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Introduction the core edge. For Lamb vortices vorticity within the core decays

ponentially with the radial coordinate. Both Rankine and Lamb
rtices are expected to better resemble a real vortex. However,
nkine vortices are somewhat easier to model, and so we will

Turbulent flows are characterized by vortices ranging in siz\%?(0
from the integral length scale down to the Kolmogorov scale. T)g

two ends of the range of vortex scales are associated with differ pare and contrast our results with them wherever appropriate.

roperties. For example, large-scale vortices account for most O . . .
prop P 9 Some theoretical studies of viscous vortex cores have been con-

the turbulent energy, while the small scales carry almost the entire . :
vorticity. Even for a given vortex size, the range of their assoc%{.uaed in the past. For example, Mayer and Popiterived the

ated properties is expected to be large. These notions have prodls ributio.n of angular, ax!al, and radial vglocities for a viscous
extremely useful in understanding the nature of turbulence. In tf} starting from the Navne_r-S_tokes_ equations. They assumed the

- . s w quantities to be self-similar within the core, and that the
paper, we provide direct measurement of vortex properties to sub-
stantiate these ideas.

To date, researchers have found it rather difficult to educe in-
stantaneous structures from turbulence data. By their very natL
pointwise techniques lack spatial resolution which is imperativ
for visualizing and measuring the properties of these structures;
best, pointwise techniques must rely on conditional averaging
expose only the dominant structures. Consequently, experimer
data about properties of vortical structures in different flow field

/

z

is rather scarce, and especially the nature of the vortex core
virtually unexplored.

PIV can provide velocity information with substantially greate .
spatial resolution. Further, high-pass filtering can be employed
educe vortical structures from instantaneous two-dimensional P W
frames(Adrian et al.[1], and Agrawal and Prasd@]). Agrawal

and Prasadl2] applied high-pass filtering to PIV data of a turbu-
lent jet, and presented statistical distributions of vortex radiu
circulation, vorticity, and energy as a function of Reynolds nurr
ber and radial position. 1613], we applied low-pass filtering to
examine the various organizational modes of large vortices in
turbulent jet. In this paper, we use the same high-pass filteril
technique to focus on the detailed propertigthin vortex cores.
Three types of vortex cores are commonly described in tt
literature—potential, Rankine and Lamb. A potential vortex pos
sesses a fl/tangential velocity ¢,) distribution within its core;
however, due to a singularity at the origin, it clearly cannot exit ko
in nature. The singularity is removed in a Rankine vortex whic

has a core with a solid-body like rotatigoonstant angular veloc- ] el
ity), while the flow outside the core is irrotational. Therefarg,

~r inside the core, and,~ 1/r beyond it(Fig. 1, adapted from <— R —-|

Kundu[4)). It should be noted that for a real vortex, the presenc

of viscosity will smooth out the abrupt change in slopevgfat

(@) Real vortex

®z
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) ) . ) o N (b) Rankinc vortex
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carrier fluid had a simple algebraic velocity distribution. Fron
their angular velocity result they report a solid-body rotation ne:
the vortex axis, and an inviscid solution outside the core. On tt
experimental side, measurements have been made for a tip vol
of an airfoil, and vortex rings. For example, Desabrais and Johi 52
[6] used an ultrasound method to measure the circulation of a
vortex, and found that the circulation is maximized when the el
tire vortex core is enclosed within the measurement path. Ma
worthy [7] obtained LDA measurements inside the cores of lam
nar and turbulent vortex rings and found that the change from
constantw to radially varyingw is much sharper for turbulent
vortex rings. 48
The situation for Mayer and Powdlb], Desabrais and Johari
[6], and Maxworthy[7] is simpler because a single vortex was
treated in isolation. Additionally, these studies considered a carri
fluid that was laminar. Our situation is more complicated in the
our goal is to examine a large population of vortex cores occurrir 34 36
naturally in turbulent flows. These myriad of vortices interac X (grid units)
amongst themselves and affect their neighbors, warranting me
surements for a general class of turbulent flows. The present wqes) 54| N\ \ \ \ \ \ \ N N
is intended to address these needs. Specifically, we report res 4 cm/fs
for the radial variation of circulation, tangential velocity, and vor-
ticity within the core of vortices present in the axial plane of ¢
self-similar turbulent axisymmetric jet. We also present results fq 32
centrifugal force and energy associated with vortices of differe|
sizes.
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Experimental Setup and Eduction Technique

PIV measurements were conducted in a 1.2-m-tall glass ta
with a 0.5-m-square cross section, which houses a nozzle at 48 !
bottom (orifice diameterd=2 mm). Twin Nd-YAG pulsed lasers
(350 mJ/pulse at 532 nnprovided illumination for PIV with a
pulse separation of 12 ms.@n hollow spherical glass particles
were used as tracers for PIV with water as the working fluic
Recording was done using a Kodak 1.0 ES camera with a 10 32
X 1000 pixels array. The view frame at 1£@/d<175 was cen-
tered on the jet axis, with the edges of the frame extending ' ' ' ' '
+1.5 (b is defined as the radial location at which the mea® s4r— — - o Voo Nlodems
streamwise velocity reduces & of the mean centerline veloc-
ity). Measurements were conducted for jet Reynolds number, |
(based ond and the exit velocity of 3000. See Agrawal and sol
Prasad 2] for additional details.

The definition of Robinson et aJ8]—“A vortex exists when
instantaneous streamlines mapped on to a plane normal to the ¢
exhibit a roughly circular or spiral pattern, when viewed in ¢
reference frame moving with the center of the vortex core,” i
used here for the definition of a vortex. Vortices were educe
using the high-pass filtering technigyédrian et al. [1], and sl
Agrawal and PrasafP]) in which the instantaneous field is first
smoothed using a Gaussian kernel. Next, the resulting low-pe !
field (with the higher frequencies suppressedsubtracted from \ i
the original velocity field, exposing the vortices which represer 46|
the high-frequency content in the velocity signal. The standa 32 34 36
deviation of the Gaussian kernel was three grid units, and the filt._. x (grid units)
was truncated at five grid units. These parameters were chosen i )
carefully to expose all vortices. An illustration of the high-pas§/9: 2 (& Instantaneous,  (b) low-pass filtered, and () high-
filtering operation on a small subset of the total PIV frame jgass filtered vector fields (1 grid unit =2 mm)
provided in Fig. 2. It was verified that all the vortices in the
high-pass field could also be identified by an alternate techniquy vector field, the integration of the velocity data will produce
viz. Galilean transformatiorj1-3]. streamlines which are closed around the vortex center. In reality,

An automated method was employed to identify the vortices. Because our flow field is turbuletthree-dimensional, dissipative,
vortex center was located if the high-pass filtered velocity vectoasid unsteadyalbeit stationar)) the streamlines that we identify
displayed a monotonic variation in angular orientation from O tfor our eduction process need not coincide with the actual stream-
27 while moving in a closed path around it. A point was acceptedihes in the flow. Our usage of the term merely provides a simple
as a vortex center,, if seven out of eight neighboring pointsway to identify a vortex center, and to measure the size of the
satisfied the above criterion. The outermost radial position ewertex. An example of a high-pass filtered field with the identified
closed by a closed streamline determined the radius of the vorterytices can be found if2].

R. It should be noted that we are using the concept of “closed Agrawal and Prasad®] employed an automated procedure with
streamline” to mean that in the instantaneous, two-dimensiorifle above criteria to identify vortices with radii equalitieger
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grid units. This procedure has been extended here to also idenfifple 2 Normalized rms, and the fractional uncertainty in the

vortices with non-integer radii and obtain improved resolutiofnean value of I'for vortices of all R at the vortex center and
The modified algorithm is thus able to resolve two new radijft Vvortex edge. Note that the uncertainties in v, and w are identi-
and 8 grid units between vortices of radii 2 and 3 grid units, an8=""I to T as these quantities are derived from  I'. (1 grid unit

so on. Thus, we can now distinguish vortices of size€212, 5, 2 mm.)
V8, 3,10, VI3, and 4 grid unit$note, each number is the square Atr=1 Atr=R
root of the sum of the squares of two integefigicreasing the R — — — —
resolution from four to nine levels. The increased resolution pro-(Grid Units) op/T ATIT (%) op /T ATIT (%)
vides sufficient datapoints to probe the vortex core with confi- 1 0.60 19 0.60 19
dence. It was verified that the results from the current enhanced v2 0.56 2.3 0.54 2.3
eduction program match that §2], validating the robustness of 2 0.57 3.2 0.55 31
the new method. J5 0.48 2.7 0.42 2.4
. . . . NG 0.47 3.2 0.41 2.8
Vortex radius(R), rotational sense, and circulatidi’) were 3 0.44 58 0.42 55
measureq directly here whereas tangential velomg_),(vortlc_:lty JI0 0.39 10 0.33 8.5
(w), centrifugal force F.), and energy(E) were derived. Circu- JI3 0.47 10.6 0.49 11.1
lation is calculated by integrating along a circular path centered at 4 0.45 12.6 0.44 12.3

lo:

I'= #u“ds,

where,u’ denotes the high-pass filtered velocity field. The deriveg_li
guantities are expressed as follows:

The rms values listed in Table 2 are sufficient to place uncer-
nty boundg(using the standard expression for 20 to 1 gdufs
the mean quantities listed subsequently in this paper, sudh as

_ ) I'(r) v, . We will provide these results towards the end of this sec-
v 4(r)=tangential velocity atr= o tion. However, we will first show that the errors that arise from the
& measurement process amount to only a small fraction of the true
. I'(r) variability in circulation.
w(r)y=vorticity at r=—-, The definition of[" indicates that errors in measuring velocity
it andr will contribute to the error id". For PIV measurements, the
r'2(r) error associated with the measured velocity is determined prima-
F.(r)=centrifugal force atr=rw?(r)= gy rily by the error in locating the correlation peak to subpixel accu-

racy. Our estimated value is about 1/10th of a pixel, which is a
wherer is the distance from the vortex centeg, The energy of More or less standard value quoted by most PIV practitioners

the vortex was obtained as (Prasad9]). The characteristic velocity scale in our flqgenter-
line velocity) corresponds to a displacement of about six pixels;
E=ci["(R), consequently, the relative error in the characteristic velocity mea-

surement is about 1.5%. In the current paper, we are interested in
the high-pass filtered field which is obtained by subtracting the
local mean velocity from the instantaneous velocity field. As seen
Experimental Uncertainty. The rms value of any vortex by comparing Fig. &) with Fig. 2(c), the characteristic velocity
property(such as circulation, tangential velocity, or vortigisan of the high-pass filtered field decreases by about one order of
be determined directly from the large population of vortices thasagnitude, therefore theelative error of the high-pass filtered
we have educed for each value Rf As evident in Table 1, we field is amplified to about 15%.
have a sizable population of vortices from which we can draw The measurement af is affected by the fact that the vortex
reliable statistical results. We will focus dhin this section, be- center may not lie exactly on a grid point. In addition, not all
cause tangential velocity and vorticity are derived directly fiom closed streamlines are perfectly circular or even perfectly closed
therefore the relative uncertainty in their mean values would isiéle to the nature of our eduction process and the criteria em-
the same as that d&f. Table 2 lists the normalized value of rms ofPloyed therein. Further, due to the discretizing nature of the educ-
circulation, o /T for each value oR ranging from one to four tion process, the true vortex radius may be slightly smaller or
grid units. Two sets of rms values are listed in Table 2, one cdgder than the measured value. These effects can produce an ad-
responding to the center of the vortéactually r=1) and the ditional random error in the value @f. It is not apparent that one
other corresponding to its edge<£R). These rms values include €an a_ccurat_ely quantify these errors without extensive modeling
the true variability inT", [2], as well as the errors accruing fromand simulations. However, we have roughly estimated that these
the measurement process. sources will cor]trlbL_Jte an error of about 15% to 20%. ,_’-\ddlng to
this the uncertainty in velocity measurements, we obtain a cumu-
lative (in a root-sum-square sensmeasurement error il of
about 25%.

wherec; is a constant(We setc,=1 for the energy plots pre-
sented herein.

Table 1 Sample size for different vortex radii ~ (based on a total The rms values ¢ /T') listed in Table 2 can approach 40% to_
of 10140 vortices from 222 PIV frames ). (1 grid unit =2 mm. ) 60%. It is therefore apparent that the measurement error contrib-
utes only a small fraction to the total rrisote that the rms values
R (Grid Units) Sample Size must be combined in a root-sum-square sgrisefact, it is easily
1 3813 shown that the rms due to measurement error is only about 15% of
V2 2182 the total rms. Most of the rms is therefore contributed by the
2 1253 genuine variability inl" for a givenR.
V5 1204 Finally, the uncertainty in thaveragevalue ofI' can be esti-
Vg,; ggg mated using the standard expressifor 20 to 1 oddg
JI0 58
VI3 75 — 19601
4 49 Al'=

N
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whereN is the number of contributing vortices in the given en  40% T ' ' y y T
semble. For example, from Table (N~62 for R=1 and 7 for ) So00g
R=4. Therefore AT /T ~2% forR=1 and 13% folR=4. AT/T ssoor 1
values for vortices of alR are listed in Table Zat the center and

at the edge 3000

2500
Results and Discussion

Results presented in this paper pertain to a jet Reynolds numg
of 3000, with the view frame located between Ed<175. 5
Each PIV frame contains 6060 vectors on a square grigrid
spacing=2 mm). Therefore the radius of the smallest resolve
vortex is 2 mm, and the range of spatial scales that can be
solved here is about 30. The corresponding Kolmogorov leng
scale is approximately 0.2 mm, therefore the data is not ful
resolved at the small scales. As noted 21, the unresolved vor- o ) . . .
tices will, however, not affect the results presented herein. 1 15 2 i

Results in this paper are based on a total of 10,140 vortices,
corresponding to 222 PIV framégverage of about 46 vorticesFig. 4 Curve fits to number of vortices of different sizes (1 grid
per frame. These vortices correspond to the self-similar regime ahit =2 mm)
jets. Due to the turbulent nature of the flow, the distribution of
vortices over space and time is somewhat random, implying that avorticity obtained by differentiating the instantaneous velocity
different number of vortices will be captured in each frame. Fignap is qualitatively similar to that obtained by differentiating the
ure 3 depicts the variations in the number of vortices in successivigh-pass filtered fieldFigs. 5a) and 5b), respectively indicat-

PIV frames. No noticeable trend is apparent, which confirms thiaig that the high-pass filtered field accurately represents the in-
the flow conditions are stationary. stantaneous vorticity field. The quantitative difference between

A breakdown of the number total of vortices of different radii isFigs. 5a) and 3b) is because Fig. (&) represents théotal vor-
shown in Table 1. The number of vortices present in the flovicity, whereas Fig. &) represents only the high-pass filtered vor-
decreases monotonically with increasRgNevertheless, even for ticity. While Fig. 5 validates our education technique, the use of
the largest vortices, the sample size is large enough to comphigh-pass filtering in the first place warrants justification. The rea-
useful statistics. Figure 4 suggests that the number of vorticesn for employing the filtering technique is that our vortex iden-
drops drastically beyond a certain size; therefore, two distintification and measurement scheme described above specifically
curves are needed to fit the data. The expressions for the tioks for closed streamlines which are only seen in the high-pass
curves are indicated in Fig. 4. Figure 4 helps to infer the presenfiieered field.
of yet another regime for vortices smaller than 1 grid unit. Al- oes the Largest Closed Streamline Represent the Core

though these vortices are too small to be resolved from our curr 5 ; :
dataset, it should be obvious that the curve that fits vortices of s%ﬂ%:' As mentioned above, we denote the radius of the largest

1 to 2.8 grid units cannot be sustained indefinitely owing to SndEd streamline as the vortex radius, making it important to

sinqularity asR—0 5. Eventually. viscosity will begin to domi- erstand the relation between them. A single vortex in a quies-
9 Y e Y, Y 9 cent environment will present closed streamlines for aHow-

H?t/?/”?zth? ﬁﬁler?ggﬁ/{g;/esg:{;;z da%’éggﬁ?:rﬂ:&g 2tdt':‘fzr§nmt£|i[a r, in a turbulent field, the presence of additional vortices with
pply . ndom circulations in the neighborhood will disturb the closed

scales are required to confirm this extrapolation. streamline pattern around any vortex. It can be expected that a
given vortex will feel the presence of its neighbors more strongly
beyond its edge corresponding to regions of smagllwhereas

60 regions of highw corresponding to the vortex core are less likely
to be affected. Based on this qualitative argument, it is plausible
that the region of high-vorticity concentration bounded by the
largest closed streamling € R) would correspond to the vortex
core.

The above conjecture was tested with a simulation using Rank-
ine vortices. 44 Rankine vortices were placed on 60 grid

50 such that their number, center locations, rotational sense, and cir-

culations corresponded to the vortices in a eahdomly chosen

PIV frame. Each Rankine vortex core size was assigndg| #se

4 radius of the largest corresponding closed streamline. Therefore,

ﬂ l vy~r for r<R, and as I/ for r>R. While streamlines for an

of vortices

2000

1500 | i

1000

55

individual Rankine vortex are closed for all this is no longer
true after superposing the velocity fields from all 44 vortices. This
superposed velocity field was high-pass filtered and input into our
vortex education program. It was found that for 50% of the result-
ing vortices, the vortex core size correspon@sactlyto R. For

35 the remaining vortices the largest closed streamline laeger
than their prescribed corgsnore so for isolated vortices com-
pared to vortices occurring in close proximityn no case did we
find streamlines closing inside the prescribed core. This simula-

Number of Vortices

40

30
[

50 PV 150 200 tion supports our belief that the largest closed streamline encom-
rame number L .
passes the vortex core in its entirety.
Fig. 3 Variation in the number of vortices in successive PIV The criterion of using the largest closed streamline to determine
frames for a typical run the vortex core size is also consistent from the point of view of
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z (grid units)

X (grid units)

Fig. 5 Vorticity obtained by differentiating (a) instantaneous and (b) high-pass filtered field
with overlaid high-pass field vectors
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Fig. 6 Normalized circulation within vortices of radii R=3 grid

Fig. 7 Variation of average circulation within vortex cores for
vortices of varying radii (1 grid unit =2 mm). See Table 2 for the
values of the relative uncertainty in T

units (total 222 vortices )

. . . . 2 . .
C|rculat|odn. Forha Rankln? V?rtef[l;] !ngreaseds af \f"th'n theth re%iemes(for example, constant, region, see beloyyand to char-
core, and reaches a constant path-indepenadent value once Neefsi;e the deviation of a real vortex from a Rankine vortex.

Ere codre IS enfo?wzatshs?c; W|th|nt_the path.tA%riwa: 'aTC:’I Pre&iad g ure 9 shows that the radial variation of ensemble averaged
ave demaonstrated that for vortices in a turbulent jet tiow, C'rCli_';'H is nonmonotonic in nature. For mdgit is seen to increase and

the presence and circulation of vortices in the neighborhood. Tiys
again indicates that the entire region where vorticity is presej)f
(the vortex corgis encompassed by the largest closed streamlinée0
while no useful information about circulation or other propertieFO
can be extracted outside it.

varies almost linearly deep inside the core, remains constant
a large part, and then decreases a%? towards the edge. The
mewhat linear increase in, indicates that the flow very close
the vortex center undergoes a solid-body-like rotation. It should
be noted that while this subregion of solid-body-like rotation is a
Variation Within Vortex Cores small part of the entire vortex core, it assures that the dissipation
remains bounded.

Circulation and Tangential Velocity. The radial variation of - . -
circulation within vortex cores is plotted in Fig. 6. For illustration Vorticity. - Figure 10 shows the ensemble averaged vorticity for

purposes we chose circulation aRe 3 grid units; however simi- variou_s vortex sizes. Des_crit_)irtg'as a constant Within_ the'vortex
lar observations can be made for other properties and within v&2re is clearly not apt, indicating that the approximation to a
tex cores of other radii. For an easier comparison between vortices
of different circulations, the results are normalized by the circula-
tion atr =1. The scatter in the figure must be viewed in light o
the fact that Fig. 6 includes data from 222 vorti¢ese Table 1,

i.e., 222 data points exist for eachThe scatter in the circulation | =
data is consistent with our expectatitgee the earlier section on "
experimental uncertaintythat even vortices of a given size can e

exhibit a wide range in properties. The scatter increases monotc 4| .

cally with r, for example, the normalized rms is 0.19 and 0.3¢
respectively for =2 and 3. However, the increase is scatter witl
r is simply an artifact of the normalization with respectIt¢r 5|
=1). As listed in Table 2, the value @f-/T" is about 0.4 for all %
r<3. 2
Figure 7 reveals that the ensemble averaged circulation = 2}
creases witlr inside the core, and tends to plateau near the co
edge. As noted earlier, circulation is expected to display such /!
behavior within vortex cores. Moreover, for a giverarger vor- ey 4 -
tices have largel” associated with them. P - — -
Figure 8 shows polynomial fits to the ensemble averaged d: -, s
for circulation for vortices ofR=3 grid units. Figure 8 reveals o
that for real vorticesI'~r? is valid only for a very small subre-
gion inside the vortex corer1.4). I'~r for 1.4<r<2.4. Fi- 5
nally forr>2.4,T"is seen to vary as™®. The different polynomial
fits to the data reveal that a rdRF 3 vortex is similar to a Rank-
ine vortex only forr <1.4, and differs substantially from it beyondrig. 8 Polynomial fits to average circulation for vortex radius
r=1.4. In fact, the latter fits help to identify possible alternate-three grid units

1.5 2 25 3
r (grid units)
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Ve (cm/s)

1 L5 2 2.5 3 35 4
1 (grid units)

Fig. 9 Variation of average tangential velocity within vortex
cores for vortices of varying radii. See Table 2 for the values of
the relative uncertainty in ~ v,.

Rankine vortex is not perfect. The maximum valuewobccurs at
r=1, and decreases monotonically withThe plot(Fig. 10 looks

0.9

0.8

0.7

@/0(r=1)

0.6

0.5

04

0.3

0.2
0.4 0.8 12 1.6 2 24 2.8

JR™

Fig. 11 Normalized vorticity within vortices of different radii

quence, the general trend is from the largest to the sma&tjestd

the outliers may be attributed to experimental jitter resulting from
a combination of measurement error and the true variability.in

As stated in the earlier section on experimental uncertainty, the
uncertainty in mean vorticity can approach about 13% in the worst

qualitatively similar to Fig. 1. Thus we have verified experimencase. This uncertainty could account for the nonmonotonic behav-

tally the trend depicted in Kundu[g] schematic drawingFig. 1).

ior of the list.

Another interesting observation can be gleaned from the plot byAs one progresses towards the edges of these larger voutices,
carefully following the vorticity values from different vortex radii. drops to a value smaller than the corresponding value at the core-
It is commonly assumed that most of the vorticity in turbulenédge of smaller vortices, i.e., the terminal valuewodecreases as
flow is associated with small scales which is consistent with tHeincreases. This is highlighted in Fig. 10 by the use of a special
belief that on average a large vortex will overturn slower consymbol(heavy circleg The list of vortices with highest to lowest
pared to a small vortex. However, Fig. 10 reveals that at least feorticity at the edge reads &=1.4, 1, 2.2, 2, 3.2, 2.8, 3, 3.6, 4.
the range of vortices investigated herein thisni necessarily Although the variation is not perfectly monotonithree outliers
true. Compared to their smaller counterparts large vortices exhibiit of a total of ning a downward trend i with increasingR is
a largerw at the center. The list of vortices with highest to lowestuite apparent. Figure 10 supports the contention that the classical
vorticity at the core reads &=3.2, 4, 3, 3.6, 2.8, 2.2, 2, 1.4, 1. picture only applies at the core edge, amat throughout the core

Although two (out of a total of ning vortices occur out of se-

R
1
1.4
2
22
28
3
3.2
3.6
4
Edge
g
3
20 RO
\\
1 LS 2 2.5 3 35 4

r (grid units)
Fig. 10 Variation of average vorticity within vortex cores for

vortices of varying radii. See Table 2 for the values of the rela-
tive uncertainty in = w.

Journal of Fluids Engineering

of the vortex. Again, experimental uncertainty could account for
the outliers in the list.

Additional insights about vortices can be obtained if a suitable
scaling is available by which data can be collapsed. This moti-
vated us to find appropriate ways to normalize the results. Dimen-
sionally homogeneous relationships were sought initially, but
these did not lead to a successful collapse of the data. Instead, it
was found that a dimensionally inhomogeneous expression of the

form
w Br
[OR R

showed promise. Here. denotes the value of vorticity at the
vortex center; however, because of our inability to measure it we
usedw(r=1), andB denotes a constanth=1/3 gave the most
satisfactory collapse of the vorticity values from different vortex-
radii (see Fig. 11 While the lack of dimensional homogeneity is
somewhat unsatisfactory, it should be noted that the collapse is
not dependent on the units that are used for the length scales as
the differences can be absorbed in the consBanResults are
particularly good forR=2. Vortices withR<v2 lying above the
normalized curve are explained as follows.

o(r=1) underestimates the vorticity at the center, with the
difference betweem. andw(r =1) increasing with decreasiri®
The difference becomes substantial for small vortice@s={2).
Therefore, the vorticity value does not fall on the normalized
curve, rather it falls above it. A direct advantage of normalization
is that the correct value ab. can be estimated from the normal-
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Fig. 12 Variation of average centrifugal force within vortex Fig. 13 Average energy associated with different vortex radii

cores for vortices of varying radii

bounds the vortex core. Three possible regimes of vortex number
ized curve. This is all the more useful for vortices of smaller radiyersus”\/ort%( Z'Zg are sqggeﬁlt(ed bybour_data. The vortex-core has
For examplew, for R=1 is estimated as 53 corresponding to & Small solid-body rotation like subregiofonstant vorticity.
: o _ However for a large part of the vortex core, the tangential velocity
a difference of about 30% froma(r=1). X .
remains a constant. Subsequently near the core edge the tangential
Centrifugal Force and Energy. Knowledge of the centrifugal velocity decreases as 2
force, F within vortex cores is important because like other body There is substantial evidence to support that the centers of
f(_)rces _it can _inducg _relamine_trization. F_rom a purely practicgmaller vortices rotate slower than those of large vorti@s
viewpoint, radial variation of  is relevant in planning PIV mea- though the variation is not perfect due to experimental uncer-
surements. If the.densny of the fluid and seeding parthles agginty); however, the trend reverses near the core edge. Therefore,
mismatched, particles may not track the flow well. Regions @f can be concluded that the classical picture is only applicable for
large vorticity are particularly susceptible to errors. It is expectatie core edge, andot throughout the core of the vortex and that
that particles(with density greater than_the flyiavill bg centri- the general understanding of turbulence implicitly refers to the
fuged out of the vortex core, resulting in a poor particle concenorticity at the core edge. An expression to normalize the vorticity
tration near the vortex center and an increased concentration nigam different vortex radii can be utilized to estimate the correct
the core edgéour measurements are not affected by this becauselue of vorticity at the vortex-center for smaller vortices. In ac-
thg density c.)f.partlcles was matched to that qf 'ghe carrller.)ﬂUchordance with the turbulence theory, the average energy of the
This makes it important to know the radial variationFaf within  vortices is seen to increase with the vortex radius. In fact, the
the vortex core. ' _ _ average energy appears to increase as the square of the vortex
For a Rankine vortexF. increases linearly in the core, andradius for the range of vortex sizes investigated here.
decreases asrf/beyond it. Thereforef . can be expected to be a
maximum at the core edge. The plot for a real vortex core igcknowledgments
however, nonmonotonitFig. 12), increasing slightly followed by . . . .
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