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MEASURES INVARIANT UNDER THE GEODESIC FLOW
AND THEIR PROJECTIONS

CRAIG J. SUTTON

(Communicated by Michael Handel)

Abstract. Let Sn be the n-sphere of constant positive curvature. For n ≥ 2,
we will show that a measure on the unit tangent bundle of S2n, which is
even and invariant under the geodesic flow, is not uniquely determined by its
projection to S2n.

1. Introduction

The topological entropy, hT (g), of a Riemannian manifold (M, g) is a geomet-
ric invariant which attempts to capture the complexity of the geodesic flow. In
[KKW91] it was shown that for a metric g of negative sectional curvature the func-
tion hT (gλ) is C1, where gλ, −ε < λ < ε, is a C2-perturbation of g, and an explicit
formula for the derivative was obtained. As an application of this formula they
established the following interesting result.

Theorem 1.1 ([KKW91, pp. 21 and 28]). Let M be a compact surface and let
R(M) denote the submanifold of negatively curved C2 metrics on M having area
equal to 1. Then hT : R(M) → R has a critical point at g0 if and only if the
Lebesgue measure lg0 and the Margulis measure µg0 with respect to g0 have the same
projection to M ; that is, lg0 and µg0 agree on π−1(B(M)) = {π−1(A) : A ∈ B(M)},
where B(M) is the σ-algebra of Borel subsets on M and π : S(M) → M is the
canonical projection.

Katok, Knieper and Weiss went on to conjecture that for an arbitrary compact
manifold (M, g) of negative sectional curvature the Margulis and Lebesgue measures
with respect to g coincide whenever they have the same projection to M . As they
note, establishing this conjecture would then demonstrate Theorem 1.1 in arbitrary
dimensions [KKW91, p. 21].

The above results led Flaminio to consider the general problem of determining
the measures on the unit tangent bundle which are invariant under the geodesic
flow and are determined by their projection to M . By restricting his attention to
the class of even measures, that is, measures on S(M) which are invariant under
the flip map (x, v) σ→ (x,−v) on S(M), Flaminio obtained the following.
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Theorem 1.2 ([Fla92]). Let g be a metric of positive sectional curvature on S2.
Then an even, Gt-invariant distribution T is determined by its projection to S2.
That is, T is determined by its values on the set

π∗(C∞(S2)) ≡ {f ◦ π : f ∈ C∞(S2)},
where π : S(S2)→ S2 is the natural projection.

In particular, this result shows that for a closed surface (M, g) of positive sec-
tional curvature the even, Gt-invariant probability measures are determined by
their projections to M . It is natural to wonder whether this result generalizes to
all closed Riemannian manifolds of positive sectional curvature. By studying the
right regular representation of SO(n) we obtain the following negative answer.

Theorem 1.3. Let (S2j , g) be the standard sphere of constant curvature 1 with
j ≥ 2. Then even, Gt-invariant complex measures on S(S2j) are not determined by
their projection to S2j. In particular, there are non-zero, even, Gt-invariant finite
real measures on S(S2j) which project to zero on S2j.

2. Constructing the measure

By the Riesz representation theorem there is an isomorphism between bounded
linear functionals and complex measures. For a linear functional F : L2(S(M))→ C
the notion of projecting to M translates into restricting F to the set π∗(L2(M)) ≡
{f ◦π : f ∈ L2(M)}. The notions of evenness and Gt-invariance are also defined in
the obvious way for F . Consequently, we see that we can construct measures as in
Theorem 1.3 by finding a linear functional with the corresponding properties. This
will be carried out in the remainder of this paper.

For our discussion we fix the following notation.
A) G = SO(n).
B) H = SO(2)⊕ In−2.
C) K = I2 ⊕ SO(n− 2).
D) L = [1]⊕ SO(n− 1).
E) L2(G, dx) = {f : G→ C measureable :

∫
G
‖f‖2dx <∞}; where dx is Haar

measure.
F) G will act on L2(G, dx) via the right regular representation Φ : G →

Aut(L2(G, dx)), which is given by (Φ(g).f)(x) = f(xg).
G) For any representation (V, τ) of an arbitrary group B we let V S = {v ∈ V :

τ(s).v = v for all s ∈ S} for any S ⊂ B.
We also note that for the sphere Sn−1 = G/L of constant positive sectional cur-
vature 1 the geodesic flow is given by the right action of H on S(Sn−1) = G/K
and the flip map σ : S(Sn−1) → S(Sn−1) can be realized as the right action of
[1]⊕−In−1 on G/K when n is odd.

In constructing the desired measure we will find the following lemma to be useful.

Lemma 2.1. Let n = 2j + 1 ≥ 5 and let S be the subgroup of G generated by
H,K ≤ G and σ ∈ G. Then there exists a finite dimensional unitary representation
τ : G→ GL(W ) such that (WL)⊥ ∩WS 6= {0}. In particular, we may take (W, τ)
to be an irreducible representation of G.

Indeed, let (W, τ) be an irreducible representation of G as in Lemma 2.1. Then
W can be thought of as a subrepresentation of L2(G). Using this identification and
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taking θ ∈ (WL)⊥ ∩WS we may define F̃ : L2(G)→ C by

f 7→
∫
G

fθdx.

It then follows from the Peter-Weyl theorem (see [Kna86]) and the way θ was chosen
that F̃ has the following properties.

(1) F̃ |L2(G)L ≡ 0.
(2) F̃ |L2(G)S 6≡ 0. In particular, F̃ |L2(G)K 6≡ 0.

Now, since L2(G)K can be indentified with L2(G/K) we see from property (2)
that F̃ actually defines a non-zero bounded linear functional F : L2(G/K) → C,
which is even and invariant under the geodesic flow. Furthermore, it follows from
property (1) that the projection of F to Sn−1 = G/L is zero. Then as noted earlier
the Riesz representation theorem provides us with a non-zero, even, Gt-invariant
complex measure on S(Sn−1) that projects to zero. Consequently, one of the real
measures Re(µ) or Im(µ) also has these properties. Now, all that remains to be
done is to prove Lemma 2.1.

Proof of Lemma 2.1. We let g, l, h, k and s denote the Lie algebras of G, L, H ,
K, and S respectively. Following an argument due to G. Prasad we will show that
Ad : G→ Aut(Sym2(gC)) is a representation of G which satisfies Lemma 2.1, where
gC = g ⊕ ig is the complexification of g and Ad is the natural linear extension of
the adjoint representation of G.

Upon inspection we can see that s = h⊕ k and g = l⊕Rn−1 = s⊕R2n−2. From
this we can see that

gC = lC ⊕ (Rn−1)C = hC ⊕ kC ⊕ (R2n−2)C.

Hence,

Sym2(gC) = Sym2(lC)⊕ Sym2((Rn−1)C)⊕ (lC ⊗ (Rn−1)C)

= Sym2(lC)⊕ Sym2((Rn−1)C)⊕Hom(lC, (Rn−1)C)

and

Sym2(gC)L = Sym2(lC)L ⊕ Sym2((Rn−1)C)L ⊕Hom(lC, (Rn−1)C)L.

Since (AdL, lC) and (AdL, (Rn−1)C) are inequivalent irreducible representations of
L we see that Hom(lC, (Rn−1)C)L = 0. Otherwise we would have a non-zero, C-
linear map T : lC → (Rn−1)C such that AdL(x) ◦ T = T ◦AdL(x) for all x ∈ L. It
would then follow from Schur’s lemma that T would have to be an isomorphism,
which would contradict the non-equivalence of the representations. Therefore,

Sym2(gC)L = Sym2(lC)L ⊕ Sym2((Rn−1)C)L.

We now recall the following well-known fact.

Lemma 2.2. Let G be a compact toplogical group and (τ, V ) a finite dimensional
irreducible C-representation. Then dimC Sym2(V )G = 1. That is, up to a scalar
multiple there is a unique Hermitian inner product ω ∈ Sym2(V ) on V with respect
to which (τ, V ) is unitary.

Hence, it follows that dimC Sym2(gC)L = 2. Also, since

Sym2(gC)S = Sym2(hC)S ⊕ Sym2(kC)S ⊕ Sym2((R2n−2)C)S ⊕Hom(hC, kC)S

⊕Hom(hC, (R2n−2)C)S ⊕Hom(kC, (R2n−2)C)S ,
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a similar argument shows that dimC Sym2(gC)S = 3. Putting all of this together
we see that dimC(Sym2(gC)L)⊥ = dimC Sym2(gC) − 2 and dimC Sym2(gC)S = 3,
which implies

1 ≤ dimC((Sym2(gC)L)⊥ ∩ Sym2(gC)S) ≤ 3,
which proves our lemma. �

We point out that our dimension argument fails when n = 3—as it should by
Theorem 1.2. In this case H = 〈I3〉 and L = [1] ⊕ SO(2). Hence, s = k ⊕ h =
k ∼= so(2) ∼= l, which implies that dimC Sym2(gC)S = 2 = dimC Sym2(gC)L. This
prevents the last line of our argument from working.
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