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Abstract

Background: We tested the association of biologic age (BA) measures constructed from different types of biomarkers with mortality and 

disease in a community-based sample.

Methods: In Framingham Offspring participants at Exams 7 (1998–2001, mean age 62 ± 10) and 8 (2005–2008, mean age 67 ± 9), we used 

the Klemera–Doubal method to estimate clinical BA and in�ammatory BA and computed the difference (∆age) between BA and CA. Clinical 

∆age was computed at Exam 2 (1979–1983, mean age 45 ± 10). At Exam 8, we computed measures of intrinsic and extrinsic epigenetic age. 

Participants were followed through 2014 for outcomes. Cox proportional hazards models tested the association of each BA estimate with each 

outcome adjusting for covariates.

Results: Sample sizes ranged from 2532 to 3417 participants. In multivariable models, each 1-year increase in clinical ∆age at Exam 2 (hazard 

ratio [HR] = 1.04–1.06, p < 2 × 10–16) and clinical ∆age and in�ammatory ∆age at Exam 7 signi�cantly increased the hazards of mortality and 

incident cardiovascular disease (HR = 1.01–1.05, p < 2 × 10−7), whereas in�ammatory ∆age increased the hazards of cancer (HR = 1.01, p < 

.05). At Exam 8, increased clinical ∆age, in�ammatory ∆age, and extrinsic epigenetic age all signi�cantly increased the hazard of mortality 

(HR = 1.03–1.05, all p < .05); clinical ∆age and in�ammatory ∆age increased cardiovascular disease risk (HR = 1.04–1.05, all p < .01); 

and clinical ∆age increased cancer risk (HR = 1.03, p < .01) when all three BA measures were included in the model. Intrinsic epigenetic age 

was not signi�cantly associated with any outcome.

Conclusions: Our �ndings suggest BA measures may be complementary in predicting risk for mortality and age-related disease.

Keywords: In�ammation, Epigenetics, Aging, Epidemiology.

The population is aging worldwide not only due to gains in early-

life survival but also due to progress with declining late-life mor-

tality (1). Aging in humans is highly variable with wide differences 

in health at a given chronologic age. Some adults become frail in 

early old age, whereas others remain �t in their 90s and beyond (2). 

Understanding the biologic processes of aging and how these pro-

cesses confer susceptibility to chronic disease may lead to successful 

interventions that delay aging and improve health span (3).
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Given the complexity of the aging process, different measures of 

biologic aging (BA) and of successful aging have been constructed to 

better re�ect an individual’s rate of aging by combining clinical bio-

markers representative of different physiologic systems (4–7). Several 

of the measures have been related to risk for mortality (4,6,7) and 

physical and cognitive decline (5–7). Despite this body of work, there 

has not been a consensus on a clinical measure of BA. More recently, 

genomic data have been used to develop age predictors including tran-

scriptomic and DNA methylation molecular signatures (8–10). DNA 

methylation age predicts mortality independent of chronologic age and 

other risk factors (11,12) and is associated with some age-related con-

ditions such as brain aging (13), but not with coronary heart disease 

(14). It is not clear if each of these different measures of BA captures 

unique information or adds complementary information over and 

above chronological age (CA) to predict disease risk and life span.

We had the opportunity to examine a measure of clinical BA over 

several time points in the adult life course in addition to in�amma-

tory and DNA methylation age constructed in later adulthood in a 

large community-based sample under continuous surveillance. We 

hypothesized that different types of BA measures (clinical, in�amma-

tory, and genomic) make unique contributions to age-related disease 

risk and all-cause mortality. Furthermore, we were able to test the 

association of the different BA measures in the same cohort account-

ing for important confounders.

Methods

Study Sample

The Framingham Heart Study (FHS) is a community-based longitu-

dinal cohort study initiated in 1948 to study determinants of cardio-

vascular disease (CVD) and its risk factors. In 1971, 5,124 children 

of the original participants and spouses of the children were enrolled 

into the FHS Offspring cohort (15). Offspring participants have been 

examined every 4–8  years, have completed nine research examina-

tions, and remain under active surveillance for cardiovascular events, 

cancer, and death. The Boston University Medical Campus Institution 

Review Board reviews and approves the protocol for each research 

examination, and informed consent is obtained at every attended 

examination. Research examinations consist of a physician adminis-

tered medical history and resting blood pressure, laboratory assess-

ment, and various noninvasive measures of cardiovascular and lung 

function.

Clinical Biologic Age

Prior reports demonstrated that a combination of clinical biomarkers 

used to de�ne biologic age (BA) predicted mortality better than CA (4). 

By de�nition, BA varies even in a sample of individuals all of the same 

CA (5). We used six clinical biomarkers representing diverse physio-

logic systems that were consistently available over three examinations 

and were used in prior reports: systolic blood pressure, forced expira-

tory volume at 1 s (FEV1), total cholesterol, fasting glucose, C-reactive 

protein, and serum creatinine. We chose examinations to evaluate the 

change in clinical BA from midlife (Examination 2: 1979–1983, mean 

age 44 years) to later adulthood (Examination 7: 1998–2001, mean 

age 62 years) and to examine the relationship of clinical BA to other 

measures of BA available at later examinations (in�ammatory BA 

available at Exams 7 and 8; DNA methylation BA available at Exam 

8: 2005–2008, mean age 67 years). Participants were excluded from 

the clinical BA sample at a given examination if any of the six biomark-

ers were missing (16%–28% of attendees). FEV1 was the biomarker 

resulting in missing values 95%–98% of the time. In additional, at 

Exam 8, we excluded 13 participants due to missing covariates.

Inflammatory Biologic Age

We chose to create an in�ammatory BA phenotype because in�am-

mation plays a central role in aging and development of age-related 

Table 1. Characteristics of Clinical and Inflammatory Biologic Age Study Samples at Exam 7

Clinical Biologic Age Sample N = 2,532 In�ammatory Biologic Age Sample N = 3,134

Chronological age (y) 61 (9.3) Chronological age (y) 62 (9.5)

Sex, female 55% Sex, female 53%

Clinical BA 61.0 (11.7) In�ammatory BA 61.5 (12.9)

∆Age 0.0 (7.0) ∆Age −0.1 (8.8)

Clinical Variablesa In�ammatory Marker Variablesb

Systolic blood pressure (mm Hg) 129 (20) C-reactive protein (mg/L) 2.2 (1.0, 5.1)

Forced expiratory volume at 1 s (L) 2.7 (0.8) Monocyte chemoattractant protein-1 (pg/mL) 313 (254, 382)

Total cholesterol (mg/dL) 200 (37) Osteoprotegerin (pmol/L) 5.4 (4.4, 6.5)

Glucose (mg/dL) 104 (27) P-selectin (ng/mL) 36 (29, 45)

C-reactive protein (mg/L) 4.2 (7.4) Intercellular adhesion molecule 1 (ng/mL) 242 (211, 283)

Creatinine (mg/100 mL) 1.1 (0.2) Interleukin-6 (pg/mL) 2.7 (1.8, 4.3)

LP-PLA2 mass (ng/mL) 288 (230, 361)

LP-PLA2 activity (nmol/mL/min) 141 (119, 165)

Tumor necrosis factor receptor II (pg/mL) 1,977 (1,666, 2,418)

Covariatesa Covariatesa

Current smoking 12 Current smoking 13

Diabetes 12 Diabetes 13

Hypertension treatment 32 Hypertension treatment 34

Lipid treatment 20 Lipid treatment 21

Prevalent CVD 5 Prevalent CVD 6

Prevalent cancer 8 Prevalent cancer 9

Note: BA = biologic age; CVD = cardiovascular disease; LP-PLA2 = lipoprotein-associated phospholipase A2.
aVariables are percentage or mean (SD). bVariables are median, Q1, Q3; C-reactive protein included in both study samples; intersection of clinical biological age 

and in�ammatory biological age samples: N = 2,408.
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disease (16). We selected in�ammatory biomarkers measured at 

Examinations 7 and 8. The markers function across the in�amma-

tion process including acute phase reactants, chemokines, cytokines, 

selectins, and cell adhesion molecules (Table  1) (17). The samples 

were obtained fasting, and the details of the assays and measure-

ments have been previously reported with intra- and inter-assay coef-

�cients of variation less than 10% (18). Participants were excluded 

from the in�ammatory BA sample at a given examination if they did 

not provide a fasting morning sample or if any of the biomarkers 

were missing (9%–11% of exam attendees). At Exam 8, a further 16 

participants were excluded do to missing covariates.

Methylation Age

Epigenetic changes are a key hallmark of aging (19), and DNA 

methylation-based biomarkers often referred to as the “epigenetic 

clock” have been shown to be robust measures of biologic age (9,10). 

Recent work incorporating blood cell metrics into the epigenetic 

measures demonstrate signi�cant associations with mortality (12). 

Therefore, we examined two epigenetic measures we reported previ-

ously (12): (a) intrinsic epigenetic age (IEAA) is the residual obtained 

from a multivariate regression of the Horvath epigenetic age esti-

mate (353 CpGs) on CA and measures of blood cell counts (9) and 

is constructed to be independent of blood cell count changes that 

occur with age and (b) extrinsic epigenetic age (EEAA) de�ned using 

the Hannum epigenetic age estimate (71 CpGs) (10) and creating a 

weighted average of the estimate taking into account imputed blood 

cell types using the Klemera–Doubal approach (20). EEAA is strongly 

correlated with blood cell counts (12).

Blood samples collected at Examination 8 were used to extract 

genomic DNA and the Illumina In�nium Human Methylation 450K 

BeadChip (Illumina, San Diego, CA, USA) was used for DNA methy-

lation measurement as previously reported (11,12).

Incident Events

Participants are under continuous surveillance for cardiovascular 

events and death. An end point committee of three senior investi-

gators reviews all available information including hospital records, 

death certi�cates, and next-of-kin interviews to determine the date 

and cause of death. Cardiovascular events (coronary heart disease: 

including coronary insuf�ciency, myocardial infarction, coronary 

heart disease death; stroke, heart failure, and coronary or CVD 

death) are adjudicated by the committee using standardized criteria 

previously reported (21). A  study neurologist adjudicates cerebro-

vascular outcomes (atherothrombotic infarction, cerebral embolism, 

intracerebral hemorrhage, subarachnoid hemorrhage, death due to 

stroke). Cancer cases are identi�ed at routine research examinations 

and by medical history updates. The vast majority of cancers were 

validated with pathology reports with less than 5% of cases based 

on clinical diagnosis or death certi�cate. Non-melanoma skin can-

cers were excluded.

Cognitive and Physical Function at Examination 8

At Exam 8, trained technicians administered the mini-mental state 

examination (MMSE), a 30-point questionnaire used to measure 

cognitive function including the domains of orientation, attention, 

recall, and ability to follow simple commands. Hand grip strength 

was measured in kilograms using a Jamar dynamometer (Sammons 

Preston, Bolingbrook, IL, USA) obtaining three trials in each hand. 

Gait speed was measured over a 4-m course to the nearest 0.01 

second, and the faster of two normal paced walks was used for 

analyses.

Covariates

At each research exam, participants were asked about smoking 

habits. Current smoking was de�ned as smoking one or more cig-

arettes per day in the year preceding the exam. Participants were 

asked about medication use, and lipid-lowering medications were 

recorded. Diabetes was de�ned as fasting glucose of 126 mg/dL or 

higher or use of oral hypoglycemic agents or insulin. Hypertension 

was de�ned as blood pressure ≥ 140/90 or use of anti-hypertensive 

medications.

Statistical Methods

Biologic age estimates

We used the Klemera and Doubal method (20) to compute clinical 

BA estimate and the in�ammatory BA estimate. Compared with 

other methods for computing BA, the Klemera–Doubal algorithm 

with CA as one of the biomarkers, showed the best performances in 

precision of estimation (20) and predictive ability (4). The key idea of 

the Klemera–Doubal method is to minimize distance between BA and 

biomarkers in an m-dimensional space (m is number of biomarkers) 

and also to minimize the variability of BA estimates. This is achieved 

by running simple linear regressions on CA using biomarkers as out-

comes. The BA variable is constructed based on parameter estimates 

and residuals from these simple linear regressions (20). We de�ned 

∆age for each BA measure as the BA minus CA. Thus, individuals 

with ∆age > 0 have greater BA than their CA, whereas individuals 

with ∆age < 0 have younger BA than their CA. Clinical and in�am-

matory BA were signi�cantly correlated with CA at all exams (all 

p < 2.2 × 10−16); however, clinical and in�ammatory ∆age measures 

as well as IEAA and EEAA were not correlated with CA (all p > .12).

We examined the distribution of clinical ∆age at Exam 2 by 

attendance at Exam 7 to determine whether greater clinical ∆age 

at Exam 2 was associated with attendance at the later exam and 

with ability to construct clinical and in�ammatory BA phenotypes at 

Exams 7 and 8. Next, we evaluated the correlation between clinical 

∆age at Exam 2 and clinical ∆age at Exam 7, nearly 20 years later. 

Finally, we examined the correlation between pairs of ∆age pheno-

types based on the clinical and in�ammatory biomarkers both across 

exams and at the same exam.

We constructed separate Cox proportional hazards models to 

examine the association of each ∆age estimate at each time point 

(clinical BA ∆age at Exams 2, 7, 8; in�ammatory BA ∆age at Exams 

7 and 8; IEAA and EEAA at Exam 8) with mortality, CVD events, 

and cancer. Participants were followed through 2014. Multivariable-

adjusted models included CA, sex, current smoking, diabetes, hyper-

tension treatment, lipid treatment, and for models investigating 

mortality, prevalent CVD and prevalent cancer. In the models exam-

ining CVD or cancer, participants with prevalent disease at the exam 

at which the BA was measured were excluded. Finally, to investigate 

whether each measure of BA contributed to event risk independently 

of the others, we included all BA measures in the same model.

We examined the cross-sectional association of clinical ∆age, in-

�ammatory ∆age, IEAA, and EEAA at Exam 8 with gait speed and 

grip strength after adjusting for CA, sex, height, and body mass index 

and with MMSE score after adjusting for CA, sex, and education.

All analyses were performed in R version 3.2.3 using R packages 

Himsc, psych, pROC.

Results

Characteristics of the individuals included for each BA measure are 

shown in Table 1 for Exam 7. Sample sizes for each BA measure differ 

due to availability of the biomarkers used to compute the BA. Sample 
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characteristics for Exams 2 and 8 are presented in Supplementary 

Tables 1 and 2. Between 51% and 55% of the individuals included 

were female across all exams. The mean CA of the clinical BA and in-

�ammatory BA subsamples were similar: 61 (9.3) and 62 (9.5) years, 

respectively. The clinical BA sample was smaller than the in�amma-

tory BA sample mainly due to missing data for the FEV1 component 

of clinical BA; the two samples were largely overlapping (n = 2,408 

in both samples). ∆Age was centered at zero with a wide distribution 

−20 to 30 (Supplementary Figure 1). CA of the clinical BA sample was 

45.0 (10.1) years at Exams 2 and 67 (8.9) years at Exam 8 for all BA 

samples. The distribution of the individual components of clinical BA 

differ over the exams in accordance with the increasing CA (eg, mean 

FEV1 declines and mean systolic blood pressure increases).

Clinical ∆age at Exam 2 was more favorable in participants who 

returned to Exams 7 and 8, whereas the distribution was shifted to 

larger ∆ages indicative of advanced aging for participants missing 

at the later exams (Supplementary Figures 1 and 2). Clinical ∆age at 

Exam 2 was correlated with clinical ∆age (r = .5) and in�ammatory 

∆age at Exam 7 (r = .2); similar correlations were observed for ∆age 

measures at Exam 8 (Supplementary Figures 1 and 2). The correlation 

between clinical ∆age at Exams 7 and 8 (r =  .7) and in�ammatory 

∆age at Exam 7 and 8 (r = .6) is higher (Supplementary Figure 3). The 

correlation between clinical and in�ammatory ∆age within exam was 

lower (r = .37 and r = .35 at Exams 7 and 8, respectively) than the 

correlation of clinical or in�ammatory ∆age with its corresponding 

measure across the two exams. IEAA and EEAA at Exam 8 were not 

correlated with clinical ∆age or in�ammatory ∆age at Exam 8.

There were large numbers of outcomes for all BA measures at 

all exams (Figure 1, Table 2, and Supplementary Table 3). In mul-

tivariable-adjusted models, each 1-year increase in clinical ∆age 

and in�ammatory ∆age at Exam 7 (older adulthood), signi�cantly 

increased the hazards of all-cause mortality and incident CVD, 

whereas in�ammatory ∆age also increased the hazard of cancer 

(Table 2; hazard ratios [HR] = 1.01–1.05, p < 2 × 10−7 except cancer 

p < .05). Similar increased hazards for increased clinical ∆age in 

models constructed in midlife (Exam 2, mean age 45 years, median 

follow-up >32 years) were also observed (Supplementary Table 3; 

HR = 1.04–1.06, p < 2 × 10−16).

In fully adjusted models, IEAA constructed at Exam 8 was not 

signi�cantly associated with any outcome (Figure 1, all p > .1). EEAA 

was signi�cantly associated with mortality (p = 6.1 × 10−8) and inci-

dent CVD (p = .04) but not cancer (Figure 1). To determine whether 

each ∆age measure contributed to the hazard of the outcomes under 

investigation, all three measures were included in a  single model. 

Increased clinical ∆age, in�ammatory ∆age, and EEAA all signi�-

cantly increased the hazard of mortality (HR = 1.03–1.05, all p < 

.05); clinical ∆age and in�ammatory ∆age increased risk for CVD 

(HR = 1.04–1.05, all p < .01) and clinical ∆age alone increased risk 

for cancer (HR = 1.03, p < .01) in the multivariable model with all 

three measures in the model (Figure 2).

We examined the cross-sectional associations of BA measures 

and functions de�ned with gait speed, hand grip strength, and mini-

mental state examination score at Exam 8.  Older clinical and in-

�ammatory ∆age and EEAA was associated with slower gait speed 

and weaker hand grip strength (all p < .05, Supplementary Table 4). 

In�ammatory ∆age was also associated with lower MMSE score 

(p < .001). IEAA was not associated with the functional measures.

Discussion

In this large well-characterized community-based cohort followed 

for over 30 years, our �ndings of several estimates of BA in the same 

individuals constructed from clinical, in�ammatory and methylation 

data are threefold. First, midlife clinical BA is correlated with measures 

of BA in older adult life with the exception of DNA methylation age. 

Accelerated aging in midlife is associated with lower attendance at later 

exams, a metric often associated with poorer health. Second, increased 

clinical and in�ammatory aging, corresponding to older BA than CA, 

results in greater hazard of death and incident CVD across exams even 

after accounting for CA and important potential confounders. Third, 

in models that included all three BA measures, increased aging from all 

three remained signi�cantly predictive of increased mortality, whereas 

clinical and in�ammatory ∆age estimates increased risk for disease. 

Therefore, our �ndings suggest the three BA measures may be comple-

mentary in predicting risk for mortality and age-related disease. Finally, 

in cross-sectional analyses, all three BA measures were associated with 

functional measures of gait speed and grip strength.

Other clinical biomarker measures used to re�ect the heterogen-

eity in human health span including frailty indices with large num-

bers of clinical and laboratory items have been developed in older 

adults that relate to mortality. We chose a set of clinical biomarkers 

re�ective of diverse systems including the cardiovascular, pulmonary, 

metabolic, renal, and in�ammatory systems that are easily measured 

in a clinical setting. The biomarkers represent a subset of biomarkers 

used in previous reports with demonstrated ability to quantify bio-

logic age even in young adults (4,5) and are among the items in the 

frailty indices (22,23). Accelerated aging measured using clinical bio-

markers in a birth cohort of healthy young adults before the onset of 

disease distinguished those with evidence of physical and cognitive 

decline and early signs of vascular aging (5). A similar set of clinical 

biomarkers measured in a nationally representative sample across 

midlife (ages 30–59), demonstrated greater risk of death in those 

with older BA (4). We con�rm and extend this work by examining 

clinical BA at different points across the life span and testing both 

mortality and incident age-related diseases. Clinical BA using readily 

available clinical biomarkers may capture underlying physiologic re-

serve and represent a potentially useful approach to de�ne physical 

Figure  1. Incident events according to measures of ∆age and epigenetic 

age: Framingham Offspring Study, Exam 8.  Each outcome and each ∆age 

measure is a separate model. Median follow-up time for all outcomes 

was ≈8  years. Models are multivariable adjusted with covariates: age, 

sex, current smoking, diabetes, hypertension treatment, lipid treatment, 

mortality only additionally adjusted for prevalent CVD and prevalent cancer.
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resilience at the whole person level (24). This may be one tool to test 

interventions (exercise, drug therapies) to determine whether accel-

erated aging or low physical resilience can be ameliorated which 

would have important clinical implications.

Chronic low-grade levels of in�ammation occur with age, a pro-

cess de�ned as “in�amm-aging,” that is believed to accelerate bio-

logical aging (16). Multiple underlying mechanisms contribute to 

chronic in�ammation with aging, including dysregulation of the 

immune system, oxidative stress, chronic infection, and so on (16). 

Therefore, the in�ammatory markers we included in the in�amma-

tory BA measure re�ect many of these mechanisms. Older in�amma-

tory BA is associated with risk for mortality as well as incident CVD 

and measures of physical function. Our results warrant replication 

in other independent samples. Further study of how in�ammatory 

and other mechanisms such as epigenetics and the environment act 

together to accelerate or slow biologic aging are needed.

Several estimates of DNA methylation age in blood have been 

strongly associated with CA and shown to predict mortality (9–12). 

We had the opportunity to examine epigenetic measures of aging and 

in�ammatory and clinical measures of BA in the same individuals at 

the same point in the adult life span. We found that EEAA was associ-

ated with all-cause mortality but not CVD and cancer. EEAA re�ects 

both epigenetic changes and is correlated with blood cell composition 

(12) and may be strongly related to mortality because this measure also 

includes information on changes in blood cell counts with age. Although 

IEAA was not associated with outcomes in our study, this epigenetic 

measure has been associated with mortality in a larger meta-analysis 

that included Framingham participants (12) and with lung cancer sus-

ceptibility in women (25). IEAA is based on the Horvath epigenetic age 

estimate that generalizes to a broad range of tissues and cell types and is 

not correlated with blood cell counts. More research is needed to under-

stand how the aging epigenome confers risk for age-related disease.

Our study has several limitations. The FHS is predominantly 

white; therefore, our �ndings may not be generalizable to other race/

ethnic groups. There may be other important biomarkers of in�am-

mation, including the senescence-associated secretory phenotype, 

and other biologic mechanisms (mitochondrial dysfunction, telo-

mere length, alteration in proteostasis) not represented in this study 

(26). A previously reported transcriptomic BA signature was associ-

ated with indices such as grip strength but was limited in ability 

to examine mortality (8) and could be considered in future stud-

ies. Nonetheless, the study has several strengths including the large 

sample, community-based setting, ability to examine several biologic 

mechanisms in the same participants, and the longitudinal follow-up 

with careful ascertainment of events.

In summary, in our community-based sample, estimates of BA 

constructed from clinical, in�ammatory, and DNA methylation bio-

markers provide complementary information in predicting mortality 

and risk for age-related disease suggesting multiple aging metrics 

may be needed to capture the multiple dimensions of biological 

aging. Further study is needed to determine how the mechanisms 

interact to promote or delay aging.

Supplementary Material

Supplementary data is available at The Journals of Gerontology, 

Series A: Biological Sciences and Medical Sciences online.
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Figure  2. Incident events according to measures of ∆age and epigenetic 

age: Framingham Offspring Study, Exam 8.  Three ∆age measures 

in the model. Median follow-up time for all outcomes was ≈8  years. 

Models are multivariable adjusted with covariates: age, sex, current 

smoking, diabetes, hypertension treatment, lipid treatment, mortality 

only additionally adjusted for prevalent CVD and prevalent cancer.
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