call "train modes" of oscillation since there is a phase
advance of 2π (L/Nt) from train to train.  In this equation
I(ω,K) is the envelope function for the "bunch modes" of
oscillation which have phase advances of 2π (K/Nb) from
bunch to bunch within each train.  S(ωβ,L) and I(ω,K) are

S(ω β,L)  =  x0 Qb ω r Nt ∑
n=-∞

∞
δ(ω -ω β-{nNt+ L} ω r)
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Notice for a given mode L that S(ωβ,L) selects every Nt-th
spectral line to associate with this mode while the Nt-1
intervening lines correspond to the other train modes.  The
form of I(ω,K) gives an interference pattern, whose first
global maximum occurs at ω = 2π K/(Nb Tbb) with a
periodicity of ∆ω = 4π/(Nb Tbb) in the frequency spectrum,
and is analogous to the well known spatial interference pattern
of light passing through an array of multiple slits.  This
interference envelope function also has the property for mode
K that betatron sidebands in the neighborhood of each global
maximum will have zero or nearly zero amplitudes for all
other Nb-1 modes.  Therefore to find a spectral line for mode
(L,K), which has minimum coupling to other modes, select
one of the betatron sidebands that satisfies

ω L,K  =  (nNt + L) ω r + ω β
where n is an integer and which is the nearest one to the
interference function's global maxima, ωI, where

ω I  =  
(2π K + i Nb)

Nb Tbb
where i is an integer.  So it is possible to find a single
betatron sideband for each eigen mode which will best
represent the dynamics of that eigen mode.

MEASUREMENT TECHNIQUES

Observations of dipole coupled bunch-train modes of
oscillation were made using spectrum analyzers connected to
horizontal and vertical processed BPM signals that were
sufficiently broadband to be able to detect bunches with a
14 nsec spacing.  The tracking generator output of the
spectrum analyzers were connected to modulators, which can
gate the generator signal on continuously or on for a pulse of
duration one to a few milliseconds.  The modulated signals are
then fed to broadband drivers (either shaker magnets or
stripline kickers.)  To observe the tune shift as a function of
beam current the analyzers were set to scan across the betatron
sidebands corresponding to each bunch-train mode using a
continuous excitation for the drivers.  The frequency
corresponding to either the spectral peak or, if different, the
intensity weighted centroid of the spectrum were recorded.  The
damping rate measurements were made using the spectrum
analyzers set up as narrowband receivers tuned to the same
betatron sidebands with the drivers modulated on to excite the
beam for a few milliseconds and then turned off to measure
decay time of the amplitude of each mode.  If there were no
coupling to other bunch-train modes, we would expect this
decay to be exponential over a few orders of magnitude.  With
the spectrum analyzer set up as a tuned receiver, the swept
trace displayed the amplitude as a function of time and by
recording two amplitude readings and their time difference, the
damping rate could be calculated.

OBSERVATIONS

A large number of measurements of the tune shift and
damping rate vs. positron current have been performed at
CESR.  The accelerator conditions corresponded to routine
High Energy Physics operating parameters, i.e. beam energy
of 5.3 GeV, horizontal tune of 10.541, vertical tune of 9.592,
bunch length of 18 mm and a spacing of 28 nsec between

bunches within a train.  During these sets of measurements
the bunches which were populated ranged from a single bunch
(1t1b, i.e. 1 train 1 bunch) to 1t2b, 1t3b, 3t2b, 9t1b and 9t2b.
The spacing between the first bunches in each of the trains
were equal for 3 trains and had an extra 42 nsec between the
last and first trains for 9 trains of bunches.

The betatron mode spectrum for trains of bunches has
been observed for these cases and is in agreement with the
predictions above.  Figure 1 presents the example of 1 train of
2 bunches where one of the betatron spectral lines was excited
and the resulting beam spectrum was observed for each of the
bunch modes.  The nodes of the frequency spectra are visible at
18 MHz for the K=0 mode and at 0 and 36 MHz for the K=1
mode as expected for a 28 nsec spacing between 2 bunches.
The roll off of the amplitude at higher frequencies is due to the
finite width of the BPM signal as processed for the spectrum
analyzer.

Figure 1: Betatron frequency spectra for the K=0 eigen mode
(upper trace) and K=1 eigen mode (lower trace) for 1 train of
2 bunches with a 28 nsec spacing.  Horizontal scale: 0 to
40 MHz.  Vertical scale: 5 dB/division.

Typical results for the measurements of tune shift and
damping rate vs. total beam current are presented in Figure 2A
and 2B for the vertical eigen modes for the case of 9 trains of
one bunch.  The vertical tune shift data in figure 2A is plotted
with an arbitrary offset for each of the eigen modes in order to
separate them on the graph.  Notice that all the eigen modes
have essentially the same slope vs. current, a result which is
typical of the horizontal and vertical tune shifts for all the
cases studied.  The vertical damping rates, αv, in figure 2B
have not been corrected for the small head-tail damping from
chromaticity; the slopes of these damping rates do show a
significant variation over the set of modes.  Both of these sets
of data were taken with the distributed ion pumps OFF to
eliminate the predominantly horizontal effect known as
Anomalous Antidamping (AA) [2].  Measured with the beam
stabilization feedback system ON, figure 2C gives the
difference in horizontal damping rates αh for pumps ON
minus OFF for all eigen modes again for 9t1b.  Total beam
currents in the range of 40-50 mA show the most extreme
difference in αh from mode to mode and in this range the
instability is strongest becoming weaker at higher currents.

Measurements for 2 bunches per train found some added
features.  The spectrum of each eigen frequency is split into
two separate peaks, one for the lead and one for the trailing
bunch; this was easily observed in the vertical spectrum as
these peaks are sufficiently narrow that the splitting can be a
few times the width of the peaks.  In the damping rate
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Figure 2: Vertical tune shift vs. total current (2A), vertical
damping rate vs. total current (2B), and horizontal damping
rate vs. total current (2C) shown for each of the 9 coupled
train modes of oscillation (L,0) for 9 trains of a single bunch.
Distributed ion pumps are OFF for figures 2A and 2B while
figure 2C is the difference of  pumps ON minus OFF.
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Figure 3: Horizontal damping rate difference for distributed
pumps ON minus OFF vs. total beam current for the most
unstable eigen mode in the case of 9 trains of 2 bunches.  The
circled point designates an upper limit for αh at 42 mA.

measurements one observes an interference beat pattern in time
at the difference frequency between the two spectral peaks
which modulates the expected exponential decay.  In the
horizontal case this decay rate can be comparable to the
decoherence time from the beating of the two betatron
frequencies making damping rate measurements difficult and
subject to larger systematic errors.  Figure 3 shows αh vs.
current for 9t2b for the (L,K)=(8,0) eigen mode.  Notice that
the peak of the instability occurs at the same total beam
current as the case of 9t1b; this implies that AA is affected by
the total current per train or in other words the initial decay of
the wakefield for AA is longer than 28 nsec.

All the measurements thus far have shown that AA will
be the dominant mechanism for single beam instabilities for
trains of single or multiple bunches.  Since the present
feedback system is able to stabilize the beam during filling as
the current passes through the region of maximum instability,
we can expect that this feedback system will be suitable for at
least 5 bunches in 9 trains.
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