
Measurements on the Spotify Peer-Assisted
Music-on-Demand Streaming System

Mikael Goldmann
KTH – Royal Institute of Technology, and Spotify

Stockholm, Sweden
Email: migo@kth.se

Gunnar Kreitz
KTH – Royal Institute of Technology, and Spotify

Stockholm, Sweden
Email: gkreitz@kth.se

Abstract—Spotify is a streaming service offering low-latency
access to a large library of music. Streaming is performed by a
combination of client-server access and a peer-to-peer protocol.
The service currently has a user base of over 10 million and is
available in seven European countries. We provide a background
on the Spotify protocol with emphasis on the formation of the
peer-to-peer overlay.

Using measurement data collected over a week by instrument-
ing Spotify clients, we analyze general network properties such
as the correspondence between individual user accounts and the
number of IP addresses they connect from and the prevalence
of Network Address Translation devices (NATs). We also discuss
the performance of one of the two peer discovery mechanisms
used by Spotify.

I. INTRODUCTION

Spotify is a peer-assisted music streaming service. That is,
it uses client-server streaming, but clients also participate in
a peer-to-peer overlay in order to offload the servers. The
service has a library of over 13 million tracks, allowing users
to freely choose tracks they wish to listen to and to seek within
tracks. The service launched in October 2008 and now has
over 10 million users in Finland, France, Great Britain, the
Netherlands, Norway, Spain, and Sweden.

In this paper, we report on measurement data collected in
the Spotify service. Spotify clients contain instrumentation
code which reports various measurement data to the back end.
This allows us to perform a large-scale measurement study on
properties of user’s connection. A study giving more details
on the overall structure of the Spotify protocol, together with
measurement data on its properties was presented by Kreitz
and Niemelä [1].

During our measurement period, the service was offered
in four versions: two free versions with advertisements, and
two pay-per-month versions. The original free version allowed
unlimited streaming on computers running either Windows
or OS X, and an invite was required to sign up. Later a
free version that did not require an invite was added, with
streaming limited to twenty hours per month.1 Both pay-
per-month versions of the service allow unlimited streaming,
without ads. The higher priced premium version includes extra
features such as the option to stream at a higher bitrate, to

1At the time of writing, the free version allowing unlimited streaming is no
longer available, but the traffic data used in this article is from March 2011,
before any changes to the free service were announced.

synchronize tracks for offline usage, and stream to mobile
devices.

The music catalog is the same for free and paying users
with the exception of some pre-releases exclusive to premium
users. However, due to licensing restrictions, which tracks that
are available to a user depends on the user’s home country.

A. Related Services

There are several on-demand music streaming services
offered today. To our knowledge, all such services but Spotify
are web-based, using either Adobe Flash or a web browser
plug-in for streaming. Furthermore, they are pure client-server
applications with no peer-to-peer component. Among the more
well-known such services are Napster, Rhapsody, and We7.

There also exist a number of music locker services today.
Amazon and Google have both released such services recently
(March and May 2011), and Apple has recently announced
plans to launch a similar service. Locker services differ from
on-demand streaming services in that a user can only access
content she has uploaded and/or purchased. To the best of our
knowledge, all current music locker services are pure client-
server applications.

The application of peer-to-peer techniques to streaming is
more prevalent when it comes to video-on-demand services,
like PPLive, PPStream, and Voddler. These vary between
supporting live streaming, video-on-demand access, or both.
While there are many similarities between video-on-demand
and music-on-demand streaming, there are also many differ-
ences; including user behavior, the size of streaming objects,
and the number of objects offered for streaming. A more
detailed discussion is given in [2].

B. Our Contribution

We analyze data collected from a large-scale peer-assisted
system. The data is collected by Spotify’s servers, providing us
details not typically available to an outside observer of a peer-
to-peer network, such as accurate user identities in the form
of user names and countries. We investigate the performance
of the peer-to-peer part of Spotify’s system. We also consider
more general network questions, such as whether the notion
of “one IP, one user” appears to hold to any degree in spite
of techniques such as NAT and DHCP. The data collected
by the Spotify clients is not specifically tailored to this latter

investigation, so we cannot come to as detailed conclusions
as [3] (see below), but we can show that there are noticeable
differences between different countries and provide plausible
reasons for why this is so.

C. Related Work

There have been several studies measuring the performance
and behavior of large peer-to-peer systems, describing and
measuring both on-demand streaming [4], and file-sharing
protocols [5], [6]. Huang et al. [7] describe the PPLive video-
on-demand streaming system, and also present measurements
on its performance.

A study by Casado and Freedman investigates prevalence
of NAT devices and larger proxies [3]. For their experiment,
measurement code in the form of JavaScript or a Java applet
was added to a number of web pages, as well as to a fraction
of traffic in a Content Distribution Network (CDN).

II. SPOTIFY OVERVIEW

The Spotify protocol is a proprietary network protocol de-
signed for streaming music. There are clients for Linux, OS X,
and Windows as well as for several smartphone platforms and
hardware music players such as Logitech Squeezebox, Onkyo,
and Sonos. The smartphone clients and hardware devices do
not participate at all in the peer-to-peer protocol, but only use
client-server streaming. Thus, in the remainder of this paper,
we only discuss the function of, and data collected from, the
OS X and Windows clients.2

The clients are closed-source software available for free
download, but to use a client, a Spotify user account is needed.
Clients automatically update themselves, and only the most
recent version is allowed to access the service.

The user interface is similar to those found in desktop mp3
players. Users can organize tracks into playlists. Finding music
is organized around two concepts: searching and browsing. A
user can search for tracks, albums, or artists, and she can also
browse—for instance, when clicking on an artist name, the
user is presented with a page displaying all albums featuring
that artist.

Spotify is a legal streaming service; all music available for
streaming is licensed to Spotify. Users can also play any mp3
files they have on their local drive from the Spotify client,
as well as include them in playlists together with streaming
tracks. Furthermore, the Spotify client will attempt to “link”
local files to tracks in the streaming library by matching the
metadata. By default, the client will play the local mp3 file
instead of streaming the track when a file has been linked.

Playlists as well as albums, artists, and tracks can be shared
with others in the form of URIs. Further encouraging users
to share URIs, Spotify clients can directly post URIs and
messages to Facebook, Messenger, and Twitter.

Audio streams are encoded using Ogg Vorbis with a default
quality of q5, which has variable bitrate averaging roughly
160 kbps. Users with a premium subscription can choose

2We exclude Linux as the current Linux client is a preview version only
available to paying subscribers.

(through a client setting) to instead receive Ogg Vorbis in q9
quality, averaging roughly 320 kbps. Both types of files are
served from both servers and the peer-to-peer network. No re-
encoding is done by peers, so a peer with the q9 version of a
track cannot serve it to one wanting the q5 version.

A. Connection Behavior

While UDP is the most common transport protocol in
streaming applications, Spotify instead uses TCP. Firstly, hav-
ing a reliable transport protocol simplifies protocol design and
implementation. Secondly, TCP is friendly to the network in
that TCP’s congestion control is friendly to itself (and thus
other applications using TCP), and the explicit connection
signaling assists stateful firewalls in better maintaining their
state tables. Thirdly, as streamed material is shared in the peer-
to-peer network, the re-sending of lost packets is useful to the
application.

While a client is running, it keeps open a TCP connection to
a Spotify server. Application layer messages are buffered, and
sorted by priority before being sent to the operating system’s
TCP buffers. For instance, messages needed to support inter-
active browsing are prioritized over bulk traffic. Application-
layer keep-alive messaging is used to quickly detect if the
TCP connection is closed, e.g., because of network issues. If
disconnected, the client periodically attempts to reconnect to a
server. Disconnections do occur regularly, for instance due to
temporary network outages or a laptop going to sleep mode.

Some requests and reporting messages will be re-sent once
a connection has been re-established. For instance, if a client
was playing a track and was disconnected before it has the
entire track, it will request track data as soon as it successfully
connects to the service.

Between a pair of clients in the peer-to-peer overlay only
a single TCP connection is used, and the application proto-
col multiplexes messages over the connection. Just like the
connection to the Spotify server, application-layer keep-alive
messages are used to detect disconnections. In the overlay,
however, the client does not automatically attempt to reconnect
if a connection is lost.

Clients, upon startup, use the Universal Plug n’ Play (UPnP)
protocol to ask home routers for a port to use for incoming
peer-to-peer connections. When a client wishes to connect to
a peer, a request is also forwarded through the Spotify server
asking the connectee to attempt a TCP connection back to
the connecter. This means that as long as one of the two
peers can accept incoming connections, the connection will
succeed. Apart from these two mechanisms, Spotify clients
do not perform any NAT traversal.

III. SPOTIFY’S PEER-TO-PEER NETWORK

In this section we describe the mechanisms by which
Spotify’s overlay network is formed to provide background
on its peer discovery mechanisms in particular.

We remark that the peer-to-peer overlay is actually split into
two, as the service is run from two data centers, one in Stock-
holm and one in London. A client selects which data center

to connect to based on the response to a DNS query for the
SRV record _spotify-client._tcp.spotify.com.
The servers and weights in the record depend on in which
country a GeoIP database indicates that the resolver’s IP
is located. During our measurement period, Swedish and
Finnish users were directed to the Stockholm site, Norwegian
users uniformly randomly selected a site, and all others were
directed to the London site. A client can only connect to new
peers which are connected to servers at the same data center
as itself. If it reconnects to a different site it does not drop
its peers, so in rare cases a client may have peers from both
sites.

A. General Structure

The peer-to-peer overlay used is an unstructured network,
the construction and maintenance of which is assisted by
trackers. This allows all peers to participate in the network
as equals so there are no “supernodes” performing any special
network-maintenance functions.

A client will connect to a new peer when it wishes to
download a track it thinks the peer has, and this is the
only mechanism by which new connections are added to the
overlay. It locates peers likely to have a track it is looking for
through the mechanisms described in Section III-B. There is
no general routing performed in the overlay network, so two
peers wishing to exchange data must be directly connected.

Clients store relatively large local caches of the tracks they
have played. This material is also what a client uploads to other
peers in the overlay. Clients will only serve complete tracks3

in the overlay to simplify the protocol and reduce overhead.

B. Locating Peers

Two mechanisms are used to locate peers having content
the client is interested in. The first uses a tracker deployed in
the Spotify back end, and the second a query in the overlay
network.

The Spotify tracker is similar to a BitTorrent tracker. It
maintains a mapping from tracks to a short list of peers who
have recently reported that they have the track. As a peer only
offers to serve a track if it has the whole track cached, peers
listed in the tracker have the whole track.

As two complementary mechanisms are used, the imple-
mentation of each can be kept fairly simple. In particular, the
tracker only keeps a list of the 20 most recent peers for each
track. Furthermore, clients only report to the tracker when they
play a track, rather than periodically reporting the contents of
their caches, or notifying the tracker when a track is evicted
from the client cache. As clients keep a TCP connection
open to a Spotify server, the tracker knows which clients are
currently online. When a client asks the trackers for peers who
have a track, the tracker replies with a random selection of up
to 10 peers who are currently online (the response is limited
in size to minimize overhead).

3A track may be partially cached if the user plays parts of it and then skips
to another track.

In addition to the tracker-based peer searches, clients also
sends search requests in the overlay network, similar to the
method used in Gnutella. When searching for a track, a client
sends a search request to all its neighbors in the overlay, who
forward the request to all their neighbors. Thus, the searcher
will find a peer with the track if any peer at distance one or two
in the overlay has the track. Search queries sent by clients have
a query id associated with them, and peers remember the 50
most recent searches seen, allowing them to ignore duplicate
messages. This limited message forwarding is the only overlay
routing in the Spotify peer-to-peer protocol.

There are several reasons for why Spotify has implemented
dual mechanisms for peer discovery. As mentioned, it allows
both mechanisms to be imperfect, and thus cheaper in terms
of implementation, overhead, or both. It also provides better
availability. If the tracker becomes inoperable, peer discovery
through the search questions in the overlay is still possible,
or if a client becomes disconnected from the overlay, it can
find peers through the tracker. If there was only a single
mechanism, any failure in that mechanism would result in
the overlay immediately being rendered inoperative. As the
Spotify system is peer-assisted, this would mean that the
entire load of serving all data would shift to the central
server, implying that they either need to be significantly over-
provisioned, or become overloaded. Highly published failures
such as Skype’s outage in 2010 [8] demonstrate that recovering
a peer-to-peer network from failure can be difficult and slow.

C. Neighbor Selection

Keeping the state required to maintain a large number of
TCP connections to peers can be expensive, in particular for
home routers acting as stateful firewalls and NATs. Thus, each
client has a maximum number of peers it may be connected
to at any given time. Clients are configured with both a soft
and a hard limit, and never go above the hard limit. The client
does not make new connections above the soft limit (but still
accepts incoming connection requests) and periodically prunes
its connections to keep itself below the soft limit (with some
headroom for new connections). These limits are set to 50 and
60, respectively.

When a client needs to disconnect one or more peers, it
performs a heuristic evaluation of the utility of each connected
peer. The intention is for the heuristic to take into account both
how useful the connection is to the evaluating peer, as well as
how useful the link is to the overlay as a whole.

The client sorts all its connected peers according to 6
criteria: bytes sent in the last 10 minutes, bytes sent in
the last 60 minutes, bytes received in the last 10 minutes,
bytes received in the last 60 minutes, the number of peers
found through searches sent over the connection in the last
60 minutes, and the number of tracks the peer has that the
client has been interested in in the last 10 minutes. For each
criterion, the top scoring peer in that criterion gets a number
of points, the second peer a slightly lower number, and so
on (with slightly different weights for the different criteria).
Peers with a raw score of 0 for a criterion do not get any

Table I
PERCENT OF USERS LOGGING IN FROM k IP ADDRESSES DURING THE

MEASUREMENT PERIOD.

k ES FI FR GB NL NO SE
1 46.27 59.15 53.55 54.12 73.75 51.82 53.35
2 22.69 16.79 25.12 20.72 17.33 25.28 20.30
3 10.73 6.77 8.91 8.70 4.65 10.21 7.92
4 6.10 4.09 4.35 4.83 1.85 4.80 4.41
5 3.90 2.85 2.45 3.06 0.90 2.61 2.99
6 2.65 2.10 1.63 2.12 0.47 1.58 2.25
7 1.90 1.61 1.12 1.51 0.31 1.01 1.79
8 1.32 1.29 0.78 1.10 0.21 0.65 1.36
9 0.94 1.03 0.49 0.79 0.13 0.45 1.06

10 0.69 0.77 0.34 0.59 0.08 0.31 0.83

points for that criterion. The peers points are then summed
over all the criteria, and the peers with the least total scores
are disconnected.

IV. SPOTIFY MEASUREMENTS

In this section, we present and discuss measurements il-
lustrating the network properties and behavior of clients con-
nected to the Spotify system.

A. Measurement Methodology

Both Spotify clients and servers perform continuous instru-
mentation and monitoring of the system. The raw log messages
are collected and stored on log servers and in a Hadoop
cluster (an open-source map-reduce and distributed storage
implementation), where they are available for processing.

We collected instrumentation data for the week beginning
Monday 14 March. Times are given in UTC. As Spotify is only
available in seven countries in Western Europe, most users are
on Central European Time which is one hour ahead of UTC.
There are strong periodic patterns (e.g., usage is higher during
daytime than in the night) in activity and number of users
logged in. These are further described in [1].

Each Spotify user has a registered country. Where we
investigate differences between country, we use the country
associated with the user account. Users on free accounts
can keep using Spotify while traveling for at most 2 weeks.
Whether a user is traveling is determined from their IP using
a commercial GeoIP database.

B. Correspondence between IPs and Users

There has been a number of works measuring properties
of deployed peer-to-peer systems, see [9] for a survey of
studies. One interesting metric is the number of users or
machines connected in peer-to-peer systems. However, peer-
to-peer protocols typically do not provide a way to trace user
identities. Commonly, researchers performing measurements
then instead use the IP address of peers as an identifier.
Spotify implements counter-measures against users sharing
accounts. In particular, if a user is logged in with several
clients simultaneously, playing music on one pauses all the
others. Thus, we believe Spotify user accounts correspond well
to actual users.

We have investigated logins over our measurement period,
counting the number of IPs a user has logged in from. As a

Table II
PERCENTAGE OF IP ADDRESSES WHICH CONNECTED WITH VARIOUS NAT

PROPERTIES DURING MEASUREMENT PERIOD

UPnP
Country No NAT worked mismatch private IP
ES 11.58 9.09 2.13 0.61
FI 60.15 11.54 0.97 1.30
FR 11.00 47.58 10.16 0.98
GB 11.68 38.87 11.59 0.64
NL 14.77 18.04 2.19 3.05
NO 23.73 27.44 5.65 5.21
SE 45.47 26.69 2.06 1.34

user may log in both from home and from work, we have also
looked at logins during typical working hours and typical non-
working hours. We defined typical working hours as Monday
through Friday 9:00–16:00 UTC, and typical non-working
hours as Monday through Friday before 7:00 and after 18:00
as well as the entire Saturday and Sunday.

To our surprise, it turns out that for a given country, the
results for working and non-working hours are quite similar.
For instance, for Sweden 61.6% of the users that logged in
several times during working hours used the same IP each
time, and 61.5% of the users logging in more than once during
non-working hours used the same IP. If we disregard time
of day, the corresponding number for Sweden is 53.3%. As
differences between working hours and non-working hours
were minor, although not insignificant, for all countries, we
focus on the data set covering the entire measurement period.
We also compared weekdays to weekends with similar results.

Differences between countries are more noticeable as can be
seen in Table I. The two outliers are Spain and the Netherlands.
In Spain, it is more common for users to log from multiple
IPs, and it is relatively rare for users to always log in from
the same IP. We believe one reason for this could be if large
ISPs in Spain more aggressively change dynamically allocated
IPs through DHCP. In the Netherlands, we find the situation
reversed. It is significantly more common among Dutch users
to only log in from a single IP. One contributing factor may be
that Spotify launched much more recently in the Netherlands
than in the other 6 countries, and it may be the case that usage
patterns change over time (e.g., users install Spotify on more
computers).

C. Prevalence of NATs and UPnP support

In a peer-to-peer network, peers require the ability to
connect to each other. This is not always possible due to
the presence of NAT devices and firewalls. The presence of
a NAT device or firewall can be mitigated either by a client
using a protocol such as UPnP or NAT-PMP to open a port
for incoming connection, or through various hole punching
techniques [10], [11], [12].

Spotify clients implement UPnP and report the success
status (and external IP, port if successful) to the server. In
addition, they also report the local IP address of the network
interface used to connect to the server. This data allows us
to investigate the prevalence of NAT devices, as well as how

widely supported UPnP is. We remark that the data we present
here is only based on reports from the client, we did not
connect to supposedly open ports to verify connectivity. Thus,
our data does not allow us to distinguish between those who
have a firewall that would still block incoming connections
from those who have not.

We consider an address private if it is in one of the
10/8, 169.254/16, 172.16/12, or 192.168/16 ranges. For this
experiment we used the public IP address, from which the
server saw the client’s traffic, as identifier.4 For each IP
we see connecting, we look at the events during our entire
measurement period. If there ever was a client with a local
interface IP matching the IP seen by Spotify servers, we
say that there is no NAT. If this did not happen, but the
client reported at least once that it used UPnP for incoming
connections and the IP UPnP returned matched the IP seen
by Spotify servers, we say that UPnP worked. We also report
two other categories, when UPnP returned a different IP5 and
when UPnP returned a private IP. The latter case is indicative
of a client being behind multiple NATs. In Table II we present
the fraction of IP addresses in each category, broken down by
country.

There are some striking differences between the network
properties of users from different countries, as can be seen in
Table II. While we have not been able to fully investigate the
reasons for these, we believe we have some partial explana-
tions. Firstly, it can be seen that a surprisingly large fraction in
both Finland and Sweden have public IP addresses. We believe
that this may be due to the prevalence of 3G and 4G data
subscriptions. These are typically used by consumers as a USB
device connected directly to their computer, providing Internet
connectivity without a NAT. Secondly, Spain has particularly
low success rate with UPnP. We believe that it is likely to be
the case that large ISPs in Spain either provide its customers
home routers with UPnP disabled.

In our study, we also computed separate statistics for
weekdays and weekends for each country. Our hypothesis was
that there would be significant differences, as we would not
expect work networks to provide UPnP functionality. However,
the data showed only minor variations, and for space reasons
we do not provide the full results here.

Overall, our statistics show that NAT devices are very
prevalent today. In most countries, these would likely present
a significant problem for peer-to-peer network connectivity.
Implementing support for UPnP to open ports appears impor-
tant as it significantly increases the number of peers who can
accept connections. In France and Great Britain, this measure
increases the fraction of peers who can receive connections
from just above 10% to well over 50%.

D. Locating Peers

As discussed in Section III-B, Spotify uses two mechanisms
to find peers with a track. The overall success rate of these was

4We group reports to avoid clients reconnecting often being given dispro-
portionally large weight.

5This may be legitimate, or due to a bug in the router or the Spotify client.

Table III
PERCENTAGE OF REQUESTS FOR WHICH PEERS WERE FOUND AT

DISTANCE d IN OVERLAY SEARCH.

Country Weekend Any d d = 1 d = 2
ES No 77.6 53.4 73.5
ES Yes 81.8 56.9 77.9
FI No 84.0 63.6 79.3
FI Yes 88.0 68.0 83.5
FR No 69.0 52.3 59.4
FR Yes 75.3 57.5 64.9
GB No 79.0 58.7 73.7
GB Yes 83.5 63.0 77.8
NL No 71.2 49.9 65.1
NL Yes 75.4 53.7 69.0
NO No 79.6 57.5 75.7
NO Yes 86.2 63.4 82.5
SE No 84.3 64.4 80.6
SE Yes 89.0 69.0 85.4

evaluated in [1], where it was shown that the overlay based
mechanism returned answers for 82.1% of queries, and the
tracker for 84.1%. We remark that their measurement period
was a week, one year prior to ours. In this section we look
further at the overlay based peer discovery mechanism to
evaluate how successful it is in finding new peers, and how
successful it is in discovering that already connected peers
have requested material.

We measure distance in the peer-to-peer overlay, and thus
say that an already connected peer is at distance 1, and that a
peer one hop away in the overlay (a peer of a peer) is at
distance 2. Looking at the global statistics of the network
as a whole over our measurement period, the overlay based
mechanism returned answers for 81.8% of the queries. This
is very similar to the value from [1], which is to be expected
as there have been no major changes to the overlay in the
last year. Globally, for 60.4% of queries, at least one peer was
found at distance 1, and for 77.4% of queries, at least one peer
at distance 2, so clearly it is worthwhile that a client’s peers
forward requests to their peers. From these statistics, we see
that it is both worthwhile to ask already connected peers (as
requesting data from them is quicker than connecting to new
peers) and that forwarding the query one step is a good peer
discovery mechanism.

Furthermore, we also analyzed differences between coun-
tries and days of the week. Here, we saw significant differences
in the performance of the peer discovery mechanism between
various countries, as well as between weekdays and weekends.
We present this data in Table III.

For all countries, the overlay search performs significantly
better during weekends than weekdays. So far, we have not
been able to explain this phenomenon. As we discussed in
Section IV-C, we have not seen significant differences between
weekdays and weekends in terms of NAT prevalence or UPnP
support. It may be the case that the difference in overlay
performance is attributable to differences in user behavior
(e.g., music choice and activity), but it may also be due to
some other network property than the prevalence of NATs and
UPnP support.

We have also been unable to explain the surprisingly large

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000 3500

N
u

m
b
e
r

o
f
p
e

e
rs

Minutes since login

Median
60th percentile
70th percentile
80th percentile
90th percentile
95th percentile

Figure 1. Number of peer connections as a function of time since login.

differences observed between different countries. Again, the
presence of NATs and UPnP does not seem to have a strong
effect on the success rate of using the peer-to-peer overlay
to find peers. Due to the large differences, it appears that it
would be valuable to understand the cause as improving the
efficiency of the overlay search would likely result in improved
offloading from the server.

E. Number of Neighbors in Overlay

One of the findings of [1] was that a surprisingly large
fraction (varying between 30%–50% over a week) of peers
were disconnected from the overlay (i.e., they have no open
TCP connections to any peers). It was conjectured that the
mechanisms for peer discovery and overlay maintenance in
the Spotify system cause idle users to become disconnected
from the overlay. Clients not being connected to the overlay
means that available serving capacity is not fully utilized.
On the other hand, idle peers becoming disconnected is
not necessarily bad, as it reduces a user’s incentive to shut
down the client when she is not actively listening. Peers not
connected to the overlay can still be found via the tracker.

To follow up on this, we investigated how the number of
peer connections a client has varies with the amount of time
it has been connected. The client reports the number of peers
it currently is connected to every 30 minutes from logging in.
When collecting data, we ignored the first report sent by a
client as these were sent very quickly after login.

Figure 1 shows percentiles for the number of peers a user is
connected to as a function of how long they have been logged
in. As can be seen, the number of peers a client is connected
to in general slowly decreases over time. There is also a clear
periodic pattern where the number of peers users are connected
to increases at approximately 24 hour intervals (1440 minutes).
The periodic pattern could potentially be explained by the
individual user’s usage pattern being periodic (e.g., listening
to music 9–17 every day), or by the fact that the number of
users logged in displays a periodic pattern throughout the day.

We also see that bootstrapping a client up to its peak number
of peer connections appears to take roughly 1 hour in the
Spotify system. Another general trend is that a surprisingly
large fraction of peers are indeed not connected to any peers,
and this is true over time. This indicates the importance of
having a mechanism apart from overlay based search, such as
Spotify’s tracker, in order to allow such peers to reconnect to
the overlay.

V. CONCLUSION

We have briefly discussed Spotify’s peer-assisted protocol
and in particular how the peer-to-peer overlay is formed and
maintained. We show that by combining a centralized tracker
solution with a simple search in the overlay peer discovery
can be efficiently implemented. In particular, we demonstrate
that small-radius query propagation can be highly efficient in
a peer-assisted system with a moderate number of items.

We also provide more general information on network
behavior, and find surprisingly small differences in general
between the studied network properties when we compare
weekdays with weekends. In contrast, we observe significant
differences in the performance of peer discovery within the
overlay between weekends and weekdays, which cannot be
explained by the measured network statistics.

ACKNOWLEDGEMENTS

We would like to express our gratitude to everyone working
at Spotify for their help.

REFERENCES

[1] G. Kreitz and F. Niemelä, “Spotify – large scale, low latency, P2P music-
on-demand streaming,” in Peer-to-Peer Computing. IEEE, 2010, pp.
1–10.

[2] G. Kreitz, “Aspects of secure and efficient streaming and collaboration,”
Ph.D. dissertation, KTH Royal Institute of Technology, May 2011.

[3] M. Casado and M. J. Freedman, “Peering through the shroud: The effect
of edge opacity on IP-based client identification,” in NSDI. USENIX,
2007.

[4] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross, “A measurement study
of a large-scale P2P IPTV system,” Multimedia, IEEE Transactions on,
vol. 9, no. 8, pp. 1672–1687, dec. 2007.

[5] A. Legout, G. Urvoy Keller, and P. Michiardi, “Understanding
BitTorrent: An experimental perspective,” INRIA, Technical Report,
2005. [Online]. Available: http://hal.inria.fr/inria-00000156/en/

[6] S. Saroiu, K. P. Gummadi, and S. D. Gribble, “A measurement study
of peer-to-peer file sharing systems,” in Multimedia Computing and
Networking (MMCN), January 2002.

[7] Y. Huang, T. Z. Fu, D.-M. Chiu, J. C. Lui, and C. Huang, “Challenges,
design and analysis of a large-scale P2P-VoD system,” SIGCOMM
Comput. Commun. Rev., vol. 38, no. 4, pp. 375–388, 2008.

[8] L. Rabbe, “CIO update: Post-mortem on the Skype outage,” http://blogs.
skype.com/en/2010/12/cio_update.html, 2010, visited 5 July 2011.

[9] D. Stutzbach and R. Rejaie, “Characterization of P2P systems,” in
Handbook of Peer-to-Peer Networking, X. Shen, H. Yu, J. Buford, and
M. Akon, Eds. Springer US, 2010, pp. 1253–1276.

[10] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session Traversal
Utilities for NAT (STUN),” RFC 5389 (Proposed Standard), Internet
Engineering Task Force, Oct. 2008.

[11] S. Perreault and J. Rosenberg, “TCP candidates with interactive
connectivity establishment (ICE),” Internet-Draft (work in progress),
draft-ietf-mmusic-ice-tcp-08, Oct. 2009. [Online]. Available: http:
//tools.ietf.org/html/draft-ietf-mmusic-ice-tcp-08

[12] A. Müller, N. S. Evans, C. Grothoff, and S. Kamkar, “Autonomous NAT
traversal,” in Peer-to-Peer Computing. IEEE, 2010, pp. 1–4.

