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MEASURES INDUCED BY ANALYTIC FUNCTIONS
AND A PROBLEM OF WALTER RUDIN

CARL SUNDBERG

1. Introduction

Let H∞ denote the set of bounded analytic functions in the unit disk

U = {z ∈ C : |z| < 1}
and let H∞0 denote those ϕ ∈ H∞ for which ϕ(0) = 0. Every ϕ ∈ H∞ has a
nontangential limit at almost every point of ∂U , and the resulting function on ∂U
is measurable (for this and other basic facts about H∞ and related function spaces
discussed in this paper, see, e.g., [D], [G]). We denote the boundary function of ϕ
also by ϕ and define the induced measure of ϕ by the formula

(1.1) µϕ(E) =
1

2π

∣∣{eiθ ∈ ∂U : ϕ
(
eiθ
)
∈ E

}∣∣
for any measurable E ⊂ C, where | · | denotes Lebesgue measure on ∂U . It is
immediate that

(1.2)
∫
f(z)dµϕ(z) =

∫
f
(
ϕ
(
eiθ
)) dθ

2π
for any f ∈ L1(µϕ). In this paper we will always adopt the normalization ϕ(0) = 0,
i.e. ϕ ∈ H∞0 , and shall exclude the trivial case ϕ ≡ 0.

There is an important connection between induced measures and the classical
Nevanlinna counting function Nϕ of ϕ ∈ H∞0 , defined by

(1.3) Nϕ(w) =
∑

ϕ(z)=w

log
1
|z| ,

where the sum is understood to count multiplicities. To see this, write, for w ∈ C,

ϕ(z)− w = Φw(z)Bw(z)Sw(z),

where Φw is outer, Bw is a Blaschke product, and Sw is a singular inner function.
The zeros of Bw are of course the roots of ϕ(z) = w, so∫

log
∣∣ϕ (eiθ)− w∣∣ dθ

2π
=
∫

log
∣∣Φw (eiθ)∣∣ dθ2π

= log |Φw(0)|

= log |w| +
∑

ϕ(z)=w

log
1
|z| + log

1
|Sw(0)| .
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70 CARL SUNDBERG

By a theorem of Rudin ([R]), Sw ≡ 1 for all w off a set of capacity zero. By (1.2)
and (1.3) we thus see that

(1.4)
∫

log |z − w|dµϕ(z) ≥ log |w|+Nϕ(w)

for all w ∈ C, with equality holding off a set of capacity zero.
Induced measures show up in a natural way in the study of composition operators.

For 0 < p < ∞ we let Hp denote the usual Hardy class of analytic functions in U
(see, e.g., [D], [G]). By the Littlewood Subordination Principle ([L]), if ϕ ∈ H∞0
maps U into U , then f ◦ϕ ∈ Hp whenever f ∈ Hp, and in fact ‖f ◦ ϕ‖Hp ≤ ‖f‖Hp .
We can thus define the composition operator Cϕ : Hp → Hp by

Cϕ(f) = f ◦ ϕ.
By (1.2)

(1.5) ‖Cϕ(f)‖pHp =
∫
|f(z)|pdµϕ(z),

so many questions concerning composition operators can be viewed as questions
concerning induced measures. Here we mention only a result of Joel Shapiro [S]:

Theorem (J. Shapiro). The operator Cϕ : Hp → Hp is compact if and only if
Nϕ(w) = o(1 − |w|).

A different necessary and sufficient condition can be formulated using induced
measures. Recall that a positive measure µ on U is said to be a Carleson measure
if

(1.6) µ
(
Sh
(
eiθ0
))

= O(h),

where
Sh
(
eiθ0
)

=
{
reiθ : 1− h ≤ r < 1, |θ − θ0| ≤ h

}
.

It was shown by Carleson ([C1], [C2]) that (1.6) is necessary and sufficient for
the existence of a constant C <∞ such that∫

|f(z)|pdµ(z) ≤ C ‖f‖pHp

for all f ∈ Hp. It is immediate that this result continues to hold if µ is supported
in closU and the definition of Sh

(
eiθ0
)

is modified by allowing r = 1. It is then
easy to show using (1.6) that Cϕ is compact if and only if

µϕ
(
Sh
(
eiθ0
))

= o(h).

One can thus prove Shapiro’s theorem by directly showing that∫
log |z − w|dµϕ(z)− log |w| = o(1 − |w|)

if and only if
µϕ
(
Sh
(
eiθ0
))

= o(h).
In fact, although this point of view is not explicitly stated in Shapiro’s paper, it is
implicit in much of his approach.

It is natural to ask which measures µ can arise as induced measures. A necessary
condition can be seen by (1.4) to be that the logarithmic potential of µ is bounded
below by log |w|. Another, coming from (1.2), is that

∫
u(z)dµ(z) = u(0) for any

harmonic polynomial u.
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To obtain a third necessary condition, we consider the values that the logarithmic
potential of an induced measure takes near 0. For ϕ ∈ H∞0 , ϕ 6≡ 0, write

ϕ(z) = zng(z),

where g(0) 6= 0. It is well known ([C], Chap. 4, Theorem 7.4) that we can find
ε > 0 and δ > 0 making the following statements true:

If 0 < |w| < δ, there exists exactly n roots of ϕ(z) = w in [|z| < ε], all of them
simple, and if |z| < ε, then |g(z)| > 1

2 |g(0)|.
Now let 0 < |w| < δ and let z1, . . . , zn be the roots of ϕ(z) = w in |z| < ε. Then

|w| = |znj g(zj)| ≥
1
2
|zj|n|g(0)|, so |zj| ≤

(
2|w|
|g(0)|

)1/n

for j = 1, . . . , n. Thus by (1.4)∫
log |z − w|dµϕ(z) ≥ log |w|+

n∑
j=1

log
1
|zj|

≥ log |w|+ log
|g(0)|
2|w|

= log
|g(0)|

2
.

We also have an estimate for w = 0, namely∫
log |z|dµϕ(z) =

∫
log
∣∣ϕ (eiθ)∣∣ dθ

2π

=
∫

log
∣∣g (eiθ)∣∣ dθ

2π
≥ log |g(0)|.

Putting these observations together, we see that if µ = µϕ for some ϕ ∈ H∞0 ,
ϕ 6≡ 0, then

a)
∫
u(z)dµ(z) = u(0) for any harmonic polynomial u,

b)
∫

log |z − w|dµ(z) ≥ log |w| for all w ∈ C, and
c)
∫

log |z − w|dµ(z) is bounded below.
We now make the following

Conjecture. Suppose µ ≥ 0 is a compactly supported measure on C satisfying a),
b), and c). Then µ = µϕ for some ϕ ∈ H∞0 .

Remarks. 1) Taken together, a) and b) are equivalent to the statement∫
v(z)dµ(z) ≥ v(0)

for any function v that is subharmonic on C. However, it will be more convenient
for us to keep these two conditions separate.

2) Suppose µ is a radial measure with a polar decomposition

dµ
(
reiθ

)
= dw(r)

dθ

2π
,

where w is a positive measure on [0,∞). It is easy to show that a) and b) are satisfied
if ‖w‖ = 1, and that c) is satisfied if and only if log r ∈ L1(w). In particular, if µ
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72 CARL SUNDBERG

is defined to be one-half of normalized Lebesgue measure on [|z| = 1] and one-half
of normalized Lebesgue measure on [|z| = 2], then µ satisfies a), b), and c).

The main results of this paper are the following two theorems, which may be
seen as offering support for our conjecture.

Theorem 1. Let µ ≥ 0 be a compactly supported measure satisfying a) and b).
Then there exist ϕn ∈ H∞0 such that the support of µϕn approaches the support
of µ, closϕn(U) approaches the closure of the set where the logarithmic potential
of µ exceeds log |z|, and µϕn approaches µ weakly. More precisely: If V is an
open set containing sptµ and W is an open set containing the closure of the set{
w :
∫

log |w − z|dµ(z) > log |w|
}

, then sptµϕn ⊂ V and closϕn(U) ⊂ W for suf-
ficiently high n, and ∫

f(z)dµϕn(z)→
∫
f(z)dµ(z)

for any continuous function f .

Theorem 2. There exists a ϕ ∈ H∞0 such that µϕ is one-half of normalized
Lebesgue measure on [|z| = 1] and one-half of normalized Lebesgue measure on
[|z| = 2].

Theorem 2 answers a question posed by Walter Rudin. In a 1988 conference at
the Mathematical Sciences Research Institute in Berkeley, California, Rudin noted
that if ϕ is an inner function for which ϕ(0) = 0, then

(1.7)
∫
ϕ
(
eiθ
)m

ϕ (eiθ)n
dθ

2π
= 0 if m 6= n,

and asked if this condition implies that ϕ is a constant multiple of an inner function.
The function of Theorem 2 provides a counterexample, since by (1.2)∫

ϕ
(
eiθ
)m

ϕ (eiθ)n
dθ

2π
=
∫
zmz̄ndµϕ(z)

=
1
2

∫
eimθe−inθ

dθ

2π
+

1
2

∫ (
2meimθ2ne−inθ

) dθ
2π

= 0 if m 6= n

but ϕ clearly cannot be a constant multiple of an inner function since the essential
range of |ϕ| on ∂U is {1, 2}. This argument was shown to me by John B. Conway,
who in an unpublished manuscript showed that in fact (1.7) is equivalent to the
rotational invariance of µϕ. A closely related result is due to Paul S. Bourdon, who
showed in [B] that (1.7) is equivalent to the rotational invariance of Nϕ modulo a
set of measure zero. The connection between Conway’s and Bourdon’s result is of
course given by (1.4) and the statement following it.

The rest of this paper is organized as follows. Section 2 contains a review of some
pertinent background and definitions, Section 3 is devoted to the proof of Theorem
1, and Section 4 to that of Theorem 2.

2. Preliminaries

In this section we briefly review some basic concepts connected with harmonic
measures. Let Ω ⊂ C be a bounded domain with smooth boundary. If f ∈ C(∂Ω),
then there is a unique function uf ∈ C(clos Ω) that is harmonic in Ω and agrees
with f on ∂Ω (see, e.g., [Ke], Chap. 11, [ABR], Chap. 11, [C], Chap. 10, [F], Chap.
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MEASURES INDUCED BY ANALYTIC FUNCTIONS 73

1). For a point a ∈ Ω the map f 7→ uf(a) is then a positive linear functional on
C(∂Ω) that takes 1 to 1; hence there is a probability measure ω = ωa such that
uf(a) =

∫
∂Ω
fdωa for all f ∈ C(∂Ω). We refer to this measure as harmonic measure

on ∂Ω with respect to Ω, at a. This measure is in fact given by a smooth density
ρ = ρa, so that dωa = ρadm, where m is one-dimensional Lebesgue measure on ∂Ω.
If E ⊂ ∂Ω is a Borel set, then the function u(z) = ωz(E) is a bounded harmonic
function with nontangential limits equal to 1 a.e. [m] on E and 0 a.e. [m] on ∂Ω\E.
This fact gives us an alternate characterization of ωa(E).

Harmonic measure can be studied by means of Green’s functions. The Green’s
function of Ω with pole at a is the unique function G ∈ C(clos Ω \ {a}) such that
G ≡ 0 on ∂Ω and G(z) − log |z − a| extends to a harmonic function in Ω. Then
ρ = ρa is given by ρ = 1

2π
∂G
∂n , where ∂

∂n is the directional derivative along the
outward pointing unit normal to ∂Ω.

We will also make use of the connection between harmonic measure and Brownian
motion. For the definition and basic properties of Brownian motion, see, e.g., [PS],
[P]. We will think of Brownian motion on C starting at a simply as a probability
measure P on the set of continuous paths X : [0,∞) → C for which X(0) = a.
With Ω as above let τX = sup{t : X([0, t]) ⊂ Ω}. Then τX < ∞ almost surely,
and by a famous theorem of Kakutani, we have that ωa(E) = P (X(τX) ∈ E) (see
[K], [P]).

We now discuss the connection between induced measures and harmonic mea-
sures, which will be of basic importance in this paper. By the Uniformization
Theorem ([AS], [Sp]) there is an analytic covering map ϕ of the unit disk U onto
Ω taking 0 to a. The nontangential limit function of ϕ takes values a.e. in ∂Ω. If
u ∈ C(clos Ω) is harmonic in Ω, then u ◦ ϕ is a bounded harmonic function in U
with nontangential limit function u ◦ ϕ.

Hence

u(a) = u ◦ ϕ(0) =
∫
u ◦ ϕ

(
eiθ
) dθ

2π
=
∫
u(z)dµϕ(z),

so we see that ωa = µϕ.
For the proof of Theorem 2 we will need to extend these ideas to certain Riemann

surfaces. A finite bordered Riemann surface is a subset of a compact Riemann
surface whose boundary consists of a finite number of analytic (or smooth) simple
closed curves. With easy and obvious modifications most of the facts we have
been discussing extend to these surfaces. In fact the surfaces we will use will all
be constructed to have a natural projection π to C via which we can get natural
definitions of Lebesgue measure on the boundary and Brownian motion on the
surface. The Uniformization Theorem in the form which we will need states that
if a Riemann surface R (not necessarily finite bordered) supports a nonconstant
bounded analytic function and a ∈ R, then there is an analytic covering map ϕ of
U onto R taking 0 to a.

3. Proof of Theorem 1

Let µ ≥ 1 be a compactly supported measure on C satisfying
a)
∫
u(z)dµ(z) = u(0) for any harmonic polynomial u and

b)
∫

log |z − w|dµ(w) ≥ log |z| for all z ∈ C.
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74 CARL SUNDBERG

Let K be the support of µ and L be the closure of the set{
z ∈ C :

∫
log |z − w|dµ(w) > log |z|

}
.

It follows from a) that L is compact, and we claim that L is a connected set
containing 0. To prove this, note that if it were not true then there would exist a
bounded connected open set U with smooth boundary such that 0 /∈ U , U ∩L = ∅,
and ∂U ∩ (L ∪ {0}) = ∅. The function of z given by∫

log |z − w|dµ(w) − log |z|

would then be a nonnegative subharmonic function in U that vanished on a neigh-
borhood of ∂U . It would follow that this function vanished on all of U , which would
contradict the definition of L since U ∩ L 6= ∅.

We are going to construct a sequence of bounded, smoothly bounded domains
Ωn ⊂ C containing 0 such that ∂Ωn → K, clos Ωn → L, and ωΩn approaches µ
weakly, where ωΩn is harmonic measure with respect to Ωn, at 0. As we have
discussed in Section 2, if ϕn ∈ H∞0 is a covering map of Ωn such that ϕn(0) = 0,
then ϕn will satisfy the conditions of the conclusion of the theorem. The domains
Ωn are obtained by setting ε = 1

n , n = 1, 2, . . . , in the following construction.
Fix an ε > 0 and let

V = {z ∈ C : dist(z,K) < ε},
W = {z ∈ C : dist(z, L) < ε}.

If Γ ⊂ C is a simple closed curve, we denote by Int Γ the bounded component of
C\Γ, and by Ext Γ the unbounded component of C\Γ. There exist pairwise disjoint
smooth simple closed curves Γ0, . . . ,Γn contained in W \ L such that

L ⊂ Int Γ0 ∩
N⋂
j=1

Ext Γj ,

each bounded component of C \ W is contained in
⋃N
j=1 Int Γj , each Int Γj for

j = 1, . . . , N contains a bounded component of C \W , and

Int Γj ∩ Int Γk = ∅ for 1 ≤ j, k ≤ N, j 6= k

(see e.g. [C]); of course it may happen that N = 0. Note that by a) the unbounded
components of C \K and C \L coincide. By moving the curves Γ0, . . . ,Γn slightly
we obtain pairwise disjoint smooth simple closed curves Γ′0, . . . ,Γ′N satisfying the
same conditions as Γ0, . . . ,ΓN and such that

Γ′0 ⊂ Int Γ0

and
Γ′j ⊂ Ext Γj for j = 1, . . . , N.

Denote the space between Γj and Γ′j by Aj , i.e.

A0 = Int Γ0 ∩ Ext Γ′0,

Aj = Ext Γj ∩ Int Γ′j for j = 1, . . . , N.

Let χ ≥ 0 be a rotationally symmetric continuous function supported in

{z ∈ C : |z| < dist (L,Γ′0 ∪ · · · ∪ Γ′n)}
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and having integral 1. Then ν = χ ∗ µ is a continuous function times area measure
with support in V such that the closure of{

z ∈ C :
∫

log |z − w|dν(w) > log |z|
}

is contained in Int Γ′0 ∩
⋂N
j=1 Ext Γ′j . Using the mean value property for harmonic

functions and the fact that log |z − w| is a subharmonic function of z, it is easy to
show that ν satisfies a) and b).

For a large integer n > 1√
2ε

to be determined in the course of the proof, we divide

up C into small squares using the lines x, y = j
n , j ∈ Z. Let {Sk} denote those

among these small squares having positive ν-measure, and let zk be the center of
Sk. If n is sufficiently high, then

Sk ⊂ Int Γ′0
and

Sk ⊂
N⋂
j=1

Ext Γ′j

for all k.
We need some estimates on the logarithmic potential of the measure

∑
j ν(Sj)δzj ,

on
⋃
k ∂Sk. Fix j, and let w ∈ Sj . The function

z 7→
∣∣∣∣z − zjz − w

∣∣∣∣
attains its minimum on

⋃
k ∂Sk on ∂Sj where it is clearly bounded below by 1

2
√

2
.

Hence if z ∈
⋃
k ∂Sk, then

(3.1) ν(Sj) log |z − zj| ≥
∫
Sj

log |z − w|dν(w) − 3
2

log 2 · ν(Sj).

For δ > 0 a small number to be determined, if |z − zj | > δ we can do better: then∣∣∣∣z − zjz − w

∣∣∣∣ ≥ δ

δ + 1√
2n

for w ∈ Sj , so

(3.2) ν(Sj) log |z − zj| ≥
∫
Sj

log |z − w|dν(w) − log
(

1 +
1√
2δn

)
ν(Sj).

For j = 0, . . . , N let vj be the function that is continuous on closAj and harmonic
in Aj with boundary values

vj = 1 on Γ′j ,
vj = 0 on Γj ,

and set

M =
N∑
j=0

∫
Γj

∣∣∣∣∂vj∂n
∣∣∣∣ |dz|2π

.

Now pick δ so small that

ν({w : |w − z| < 2δ}) < ε

12M log 2
for all z ∈ C.
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Then, if n > 1√
2δ

is large enough,

log
(

1 +
1√
2δn

)
<

ε

8M
.

Hence, by (3.1) and (3.2),

log |z| −
∑

ν(Sj) log |z − zj| < log |z| −
∫

log |z − w|dν(w) +
ε

4M

for z ∈
⋃
j ∂Sj , so since ν satisfies b) we see that

(3.3) log |z| −
∑

ν(Sj) log |z − zj| <
ε

4M
for z ∈

⋃
j

∂Sj.

Define

Ω̃ =
{
z : log |z| −

∑
ν(Sj) log |z − zj | −

ε

4M
< 0
}
∪ {∞}.

From the definition of Sj and the fact that zj is the center of Sj, zj must be of

the form k1+ 1
2

n + i
k2+ 1

2
n for some integers k1, k2. Thus zj 6= 0, so we see that 0 ∈ Ω̃.

It is easy to see that Ω̃ is a connected open subset of the Riemann sphere.
Denote the Green’s function for Ω̃ with pole at 0 by GΩ̃. Clearly

GΩ̃(z) = log |z| −
∑

ν(Sj) log |z − zj| −
ε

4M
.

From the above formula for GΩ̃ we see that GΩ̃ extends to a harmonic function in
C\({zj}∪{0}) that goes to negative infinity at∞, and ∂Ω̃ is exactly the set of points
at which it is 0. It follows from (3.3) that ∂Ω̃ ⊂

⋃
Sk. Fix k, let −η = sup∂Sk GΩ̃,

and let U =
{
z ∈ Sk : GΩ̃(z) > − 1

2δ
}

. Since GΩ̃ is harmonic in Sk \{zk}, it is easy
to see that U is connected and simply connected, and obviously zk ∈ U . Let f be
a conformal map of D onto U such that f(0) = zk. Then GΩ̃ ◦ f(z) = A log 1

|z| +B

for some A, B; hence γk = ∂Ω̃ ∩ Sk = {z ∈ Sk : GΩ̃(z) = 0} is a smooth simple
closed curve such that zk ∈ Int γk.

Since ∫
γ

∂

∂nz
log |z − z0|

|dz|
2π

=

{
1 if z0 ∈ Int γ,
0 if z0 ∈ Extγ,

if γ is any smooth simple closed curve, it is easy to see that

(3.4) ωΩ̃(Sj) =
∫
γj

∂GΩ̃(z)
∂n

|dz|
2π

= ν(Sj) for all j.

Since diamSj < ε, this shows that ωΩ̃ is close to ν in the appropriate sense, and of
course ν is close to µ. We must find a bounded domain Ω for which ωΩ is close to
ωΩ̃. To this end, we note that from (3.3) and the fact that

log |z| −
∑

ν(Sj) log |z − zj | −
ε

4M
is a subharmonic function on the complement of

⋃
Sj that is negative on

⋃
∂Sj

and at ∞, we see that
⋃N
j=0 closAj ⊂ Ω̃. Let

Ω = Ω̃ ∩ Int Γ0 ∩
N⋂
k=1

Ext Γk;
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then ∂Ω =
⋃
γj ∪

⋃
Γk. Since

log |z| −
∫

log |z − w|dν(w) ≡ 0

on each Aj , if n is high enough we have

(3.5)
∣∣∣log |z| −

∑
ν(Sj) log |z − zj |

∣∣∣ < ε

4M
for z ∈ Aj .

Let v be a continuous function in clos Ω that is harmonic in Ω, with boundary
values

v(z) = −
(

log |z| −
∑

ν(Sj) log |z − zj | −
ε

4M

)
, z ∈

⋃
Γk,

v(z) = 0, z ∈
⋃
γj .

Then the Green’s function for Ω with pole at 0 is

GΩ(z) = log |z| −
∑

ν(Sj) log |z − zj| −
ε

4M
+ v(z).

By (3.5) we see that |v(z)| < ε
2M for all z, so by another application of (3.5), we

see that
− ε

M
< GΩ(z) < 0

for z ∈ Aj . This clearly implies that

0 ≤ ∂GΩ

∂n
<

ε

M

∣∣∣∣∂vj∂n
∣∣∣∣ on Γj ,

so by the definition of M ,

(3.6) ωΩ

(⋃
Γj
)

=
∑
j

∫
Γj

∂GΩ(z)
∂n

|dz|
2π

< ε.

We now estimate ‖ωΩ − ωΩ̃‖. To do this let f be a continuous function on ∂Ω,
‖f‖∞ ≤ 1, let ũ be continuous in clos Ω̃, harmonic in Ω̃ with boundary values equal
to f on ∂Ω̃ =

⋃
γj , and let u be continuous in clos Ω, harmonic in Ω with boundary

values f . Then u − ũ is continuous in clos Ω and harmonic in Ω with boundary
values 0 on ∂Ω̃. Since |u− ũ| ≤ 2 on

⋃
Γj, we see that∣∣∣∣∫ f dωΩ −

∫
f dωΩ̃

∣∣∣∣ = |u(0)− ũ(0)| ≤ 2ωΩ

(⋃
Γj
)
< 2ε.

This of course shows that ‖ωΩ − ωΩ̃‖ < 2ε, and completes the proof. �

4. Proof of Theorem 2

As in the proof of Theorem 1, we will produce our desired function ϕ by means of
a covering map, but in this case it will be a covering of a Riemann surface which we
will construct. The basic step is a familiar construction which we will now describe.
Let Ω1, Ω2 be two domains in C and I a closed arc contained in their intersection.
Let Ω′2 be a copy of Ω2, disjoint from Ω2 and Ω1, and form a Riemann surface R

by gluing each side of I on Ω1 to the opposite side on Ω′2. We will refer to this
construction as attaching Ω′2 to Ω1 along I. By a slight abuse of terminology we
will say that Ω1 ⊂ R and Ω′2 ⊂ R (rather than, more accurately, Ω1 \ I ⊂ R and
Ω′2 \ I ⊂ R). We will denote the points on a particular sheet by subscripts; e.g., if
0 ∈ Ω1, we will denote by 0Ω1 the copy of 0 in R on the sheet Ω1.
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Throughout this proof we will denote by D a fixed copy of the unit disk [|z| < 1]
and by ∆ the disk [|z| < 2]. Suppose {Ij} is an infinite collection of closed arcs
contained in D, clustering only on ∂D. Let {∆j} be a family of copies of ∆, pairwise
disjoint and each disjoint from D, and form a Riemann surface R by attaching ∆j

to D along Ij , for each j. We have the natural projection π : R → C, with range
∆.

The function π is a nonconstant bounded analytic function on R; hence, as
discussed in the last paragraph of Section 2, there is an analytic covering map χ
from the unit disk, which in this context we will call U , onto R such that χ(0) = 0D.
Set ϕ = π ◦ χ.

The theorem will be proven by showing that the arcs Ij can be chosen so that µϕ
is as stated. To do this it will be convenient for us to use Brownian motion on R,
which we can define simply by lifting Brownian motion on C. To be more precise,
let X : [0,∞)→ C be a path such that X(0) = 0 and X(t) is not an endpoint of any
of the Ij , for any t ≥ 0. Then there is a unique lift X̃ of X to a path on R starting
at 0D, i.e. there is a unique path X̃ on R such that X̃(0) = 0D and π ◦ X̃ = X .
This lift exists for an interval in t depending on X , which we will call [0, τX). Now
suppose that instead of considering a single path X we consider Brownian motion
in C starting at 0. For almost all such paths X , X(t) is never an endpoint of one of
the Ij and τX <∞. The lifts of these paths give us a natural definition of Brownian
motion on R starting at 0D. It is clear that X(τX) lies either on ∂D or ∂∆. If
we attach ∂D to R in the obvious way, we see that if X(τX) ∈ ∂D, then X̃ must
hit ∂D. We can now define a measure ωR on ∂D by the following prescription: if
E ⊂ ∂D is measurable, then ωR(E) is the probability that Brownian motion on R

starting at 0D will hit E. As the notation and the discussion in Section 2 suggest,
ωR can be thought of as harmonic measure on (part of) ∂R. We could in fact make
this suggestion more precise by a careful definition of ∂R, but this would introduce
technicalities that we wish to avoid.

Since analytic functions preserve Brownian motion (see, e.g., [P]), the image
under χ : U → R of Brownian motion on U starting at 0 is the Brownian motion
on R that we have been discussing (with a changed clock). Now suppose X is a
path starting at 0 ∈ U such that χ ◦X leaves R at a point w0 ∈ ∂D, at time t0.
By the properties of covering maps, X(t0) = z0 ∈ ∂U , and we see that ϕ(z0) =
ϕ(X(t0)) = π(w0) = w0. Thus for E ⊂ ∂D measurable we see that ωR(E) can be
interpreted as the probability that a Brownian path in U starting at 0 will hit ∂U
at a point z for which ϕ(z) ∈ E. This of course shows that ωR is the restriction of
µϕ to ∂D.

We will show that the intervals Ij can be chosen in such a way that

dωR

(
eiθ
)

=
1
2
dθ

2π
.

Obviously µϕ is supported on [|z| = 1] ∪ [|z| = 2]; since
∫
udµϕ = u(0) for all

harmonic polynomials, it will then follow easily that µϕ is as desired.
The choice of intervals will be made in infinitely many stages, and to reflect

this we will change the notation a bit. We will pick numbers 1
2 < s1 < s2 < . . . ,

with sj ↗ 1, and for each j ≥ 1 a pairwise disjoint collection {Ijk}njk=1 of arcs on
[|z| = sj ]. Set R0 = D and for l ≥ 1 let Rl be the Riemann surface obtained
by attaching copies ∆jk of ∆ to D along Ijk for 1 ≤ j ≤ l, 1 ≤ k ≤ nj . Let
Il = Rl−1 \

⋃nl
k=1 Ilk.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MEASURES INDUCED BY ANALYTIC FUNCTIONS 79

The surface Rl is a finite bordered Riemann surface, as discussed in Section 2.
Let ωRl

, ωIl denote harmonic measure with respect to Rl, resp. Il, at 0D, restricted
to ∂D. These are given by smooth densities, i.e. there are smooth functions ρRl

,
ρIl such that

dωRl

(
eiθ
)

= ρRl

(
eiθ
) dθ

2π
,

dωIl

(
eiθ
)

= ρIl

(
eiθ
) dθ

2π
.

We are going to show (in Lemma 4.1) that we can pick a decreasing sequence of
numbers εj , 0 < εj <

1
2j+1 , and the numbers sj and intervals Ijk so that the

following will be true:

log 1
sj

log 1
sj−1

< εj for j ≥ 2,(4.1)

log 2−sj
1−sj

log 2−sj
1
2 |Ijk|

< εj for j ≥ 1 and 1 ≤ k ≤ nj ,(4.2)

ρIl

(
eiθ
)
>

1
2

for all eiθ, l ≥ 1,(4.3) ∫
ρRl

(
eiθ
) dθ

2π
<

1
2

+ εl for l ≥ 1.(4.4)

(In (4.2) |Ijk| is the length of Ijk.)
We will now show that if R is formed as above with numbers sj and intervals

Ijk satisfying (4.1)–(4.4), then ωR will be as desired. For l = 1, 2, . . . let Rl̂ be the
Riemann surface formed by attaching ∆jk to D along Ijk for all j 6= l, 1 ≤ k ≤ nj.
Fixing l ≥ 1 for the moment, we let q be the probability that Brownian motion on
Rl−1 starting at 0D will hit the circle [|z| = sl]D, and we let p be the probability
that it will hit (

⋃nl
k=1 Ilk)D. The harmonic measure of [|z| = 1] with respect to

[sl−1 < |z| < 1] at a point z such that |z| = sl is easily calculated to be 1−
log 1

sl

log 1
sl−1

;

this is of course the probability that a path in [sl−1 < |z| < 1] starting on [|z| = sl]
will exit [sl−1 < |z| < 1] in the set [|z| = 1], and by (4.1) it is greater than 1− εl.
Hence

(4.5) q(1− εl) <
∫
ρRl−1

(
eiθ
) dθ

2π
<

1
2

+ εl−1,

where the right-hand inequality is (4.4). The probability that Brownian motion on
Rl−1 starting at 0D will hit [|z| = sl]D but miss (

⋃nl
k=1 Ilk)D is clearly q − p. On

the other hand, this probability is greater than∫
ρIl

(
eiθ
) dθ

2π
,

which by (4.3) is greater than 1
2 . Hence

(4.6) q − p > 1
2
.

Combining (4.5) and (4.6), we see that

(4.7) p <
2εl−1 + εl
2(1− εl)

.
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With the same fixed l, let p̂ be the probability that a Brownian path on Rl̂ starting
at 0D will hit (

⋃nl
k=1 Ilk)D. We wish to show that p̂ < p+εl+1. To this end, recalling

the discussion at the beginning of this section, we consider Brownian paths on Rl̂

and Rl−1 starting at 0D to be lifts of Brownian paths on C starting at 0 (neglecting
the set of paths of probability zero that hit an endpoint of any of the intervals Ijk).
We can then think of p̂− p as the probability that such a path has a lift to Rl̂ that
hits (

⋃nl
k=1 Ilk)D before exiting Rl̂, but has a lift to Rl−1 that exits Rl−1 before

hitting (
⋃nl
k=1 Ilk)D. Consider such a path. In order for this to happen, the lift to

Rl̂ must hit a point b ∈ ∆jk, for some j ≥ l+ 1, 1 ≤ k ≤ nj, that lies over [|z| = 1]
before it hits (

⋃nl
k=1 Ilk)D, and then subsequently hit (

⋃nl
k=1 Ilk)D. But in order to

do this it must travel from b back to D, and the only way it can do this is to pass
back through Ijk. The probability it will do this is the harmonic measure of Ijk
with respect to ∆jk \ Ijk at b, which is easily seen to be less than

log 2+sj
1−sj

log 2+sj
1
2 |Ijk|

by using the observations that, if zjk is the center of Ijk, then

[|z − zjk| < 2 + sj ] ⊃ ∆jk

and

|Ijk| ⊂
[
|z − zjk| <

1
2
|Ijk|

]
.

By (4.2) we thus see that

p̂− p <
log 2+sj

1−sj

log 2+sj
1
2 |Ijk|

< εj ≤ εj+1,

so by (4.7) we have

p̂ < εl+1 +
2εl−1 + εl
2(1− εl)

.

Clearly, p̂ is the probability that a Brownian path on R starting at 0D ever
hits

⋃nl
k=1 ∆lk, so this inequality with l replaced by l + 1, l + 2, . . . shows that the

probability that a Brownian path on R starting at 0D ever hits
⋃∞
j=l+1

⋃nj
k=1 ∆jk

is less than
∞∑

j=l+1

[
εj+1 +

2εj−1 + εj
2(1− εj)

]
.

Since εj < 1
2j+1 , this sum is less than 1

2l−1 . Now a path on R starting at 0D that
never hits

⋃∞
j=l+1

⋃nj
k=1 ∆jk is actually a path on Rl, so, using the Brownian motion

picture of ωRl
, we see that we have shown that for E ⊂ ∂D,

(4.8) |ωR(E)− ωRl
(E)| < 1

2l−1
.

It is clear that ρRl
> ρIl , so by (4.3) we see that ρRl

> 1
2 . Thus, if E ⊂ ∂D,

(4.9) ωRl
(E) =

∫
eiθ∈E

ρRl

(
eiθ
) dθ

2π
>

1
2
|E|
2π

.
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Applying this to F = ∂D \ E, we get

ωRl
(E) < ωRl

(∂D)− 1
2
|F |
2π

= ωRl
(∂D)− 1

2
+

1
2
|E|
2π

,

so by (4.4) we see that

(4.10) ωRl
(E) < εl +

1
2
|E|
2π

<
1

2l+1
+

1
2
|E|
2π

.

Combining (4.9) and (4.10) with (4.8), we see that∣∣∣∣ωR(E)− 1
2
|E|
2π

∣∣∣∣ < 1
2l−1

+
1

2l+1
for all l,

so ωR(E) = 1
2
|E|
2π , as desired.

It remains to show that we can pick the sj and Ijk so that (4.1)–(4.4) are satisfied.
Changing notation again, we will show this inductively by proving the following:

Lemma 4.1. Suppose R is a Riemann surface formed by attaching a finite number
of copies of ∆ to D along arcs all lying within [|z| ≤ r0], and such that ρR > 1

2 on
∂D. Then, given ε > 0, we can pick s, r0 < s < 1, arbitrarily close to 1, and a
finite number of pairwise disjoint arcs Ij of arbitrary small length lying on [|z| = s],
such that if R̃ is the Riemann surface formed by attaching pairwise disjoint copies
∆j of ∆ to R along Ij, then

(4.11) ρR\
⋃
Ij >

1
2

on ∂D

and

(4.12)
∫
ρ

R̃

(
eiθ
) dθ

2π
<

1
2

+ ε.

Proof. The proof of this lemma will be accomplished in two steps, in the first of
which we will select some auxiliary arcs {Jk} along [|z| = s], and in the second of
which we define the arcs Ij as certain subarcs of the Jk.
Step 1. We can pick s, r0 < s < 1, arbitrarily close to 1 and a finite number of
pairwise disjoint closed arcs Jk lying on [|z| = s]D such that

(4.13) ρR\
⋃
Jk >

1
2

on ∂D

and

(4.14)
∫
ρR\

⋃
Jk

(
eiθ
) dθ

2π
<

1
2

+ ε,

where, as above, ρR\
⋃
Jk is the density with respect to normalized Lebesgue measure

of harmonic measure with respect to R \
⋃
Jk at 0, restricted to ∂D.

If one thinks of the Brownian measure picture of harmonic measure, this step
is fairly obvious intuitively; one selects the intervals in such a way as to “block” a
suitable set of Brownian paths. The rigorous justification is, however, unfortunately
long and complicated.

We need some definitions and lemmas.

Definition 4.1. For 0 < s < 1, As = [s < |z| < 1].

Definition 4.2. For a function f defined on ∂D and an arc K ⊆ ∂D,

VarK f = sup{|f(z)− f(w)| : z, w ∈ K}.
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Definition 4.3. If K is a subarc of some circle [|z| = r] and λ > 0, then λK is the
closed subarc of [|z| = r] with the same center as K, and length λ|K| (this assumes
λ|K| < 2πr).

Lemma 4.2. Suppose u is a real-valued harmonic function in As, such that |u(z)|
≤ 1 for all z ∈ As and u(z)→ 0 as |z| ↗ 1. Then∣∣∣∣ ∂∂θ ∂u(z)

∂n

∣∣∣∣
z=eiθ

∣∣∣∣ < 4
(1− s)2

.

Proof. Let Ãs = [s < |z| < 1
s ] and define ũ in Ãs by

ũ(z) =


u(z) s < |z| < 1,
0 |z| = 1,
−u
(

1
z̄

)
1 < |z| < 1

s .

Then ũ is harmonic in Ãs, and of course |ũ(z)| ≤ 1 for all z ∈ Ãs. Hence, if |z0| = 1,
then ũ is harmonic in [|z − z0| < 1− s] and has modulus bounded by 1 there. Now
if v is harmonic in [|z| < 1] and has modulus bounded by 1 there, then it is easy to

calculate that
∣∣∣∣ ∂2v
∂x∂y

∣∣∣
x=y=0

∣∣∣∣ ≤ 4; translating and rescaling this estimate proves the

lemma. �
Lemma 4.3. Suppose 0 < r < s < 1, 0 ≤ δ < 1, n is a positive integer, and

E =
{
seiθ :

2πk
n
≤ θ ≤ 2π

n
(k + δ) for some k ∈ {0, 1, . . . , n− 1}

}
,

and that u is the continuous function on closAr that is harmonic in Ar \ E and
with boundary values

u = 1 on [|z| = r],

u = 0 on E ∪ [|z| = 1].

Then
Var[|z|=1]

∂u

∂n
≤ 2π

n

4
(1 − s)2

.

Proof. This follows from Lemma 4.1 and the obvious fact that u
(
e2πi/nz

)
= u(z).

�
Lemma 4.4. Suppose K is a closed proper subarc of ∂D, 0 < λ < 1, 1

2 < r <

1 is such that 1 − r < 1
8 (1 − λ)|K|, and a, b > 0. Let RK,r be the interior of{

teiθ : r < t < 1, eiθ ∈ K
}

and let E ⊂ closRK,r consist of finitely many closed
subarcs of [|z| = s], where r < s < 1. Suppose u is a real-valued continuous function
on closRK,r that is harmonic in RK,r \ E and such that

u = 0 on E ∪K,

|u| ≤ a log
1
r

on [|z| = r],

|u| ≤ b log
1
r

on the other two sides of RK,r.

Then on λK we have the estimate∣∣∣∣∂u∂n
∣∣∣∣ ≤ 4 log 2 ·

[
a+ bκ

(
4 log 1

r

(1− λ)|K|

)]
,
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where κ is a function such that κ(h)↘ 0 as h↘ 0.

Proof. Write u = u+ − u−, where u± are continuous on closRK,r and harmonic in
RK,r \ E, and such that

u± ≥ 0 in RK,r,

u± = 0 on E ∪K,

u± ≤ a log
1
r

on [|z| = r],

u± ≤ b log
1
r

on the other two sides of RK,r.

Let v be the bounded harmonic function on RK,r with boundary values

v = a log
1
r

on [|z| = r],

v = 0 on [|z| = 1],

v = b log
1
r

on the other sides of RK,r,

and extend v to ṽ on R̃K,r, the interior of{
teiθ : eiθ ∈ K, r < t <

1
r

}
,

by defining ṽ(z) = −v
(

1
z̄

)
for 1

z̄ ∈ RK,r.
Suppose z0 ∈ λK and |z − z0| < 1 − r. We wish to estimate ṽ(z). By our

conditions relating λ, r, and |K| we see that

z ∈ S =
{
teiθ : r < t <

1
r
, eiθ ∈ 1

2
(1 + λ)K

}
.

Using a conformal mapping of R̃K,r onto a rectangle, one sees that the harmonic
measure of the radial sides of R̃K,r with respect to R̃K,r at z is less than

κ

(
4 log 1

r

(1− λ)|K|

)
,

where κ(h) is defined as follows. Let Rh be a rectangle with horizontal dimension 1
and vertical dimension h. Then κ(h) is the harmonic measure of the vertical sides
of Rh, with respect to Rh, at the center of Rh.

Thus in the disk [|z − z0| < 1− r] we have the estimate

|ṽ(z)| < a log
1
r

+ b log
1
r
· κ
(

4 log 1
r

(1 − λ)|K|

)
.

It is easy to show that the gradient at the origin of a real-valued harmonic function
in [|z| < 1], whose absolute value is bounded by 1, is bounded by 2 (in fact, with
a little more work one can show it is bounded by 4

π ); rescaling this to the disk
[|z − z0| < 1− r], we see that∣∣∣∣∣ ∂v(z)

∂n

∣∣∣∣
z=z0

∣∣∣∣∣ = |∇ṽ(z)| ≤ 2
[
a+ bκ

(
4 log 1

r

(1− λ)|K|

)]
log 1

r

1− r

< 4 log 2 ·
[
a+ bκ

(
4 log 1

r

(1 − λ)|K|

)]
.
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Since 0 ≤ u± ≤ v, it follows that∣∣∣∣∣ ∂u(z)
∂n

∣∣∣∣
z=z0

∣∣∣∣∣ =

∣∣∣∣∣ ∂u±(z)
∂n

∣∣∣∣
z=z0

∣∣∣∣∣−
∣∣∣∣∣ ∂u−(z)

∂n

∣∣∣∣
z=z0

∣∣∣∣∣ ≤
∣∣∣∣∣ ∂v(z)
∂n

∣∣∣∣
z=z0

∣∣∣∣∣ ,
and the lemma follows. �

We now proceed with Step 1. Our main tool will be estimates on Green’s func-
tions of various surfaces with poles at 0D, which we will denote by G(·), where (·)
will be the symbol for the surface. So, in particular,

ρR =
∂GR

∂n
on ∂D.

It is easy to see, using the Brownian motion picture of harmonic measure, that

(4.15) ρR ≤ 1 on ∂D.

We may assume that ε < min∂D ρR − 1
2 and ε < 1

75 . Let η be a positive number
such that

1− 1
3
ε < η2 < 1.

Divide ∂D into adjacent closed arcs Kl, all of the same length |K|, so small that

(4.16) VarKl∪Kl′ ρR < ε2 for any two adjacent arcs Kl and Kl′ ,

then pick r between 0 and 1, so close to 1 that

(4.17) 1− r < 1
8

(η − η2)|K|

and

(4.18) κ

(
4 log 1

r

(η − η2)|K|

)
< ε2,

where κ is as in Lemma 4.4, and so that

(4.19)
∣∣GR

(
teiθ
)
− ρR

(
eiθ
)

log t
∣∣ < ε2 log

1
t

for all eiθ and r ≤ t < 1.

For s between r and 1, define

Rs = R \ [s ≤ |z| < 1]D,

then pick s > 1
2 (1 + r) so close to 1 that

GR

(
reiθ

)
< GRs

(
reiθ

)
< GR

(
reiθ

)
+ ε2 log

1
r

for all eiθ.

It will then follow that if E is any finite collection of pairwise disjoint closed subarcs
of [|z| = s]D, then

(4.20)
∣∣GR

(
reiθ

)
−GR\E

(
reiθ

)∣∣ < ε2 log
1
r

for all eiθ.

Of course it will also be true that ρR\E ≤ ρR on ∂D.
For each l, set

(4.21) ρl = min
Kl

ρR.

With an integer n > 8π
ε2(1−s)2 , define, for 0 < δ < 1,

Eδ =
{
seiθ :

2πk
n
≤ θ ≤ 2π(k + δ)

n
for some k ∈ {0, 1, . . . , n− 1}

}
.
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For µ > 0, define uδ,µ to be the bounded harmonic function inAr\Eδ with boundary
values

uδ,µ = −µ log
1
r

on [|z| = r]

uδ,µ = 0 on [|z| = 1] ∪ Eδ.

As a function of δ, min[|z|=1]
∂uδ,µ
∂n is continuous and takes the values µ at δ = 0+

and 0 at δ = 1−. Since ρl > 1
2 + ε, we see that for each l there exists a δl between

0 and 1 such that

min
[|z|=1]

∂uδl,ρl
∂n

=
1
2

+
1
3
ε.

We now define the set E as follows:

E =
⋃
l

{
seiθ ∈ Eδl : eiθ ∈ ηKl

}
.

We can clearly write E =
⋃
Jk, where {Jk} is as described in the statement of Step

1, and we will now show that (4.13) and (4.14) are satisfied.
We define, for every l, ul to be the bounded harmonic function in Ar \Eδl with

boundary values

ul = −ρl log
1
r

on [|z| = r],

ul = 0 on [|z| = 1] ∪ Eδl .

By Lemma 4.3 and the choice of n,

(4.22) Var[|z|=1]
∂ul
∂n

< ε2,

and by definition of δl

(4.23) min
[|z|=1]

∂ul
∂n

=
1
2

+
1
3
ε.

It follows from (4.16), (4.19), and (4.20) that

(4.24)
∣∣GR\E

(
reiθ

)
− ul

(
reiθ

)∣∣ < 3ε2 log
1
r

for eiθ ∈ Kl ∪Kl′ ,

where Kl′ is adjacent to Kl.
From (4.24), (4.17), and (4.19) together with the facts that ρR ≤ 1 and |GR\E | ≤

|GR| it follows that we can now apply Lemma 4.4 with the role of

• K played by ηKl,
• that of λ played by η,
• that of u played by GR\E − ul,
• that of E played by Eδl ,
• that of a played by 3ε2,
• and that of b played by 2 + ε2.
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By (4.18), (4.22), and (4.23) we thus see that, on η2Kl,∣∣∣∣ρR\E −
(

1
2

+
1
3
ε

)∣∣∣∣ =
∣∣∣∣∂GR\E

∂n
−
(

1
2

+
1
3
ε

)∣∣∣∣
≤
∣∣∣∣∂GR\E

∂n
− ∂ul
∂n

∣∣∣∣+
∣∣∣∣∂ul∂n

−
(

1
2

+
1
3
ε

)∣∣∣∣
< 4 log 2 ·

[
3ε2 +

(
2 + ε2

)
κ

(
4 log 1

r

(η − η2)|K|

)]
+ ε2

< 25ε2.

Since ε < 1
75 , 1− η2 < 1

3ε, and ρR\E ≤ 1, it follows that (4.14) is satisfied.
It remains to be shown that (4.13) is satisfied. With R(2−η)Kl,r defined as in

the statement of Lemma 4.4, define vl to be the bounded harmonic function in
R(2−η)Kl,r \ E with boundary values

vl = −ρl log
1
|z| on the radial sides of R(2−η)Kl,r,

vl = −ρl log
1
r

on [|z| = r],

vl = 0 on
(
E ∩R(2−η)Kl,r

)
∪ (2− η)Kl.

One easily shows that
E ∩R(2−η)Kl,r = E ∩RηKl,r,

and it follows that vl ≤ ul ≤ 0 on R(2−η)Kl,r, so

∂vl
∂n
≥ ∂ul

∂n
≥ 0 on (2− η)Kl,

and so by (4.23)

(4.25)
∂vl
∂n
≥ 1

2
+

1
3
ε on (2− η)Kl.

It follows from (4.16), (4.19), and (4.20) that

(4.26)
∣∣GR\E

(
reiθ

)
− vl

(
reiθ

)∣∣ < 3ε2 log
1
r

for eiθ ∈ (2− η)Kl.

From (4.26) and (4.19) together with the facts that ρR ≤ 1 and |GR\E | ≤ |GR|
it follows that we can apply Lemma 4.4 with the role of

• K played by (2− η)Kl,
• that of λ played by 1

2−η ,
• that of u played by GR\E − vl,
• that of E played by E,
• that of a played by 3ε2,
• and that of b played by 2 + ε2.

By (4.18) we thus see that∣∣∣∣ρR\E −
∂vl
∂n

∣∣∣∣ =
∣∣∣∣∂GR\E

∂n
− ∂vl
∂n

∣∣∣∣
≤ 4 log 2 ·

[
3ε2 +

(
2 + ε2

)
κ

(
4 log 1

r

(1− η)|Kl|

)]
< 24ε2 on Kl.
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Since ε < 1
75 , (4.13) follows from this and (4.25). This completes Step 1.

Step 2. Let s and {Jk} be as in Step 1, and set

ε̃ =
1
2

+ ε−
∫
ρR\

⋃
Jk

(
eiθ
) dθ

2π
> 0.

With N a positive integer to be chosen later, we divide each Jk into 2N +1 subarcs
of length 1

2N+1 |Jk|, labeled sequentially as

Ik,1, . . . , Ik,2N+1.

For all k and for j = 0, 1, . . . , N we attach a copy ∆kj of ∆ to R along Ik,2j+1 to
get a Riemann surface which we will call R̃. Clearly

ρ
R̃
≥ ρR\

⋃
Jk >

1
2

on ∂D.

We will show that if N is big enough, then

(4.27)
∫
ρ

R̃

(
eiθ
) dθ

2π
<

∫
ρR\

⋃
Jk

(
eiθ
) dθ

2π
+ ε̃ =

1
2

+ ε,

which will complete the proof.
We need to define some auxiliary sets. For each k let Dk ⊂ D be an open disk

symmetric with respect to the reflection z 7→ s2

z̄ in the circle [|z| = s], with center
on the same radius as the center of Jk, and such that

closDk ⊂ [r0 < |z| < 1]D,
Jk ⊂ Dk,

and closDk ∩ closDk′ = ∅ if k 6= k′.

This is possible since s > 1
2 (1 + r) and |Jk| < 10−5(1 − s), as seen from the choice

of n in Step 1.
For a small δ > 0 to be determined in the course of the proof, let, for each k,

J−k ⊂ [|z| = s− δ]D ⊂ R

and

J+
k ⊂

[
|z| = s+

s

s− δ δ
]

D

⊂ R

be closed arcs that project radially onto Jk; note that J+
k is the reflection of J−k

through [|z| = s].
If η is between 0 and 1 and close enough to 1, and δ is small enough, then the

following will be true:

(4.28)
∣∣∣ρR\

⋃(η2J+
k ∪η2J−k )

(
eiθ
)
− ρR\

⋃
Jk

(
eiθ
)∣∣∣ < 1

3
ε̃ for all eiθ.

Because of (4.28), (4.27) will be a consequence of

(4.29)
∫
ρ

R̃

(
eiθ
) dθ

2π
<

∫
ρ

R\
⋃(η2J+

k ∪η2J−k )
(
eiθ
) dθ

2π
+

2
3
ε̃.

We can construct Brownian motion on R̃ starting at an arbitrary point on D just
as we did above for Brownian motion on R̃ starting at 0D. If one then thinks of the
Brownian motion description of harmonic measures, it is evident that (4.29) will
be a consequence of:

(4.30) The probability that a Brownian path on R̃ starting on⋃(
η2J+

k ∪ η2J−k
)

will hit ∂D is less than 2
3 ε̃.
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In our proof of (4.30) we will concentrate on the behavior of paths near a single
arc Jk. For each k let R′k be the part of R̃ formed by joining each ∆kj to Dk along
Ik,2j+1 for j = 0, 1, . . . , N . We will show that if δ is small enough and N is large
enough, then the following will be true:

(4.31)
The probability that a Brownian path on R′k starting on η2J+

k ∪
η2J−k will hit

⋃N
j=1 ∂∆kj is greater than 1− 2

3 ε̃.

Clearly (4.31) implies (4.30).
Since (4.31) just involves a single k, we may simplify our notation a bit by

dropping the index k, e.g. we write R′ for R′k.
Choose an integer m so large that(

5
6

)m
<

1
6
ε̃

and

dist
(
J+ ∪ J−, ∂D

)
>
η − η2

8m
|J |,

then choose a number p between 0 and 1, so close to 1 that

p2m > 1− 1
6
ε̃.

Let Ψ be a Möbius transformation that takes D (= Dk) to the unit disk and J
to a real interval symmetric about 0. For z ∈ D let

Dz = Ψ−1({w : |w −Ψ(z)| < σ}),

where σ > 0 is smaller than all of the following:

(i)
1

2m
dist

(
Ψ(η2J+ ∪ η2J−), ∂Ψ(ηJ+ ∪ ηJ−)

)
,

(ii) dist
(
Ψ(ηJ+ ∪ ηJ−), ∂Ψ(J)

)
,

(iii) dist
(
Ψ(ηJ+ ∪ ηJ−),Ψ(∂D)

)
,

(iv) dist (Ψ(J),Ψ(∂D)),
where by ∂Ψ(ηJ+ ∪ ηJ−), ∂Ψ(J) we mean just the endpoints of these arcs. (The
point of the cumbersome definition of Dz is symmetry: if z′0 is the reflection of z0

through [|z| = s], then Dz′0
is the reflection of Dz0 through [|z| = s].)

If δ is small, then the following will be true:

(4.32)

A Brownian path (on C) starting at a point z0 ∈ D lying on one
of the circles [|z| = s], [|z| = s − δ],

[
|z| = s+ s

s−δ δ
]

will, with
probability greater than p, hit an adjacent one of these circles
before leaving Dz0 .

We will say a path on D starting at a point z0 ∈ ηJ+ ∪ ηJ− completes a pass if
it hits [|z| = s] for the first time at a point z1 without leaving Dz0 , and then hits
[|z| = s − δ] ∪

[
|z| = s+ s

s−δ δ
]

without leaving Dz1 . Note that by our conditions
on σ, the point z1 will be in J . If the path does this m times in a row, we say
it has completed m successive passes. By our conditions on σ, if a path starts at
a point z0 ∈ η2J+ ∪ η2J− and completes m successive passes, then it will have
stayed within D, all of its hits on [|z| = s− δ]∪

[
|z| = s+ s

s−δ δ
]

will have been on
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ηJ+ ∪ ηJ−, and all of its hits on [|z| = s] will have been on J . Hence by (4.32) we
see that:

(4.33)
A Brownian path on D starting at a point
z0 ∈ η2J+∪η2J− will, with probability greater than p2m, complete
m successive passes.

We now wish to get an upper bound on the probability that a Brownian path
on D starting at a point z0 ∈ ηJ+ ∪ ηJ− will complete a pass and that at the time
of completion of the pass, its lift to R′ will still be on D. If δ is small enough and
N is large enough, our path will, with probability greater than 1

3 , hit [|z| = s] for
the first time at a point z1 ∈

⋃N
j=0 I2j+1, and do this without leaving Dz0 . Say

it does this, and that z1 ∈ I2j1+1. Let R′j1 be the Riemann surface formed by
attaching ∆j1 to D along I2j1+1. By symmetry about [|z| = s], if our path then

hits [|z| = s − δ] ∪
[
|z| = s+ s

s−δ δ
]

without leaving Dz1 , then at the time of this
hit its lift to R′j1 will be on ∆j1 or D with equal probability. However, it is not
difficult to see that if a path on D starting at z0 completes a pass and if at the time
of completion its lift to R′j1 is on the sheet ∆j1 , then at this time its lift to R′ will
be on

⋃N
j=0 ∆j (but not necessarily on the particular sheet ∆j1). Combining these

observations, we see that:

(4.34)
The probability that a Brownian path on D starting at a point
z0 ∈ ηJ+ ∪ ηJ− will complete a pass, and that at the time of
completion its lift to R′ will still be on D, is less than 5

6 .

Combining (4.33), (4.34) and our other observations, we see that:

(4.35)

A Brownian path on D starting at a point
z0 ∈ η2J+ ∪ η2J− will, with probability greater than

p2m −
(

5
6

)m
> 1− 1

3
ε̃,

complete m successive passes, at the time of completion of at least
one of which its lift to R′ will be on

⋃N
j=0 ∆j .

This statement clearly implies that a Brownian path on R′ starting on η2J+ ∪
η2J− will hit (π′)−1(ηJ+ ∪ ηJ−) ∩

⋃N
j=0 ∆j , where π′ is the natural projection on

R′. To prove (4.31) it remains only to show that if δ is fixed and N is made large
enough, then for every j = 0, 1, . . . , N , a Brownian path on R′ starting at a point
on (π′)−1(ηJ+∪ηJ−)∩∆j will, with probability greater than 1− 1

3 ε̃, hit ∂∆j . This
however is obvious, since |Ij | = 1

2N+1 |J |. This completes Step 2. Hence Theorem
2 is proved. �
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