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Abstract— Compressed sensing is a new framework
for acquiring sparse signals based on the revelation
that a small number of linear projections (measure-
ments) of the signal contain enough information for its
reconstruction. The foundation of Compressed sensing
is built on the availability of noise-free measurements.
However, measurement noise is unavoidable in analog
systems and must be accounted for. We demonstrate
that measurement noise is the crucial factor that dictates
the number of measurements needed for reconstruction.
To establish this result, we evaluate the information
contained in the measurements by viewing the mea-
surement system as an information theoretic channel.
Combining the capacity of this channel with the rate-
distortion function of the sparse signal, we lower bound
the rate-distortion performance of a compressed sensing
system. Our approach concisely captures the effect of
measurement noise on the performance limits of signal
reconstruction, thus enabling to benchmark the perfor-
mance of specific reconstruction algorithms.

I. I NTRODUCTION

Consider a discrete-time real-valued signalX of
lengthn that has onlyk non-zero coefficients for some
k � n. The core tenet of Compressed Sensing (CS)
is that it is unnecessary to measure alln values of the
sparse signal; rather, we can recover the signal using a
small number of linear projections onto anincoherent
basis [1, 2]. To measure (encode)X, we compute the
ideal (noiseless) measurement vectorY0 ∈ Rm asm
linear projections ofX via the matrix-vector multipli-
cation Y0 = ΦX. The goal in CS is to reconstruct
(decode)X — either accurately or approximately —
given the measurements.

CS reconstruction can be performed withO(n3)
computation via`1 minimization by applying linear
programming techniques.1 This approach requires ap-
proximately k log(n/k) measurements [1–3], where
we use the base-two logarithm.

The CS community has also studied acquisition of
signals that are notk-sparse butcompressible, meaning
that their coefficient magnitudes decay according to
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1For two functionsf(n) andg(n), f(n) = O(g(n)) if ∃c, n0 ∈
R+, 0 ≤ f(n) ≤ cg(n) for all n > n0. Similarly, f(n) =
o(g(n)) if for all c > 0, ∃n0 ∈ R+, 0 ≤ f(n) < cg(n) for
all n > n0, and f(n) = Ω(g(n)) if g(n) = O(f(n)). Finally,
f(n) = Θ(g(n)) if ∃c1, c2, n0 ∈ R+, 0 ≤ c1g(n) ≤ f(n) ≤
c2g(n) for all n > n0.

a power law. In this case too there are polynomial
complexity algorithms that achieve||X̂ − X||22 ≤
c1σ

2
k, where the operator|| · ||22 denotes the squared

`2 norm, σ2
k is the squared̀ 2 error in the bestk-

term approximation to the signalX, and c1 is a
constant. For compressible signals that lie in an`1
ball, these algorithms requirem = O(k log(n/k))
measurements [1]. Additionally, it has been shown
that at leastm = Ω(k log(n/k)) measurements are
required in this case [4–6].

In order to reduce resource consumption, a prob-
lem of considerable interest is to seek practical CS
measurement and reconstruction schemes that require
fewer measurements. Indeed, as Donoho wrote [2],
“Why go to so much effort to acquire all the data
when most of what we get will be thrown away?”

Recalling thatm = Ω(k log(n/k)) measurements
are required for compressible signals, let us consider
more restrictive signal classes. It has been shown
that we cannot hope to perform CS reconstruction
of a k-sparse signal using fewer thanm = k + 1
measurements [3, 7]. However, the only approach for
CS reconstruction usingm = k + 1 is via `0 min-
imization, which is known to be NP-complete and
therefore impractical [8]. This raises the question: can
we construct practical CS schemes that requirem =
o(k log(n/k)) measurements fork-sparse signals?

In addition to computational issues and appropriate
signal classes, any performance evaluation of CS re-
construction techniques must account for imprecisions
in the measurement process. We emphasize that all
analog measurement systems are imperfect and add
various artifacts. Furthermore, any CS hardware sys-
tem that relies on analog-to-digital conversion will
contain quantization noise, which must also be ac-
counted for in the performance analysis.

In this paper we show that the performance limits
of CS reconstruction systems subject to additive white
Gaussian noise obey

δ ≥ 2R(E(DX))
log(1 + SNR)

,

whereδ = m/n is the measurement rate,R(·) is the
rate-distortion function of the signal source,E(DX) is
the distortion level using decoderDX to reconstruct
X, and SNR is the measurement signal-to-noise ratio
(details in the sequel). We show that each CS mea-
surement is similar to one usage of a communication
channel and contributes12 log(1 + SNR) bits toward



the resolution of the signal. The revelation here is
the direct relationship in this noisy setting between
the measurement rate required and the rate-distortion
function of the signal source being acquired. We apply
information theoretic tools such as channel coding
and rate-distortion to illuminate these points. These
information theoretic tools shed new light on CS tech-
niques, enabling us to realize the crucial significance
of rate-distortion tradeoffs and measurement noise.

To illustrate this principle, consider an observed
measurement vectorY that incorporates additive white
Gaussian noiseZ such thatY = Y0 + Z. We will
derive a lower bound (a converse result) on the CS
measurement rate as a function of the squared recon-
struction error and the measurement signal-to-noise
ratio. This bound dictates the minimum reconstruction
distortion that the user must contend with in the face of
Gaussian measurement noise. To derive our result, we
model the measurement process as ideal measurements
passing through a noisy stochastic channel. Because
the capacity of this measurement channel is finite,
perfect signal recovery is impossible. The lower bound
is obtained by relating the capacity of the measurement
channel to the rate-distortion function of the input
signal.

One of the grand successes of information theory
has been the rise of low-complexity capacity-achieving
channel codes [9, 10]. Our broader vision is to develop
similar CS reconstruction algorithms. Indeed, our re-
cent work on sparse signal acquisition and recovery
using LDPC measurement matrices [11], which bor-
rows ideas from the channel coding community [9, 10,
12], indicates that reconstruction ofk-sparse signals,
which haveΘ(k log(n/k)) rate-distortion content, can
be performed usingm = O(k log(n/k)) noisy mea-
surements with modestO(n log(n)) complexity.

The remainder of the paper is organized as fol-
lows. Section II describes the mathematical setting
formally, followed by a derivation of our lower bound
on the measurement rate in Section III. Examples
are provided in Section IV. We discuss our work
on reconstruction via LDPC measurement matrices in
Section V, and conclude the paper in Section VI.

II. SET UP

A. Notation and preliminaries

We denoterandom variablesby upper-case letters
and realizations of random variables by their corre-
sponding lower-case letters, e.g.,x is a realization of
the random variableX. We also use lower-case letters
to represent deterministic variables, e.g.,n to denote
the signal length. Vectors are denoted in boldface in
order to distinguish them from scalars, e.g., the vector
x is a realization of the random vectorX. We refer
to the entries of a vector using the subscript notation,
and soX = [X1, X2, ..., Xn]T is a lengthn random
vector, where[·]T is the transpose operator. We assume
that all vectors are column vectors. We denote the

probability density function (pdf) of a random variable
X as pX(x) and the cumulative distribution function
(cdf) asPX(x). We represent estimators of variables
using the “hat” notation, e.g., the random variableX̂
is an estimator forX.

A source associated with a random variableX
(called “sourceX”) produces a random vectorX =
[X1, X2, ..., Xn]T of a specified lengthn, where the
entriesXi, i = 1, 2, ..., n are independent and identi-
cally distributed (i.i.d.) andXi ∼ pX(x).

Finally, we use standard notation to refer to infor-
mation theoretic measures such as the channel capacity
(C) and rate-distortion function(R(·)) [13].

B. Measurement and reconstruction

We acquirem real-valuedmeasurementsof a signal
X by multiplying X with a measurement matrix
Φ ∈ Rm×n. We denote the ideal (uncontaminated)
measurement vector byY0 so thatY0 = ΦX. The
observed measurements are obtained by corrupting the
ideal measurements withadditive noise. The noise
vector Z ∈ Rm consists ofm i.i.d. N (0, 1) random
variables. We denote the observed measurement vector
by Y so that

Y = Y0 + Z = ΦX + Z.

Therefore, the statistics of the measurement process
are fully characterized by specifying the measurement
matrix Φ.

A reconstructionscheme uses adecoderto estimate
the signalX using the observed measurementsY. The
decoderDX is a mappingDX : Rm −→ Rn that takes
the measurement vectorY as an input and produces
an estimateX̂ of X. It is assumed that the signal
statistics and the measurement matrixΦ are known
to the decoder.

C. Measurement and reconstruction quality

We define themeasurement signal-to-noise ratio
SNR as the ratio between the expected noiseless
measurement energy and the expected noise energy:

SNR,
E[||Y0||22]
E[||Z||22]

=
E[||Y0||22]

m
.

We also define a metric to gauge the quality of
reconstruction for agiven pair of CS measurement
matrix Φ and reconstruction schemeDX. We use the
normalized squared reconstruction error

E(DX) ,
E[‖X− X̂‖22]

E[‖X‖22]
,

where the expectation in the numerator is over the
joint distribution ofX and X̂. Finally, we define the
measurement rate as

δ ,
m

n
.



III. L OWER BOUND ON RECONSTRUCTION ERROR

The goal of this section is to find the minimum
measurement rate needed to reconstruct the signalX to
achieve a given fidelity using CS measurement and re-
construction schemes as described above. Specifically,
we seek to determine an asymptoticlower boundon
δ in order to achieve a reconstruction qualityE(DX),
irrespectiveof Φ and the decoding schemeDX.

A. Approach

To probe the performance limits of CS, we draw
inspiration from information theory. Our motivation
stems from the following insights. The sourceX
is a discrete-time continuous amplitude source. The
measurementsY are modeled as outputs of a Gaussian
channel, where the channel inputs are the ideal CS
measurementsY0 (the precise nature of the channel
is described in Section III-C). This channel has a finite
capacity and so each measurement only extracts a
finite amount of information. Therefore, perfect signal
recovery is impossible [14]. We seek to find a lower
bound on the measurement rateδ in terms of the
distortion E(DX) > 0 and measurement signal-to-
noise ratio SNR.

In order to apply information theoretic insights
to solve this problem, we investigate the amount of
information that can be extracted from the CS mea-
surements. This quantity is determined by the capacity
of the measurement channel.

Having upper bounded the information contained
in the measurements, we investigate the minimum
information (in bits) needed to reconstruct the signal
with distortion E(DX). This result can be obtained
from the rate-distortion function for the sourceX
using the mean squared error distortion measure. We
have thus characterizedδ and E(DX) in terms of a
common currency, namely bits. Invoking the source-
channel separation theorem [15], we obtain a lower
bound onδ as a function ofE(DX) and SNR.

B. Main result

Theorem 1:For a signal source with rate-distortion
function R(·) and measurement scheme specified
above, the lower bound on the CS measurement rate
required to obtain normalized reconstruction error
E(DX) subject to a fixed SNR is given by

δ ≥ 2R(E(DX))
log(1 + SNR)

asn →∞.
Before providing the proof for Theorem 1, let us

pause to reflect on the theorem statement. First, the
theorem is valid forany i.i.d. source for which the rate-
distortion function can be characterized. In particular,
the scope of the theorem extends beyond signals that
are exactly sparse. Second, the theorem is valid in
the asymptotic regime whenn → ∞. Finally, the
theorem reveals the crucial dependence ofδ on the
measurement SNR.

C. Proof of Theorem 1

In the first part of the proof, we derive the ca-
pacity of the measurement channel. This result en-
ables us to compute the maximum information that
can be extracted fromm noisy real valued mea-
surementsY. The second part of the proof applies
the source-channel separation theorem for discrete-
time continuous-amplitude ergodic sources to the rate-
distortion function of the source and the aforemen-
tioned capacity.

1) Capacity of the measurement channel:We con-
sider noisy measurementsY obtained by passing
the noise free measurementsY0 through an additive
Gaussian noise channel with i.i.d. noise components
N (0, 1). We call this themeasurement channel, and it
is characterized by the input-output relationship

Y = Y0 + Z.

In order to calculate the capacity of the measure-
ment channel, we consider the covariance matrices
ΣY0 and ΣZ = Im×m of Y0 and Z respectively.
Note that we can write the SNR in terms ofΣY0 as
SNR= (1/m)tr (ΣY0), where tr(·) refers to the trace
of a matrix.

To compute the capacity of this channel, we use the
well-known result [13]

C = max
tr(ΣY0

)≤mSNR

1
2m

log
|ΣY0 + ΣZ|

|ΣZ|
,

where C is the channel capacity in bits per mea-
surement, and| · | denotes the determinant. Because
ΣZ = Im×m we have |ΣZ| = 1, and the above
equation reduces to

C = max
tr(ΣY0

)≤mSNR

1
2m

log |ΣY0 + Im×m|.

To maximize the channel capacity, we seek to
determine the correlation matrixΣY0 that max-
imizes |ΣY0 + Im×m| subject to the constraint
tr(ΣY0) ≤ mSNR. For this, we apply Hadamard’s
inequality [13] which states that the determinant of
any positive definite matrixΛ is less than or equal
to the product of the diagonal elements, i.e.,|Λ| ≤∏

i Λ(i, i), with equality if and only if the matrix is
diagonal. Since(ΣY0 + Im×m) is a positive definite
matrix (it is a sum of two covariance matrices that
are each positive definite), we have|ΣY0 + Im×m| ≤∏

i (1 + ΣY0(i, i)). Finally, the maximum value for
the product

∏
i (1 + ΣY0(i, i)) under the constraint

tr(ΣY0) ≤ mSNR is attained when the diagonal en-
tries ΣY0(i, i) all equal SNR. Using the above argu-
ments, we have

C ≤ max
tr(ΣY0

)≤mSNR

1
2m

log
∏

i

(1 + ΣY0(i, i))

≤ 1
2

log(1 + SNR), (1)

where equality is attained whenY0 is diagonal and
the diagonal entries are all equal to SNR. Therefore,



the best CS measurement system has statistically in-
dependent measurementsY0, with all measurements
having the same variance. This revelation can be used
as a practical guiding principle in order to construct
good compressed sensing matricesΦ. We summarize
the important conclusions in the form of a Lemma.

Lemma 1: The upper bound on the capacity of the
CS measurement channel is given by

C ≤ 1
2

log(1 + SNR)

bits per measurement. Equality in the above equation
requires that the measurements inY0 are statistically
independent and all measurements have the same
variance equal to SNR.

2) Computing the error bound using the source-
channel separation theorem:So far, we have described
the information provided by the measurementsY.
We can also characterize the information content of
the requisite signal reconstruction quality using rate-
distortion formulae.

The source-channel separation theorem for discrete-
time continuous amplitude stationary ergodic sig-
nals [15] states that a sourceX can be communicated
up to distortion qualityD via m channel uses if
and only if the information contentmC that can be
extracted from the channel exceeds the information
contentnR(D) of the quantized source.

We complete the proof of Theorem 1 by applying
the converse portion of the separation theorem with
Lemma 1 and the rate-distortion functionR(D). �

IV. EXAMPLES

Consider ak-sparse signalX where the spikes have
uniform amplitude. In this case, it is well known that
precise description ofX would require log

(
n
k

)
≈

k log(n/k) bits, where(
n

k

)
=

n!
k!(n− k)!

.

This problem can be extended to a lossy description
of X using a rate-distortion approach for a binary
asymmetric source [13] or recent results on the rate-
distortion of spike processes [16, 17]. For small distor-
tion values, the rate-distortion content remains roughly
k log(n/k) bits. Combining this result with our lower
bound, we obtain the following condition on the
number of measurements

m &
2k log(n/k)

log(1 + SNR)
,

where the approximation is due to the asymptotic
nature of the information theoretic tools that were used
in our proof.

Let us now examine specific numerical examples.
First, suppose that the signal is of lengthn = 107 and
containsk = 103 spikes. If the measurement signal-
to-noise ratio satisfies SNR= 10 dB, then the number

of measurements must satisfy

m &
2 · 103 log(107/103)

log(1 + 101)
= 7, 682.

Therefore, a “reasonable” SNR requires a modest
number of measurements. In contrast, if we choose
SNR = −20 dB, then m must exceed1.85 · 106.
Although in this casem is still much smaller thann, a
poor signal-to-noise ratio prevents a drastic reduction
in the number of measurements.

Our lower bound can also be used to provide results
for denoising sparse signals from a reduced number of
measurements. Fletcher et al. [18] provided bounds on
denoising sparse signals using redundant frames. Their
work considered several specific sparse signal models.
Although our work does not consider the extension to
redundant frames, our result is more general in the
sense than any i.i.d. signal model can be used.

V. PRACTICAL RECONSTRUCTION SCHEME

We have extended the success of LDPC codes [10,
12] to the problem of CS measurement and reconstruc-
tion. The crucial principle is the use of low density
structure for the CS matrixΦ. This special structure
for Φ can be leveraged in three ways. First, the
LDPC structure enables low-complexity computation
of measurements, because each measurement depends
only on a small set of coefficients. Second, the sparse
structure ofΦ can be used to provide low-complexity
reconstruction schemes by deploying message pass-
ing algorithms [9, 10, 12]. Third, these LDPC-based
CS reconstruction schemes can operate close to the
theoretical limits of Theorem 1.

A. Measurement process

We compute the CS measurements using asparse
CS matrixΦ, where the entries ofΦ are drawn from
the set{0, 1,−1}. Note that in addition to using the
elements0 and1 as in LDPC codes, we also include
the element−1 in order to ensure that the expected
values of the elements in each row (and column) ofΦ
are zero. In this setting, (uncorrupted) measurements
Y0(i) are just sums and differences of small subsets
of the coefficients of the signalX. The design ofΦ
(such as fixing the row weight, column weight, and
so on) is based on the properties of the sparse signal
X as well as the accompanying decoding algorithm.
The goal is to imbibe the reconstruction algorithm
with low-complexity yet require a modest number of
measurements. We have argued that choosing the row
weight to be inversely proportional to the sparsity rate
of the input signal yields good performance [11].

B. Reconstruction via belief propagation

The use of sparse CS matrix facilitates the ap-
plication of message passingalgorithms for signal
reconstruction. The key property that enables us to use



message passing algorithms is that the sparse structure
of Φ can be represented as a sparse bipartite graph.
Signal reconstruction can be viewed as a Bayesian
inference problem, and can be solved by iteratively
exchanging messages over the edges of the said graph
using the well knownbelief propagationalgorithm.
The stochastic signal model (where we model the
coefficients of the input signal as i.i.d. outcomes of a
distributionpX(·)) can be used as aprior to model the
input signal. Belief propagation allows us to estimate
the signal that explains the measurements and best
matches the signal prior. We have shown that this
technique exhibitsO(n log(n)) complexity and empir-
ically observed thatm = O(k log(n)) measurements
are required.

C. “One shot” reconstruction

We have also considered a simplified “one shot”
reconstruction algorithm for sparse signals. The al-
gorithm is based on a median filter approach. The
complexity of this approach is alsoO(n log(n)). Sur-
prisingly, this algorithm achieves decent reconstruction
fidelity for k-sparse signals usingm = O(k log(n/k))
measurements. Again, because the rate-distortion con-
tent of ak-sparse signal isΘ(k log(n/k)), the combi-
nation of this result with our lower bound (Theorem 1)
indicates the potential to develop low-complexity “ca-
pacity approaching” CS schemes.

VI. CONCLUSIONS

In this paper, we presented information theoretic
arguments to lower bound the number of noisy com-
pressed sensing (CS) measurements required for signal
reconstruction. The key idea is to model the noisy sig-
nal acquisition process as a communication channel.
The capacity of this channel allows us to express the
information contained in the measurements in terms
of bits. Using this result along with the rate-distortion
function of the source yields a converse result on the
measurement rates required. We considered the exam-
ple of using a spike process as input, and presented
numerical results given by the theoretical bound.

This work further strengthens the connections be-
tween information theory and CS. As part of our ongo-
ing work, we are investigating the best achievable CS
reconstruction scheme. In particular, we are striving
to provide converse and achievable bounds that are

tight. The resolution of this problem will determine
the effectiveness of CS in encoding discrete-time real-
valued signals.
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