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Abstract. Diversity among the members of a team of classifiers is deemed to be a key issue in classifier
combination. However, measuring diversity is not straightforward because there is no generally accepted formal
definition. We have found and studied ten statistics which can measure diversity among binary classifier outputs
(correct or incorrect vote for the class label): four averaged pairwise measures (the Q statistic, the correlation,
the disagreement and the double fault) and six non-pairwise measures (the entropy of the votes, the difficulty
index, the Kohavi-Wolpert variance, the interrater agreement, the generalized diversity, and the coincident failure
diversity). Four experiments have been designed to examine the relationship between the accuracy of the team and
the measures of diversity, and among the measures themselves. Although there are proven connections between
diversity and accuracy in some special cases, our results raise some doubts about the usefulness of diversity
measures in building classifier ensembles in real-life pattern recognition problems.
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1. Introduction

Combining classifiers is now an established research area known under different names in
the literature: committees of learners, mixtures of experts, classifier ensembles, multiple
classifier systems, consensus theory, etc. Bagging and boosting methods for team members
generation, and variants thereof such as arcing and wagging, have been shown to be very suc-
cessful (Bauer & Kohavi, 1999; Drucker et al., 1994; Schapire, 1999). The key to the success
of these algorithms is that, intuitively at least, they build a set of diverse classifiers. In gen-
eral, in both methods the individual classifiers are designed on different subsets of the train-
ing data. In the boosting algorithm, the sampling distribution is updated before drawing the
training data for the new member of the team. The likelihood for those objects that have been
misclassified by the previously generated members of the team is increased, and the classi-
fier team grows progressively “diverse”. There is no explicit measure of diversity involved
in the process but it is assumed that diversity is a key factor for the success of this algorithm.

Diversity has been recognized as a very important characteristic in classifier combina-
tion (Cunningham & Carney, 2000; Krogh & Vedelsby, 1995; Rosen, 1996; Lam, 2000;
Littlewood & Miller, 1989). However, there is no strict definition of what is intuitively
perceived as diversity, dependence, orthogonality or complementarity of classifiers. Many
measures of the connection between two classifier outputs can be derived from the statistical
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literature (e.g., Sneath & Sokal (1973)). There is less clarity on the subject when three or
more classifiers are concerned. There are methods, formulas and ideas aiming at quantifying
diversity but, owing to the lack of a definition, little is put on a rigorous or systematic basis.

The general anticipation is that diversity measures will be helpful in designing the indi-
vidual classifiers and the combination technology. Here are the key questions that need to
be addressed:

How do we define and measure diversity?

How are the various measures of diversity related to each other?

How are the measures related to the accuracy of the team?

Is there a measure that is best for the purposes of developing committees that minimize
error?

5. How can we use the measures in designing the classifier ensemble?

e

The rest of the paper seeks answers to these questions. To answer question one, the current
results from the literature are summarized in Section 2, and ten measures of diversity are
introduced in Sections 3 and 4. Section 5 gives a comment on question 3. Section 6 explains
the experiments performed in relation to questions 2 and 3. In Section 7, possible answers
to questions 4 and 5 are considered.

2. Diversity in classifier ensembles

LetD = {D, ..., D} be a set (pool, committee, mixture, team, ensemble) of classifiers,
Q = {wi,...,w.} be a set of class labels and x € R" be a vector with n features to be
labeled in €2. There are three general possibilities for the classifier outputs

1. A c-element vector ' = [d; 1(X), ..., d;.(x)]7 with supports for the classes (a special
case of this vector is a probability distribution over 2 estimating the posterior probabil-
ities P(wy | X), s = 1, ..., ¢). Thus, for each input x we have L c-dimensional vectors
of support.

2. Class label. Di(x) € 2, i=1,..., L.

3. Correct/incorrect decision (the oracle output). The output D;(x) is 1 if x is recognized
correctly by D;, and 0, otherwise. This is an “oracle” type of output because it assumes
that we know the correct label of x, at least for the points in some finite Z C R".

Current findings and results about diversity can be summarized as follows:

— Assume that classifier outputs are estimates of the posterior probabilities, P (w, | X),
s =1,...,c,so that the estimate P;(w; | X) satisfies

Pi(ws |X) = P(ws | X) + 1/ (x), (1)

where ni (x) is the error for class w; made by classifier D;.
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The outputs for each class are combined by averaging, or by an order statistic such
as minimum, maximum or median. Tumer and Ghosh (1996a, 1996b, 1999) derive an
expression about the added classification error (i.e., the error above the Bayes error) of
the team under a set of assumptions

2)

1+68(L—1)
=)

B0 = E(

where E,;; is the added error of the individual classifiers (all have the same error), and
8 is a correlation coefficient.!

One of the assumptions is that a classifier produces independent estimates of the
posterior probabilities, Isi(ws |x),s = 1,...,c. This is not the case, as by design
> IA’i(a)S |x) = 1. The derivation also assumes independence between the estimates
for different classes from two different classifiers, i.e., P;(w, | X) and P (o |X), 5,k =

1,...c,s # k,i,j = 1,...,L, i # j. There is no information available about
whether violation of these assumptions will have a substantial effect on the derived
relationship.

Ignoring the problems listed above, the main result of Tumer and Ghosh is that posi-
tively correlated classifiers only slightly reduce the added error, uncorrelated classifiers
reduce the added error by a factor of 1/L, and negatively correlated classifiers reduce the
error even further. But note that there is a limit on the largest absolute value of a negative
pairwise correlation among L classifiers. Tumer and Ghosh (1996b, 1999) do not mention
the case of negative correlation although it clearly supports their thesis that the smaller
the correlation, the better the ensemble. A negative correlation between the continuous-
valued outputs has been sought, predominantly by altering the available training set or
parameters of the classifier (Dietterich, 2000a; Hashem, 1999; Krogh & Vedelsby, 1995;
Liu & Yao, 1999; Opitz & Shavlik, 1999; Parmanto et al., 1996; Giacinto & Roli, 2001;
Rosen, 1996; Sharkey & Sharkey, 1997; Skalak, 1996; Tumer & Ghosh, 1999).

— When classifiers output class labels, the classification error can be decomposed into bias
and variance terms (also called ‘spread’) (Bauer & Kohavi, 1999; Breiman, 1999; Kohavi
& Wolpert, 1996) or into bias and spread terms. In both cases the second term can be
taken as the diversity of the ensemble. These results have been used to study the behavior
of classifier ensembles in terms of the bias-variance trade-off.

Despite the theory that is available for continuous-valued outputs, many authors discuss
the concept of diversity in terms of correct/incorrect (oracle) outputs. The rest of this paper
concerns only the oracle outputs.

3. Pairwise diversity measures
3.1. The Q statistics

LetZ = {z, ..., zy} be alabeled data set, z; € " coming from the classification problem
in question. We can represent the output of a classifier D; as an N-dimensional binary vector
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Table 1. A 2 x 2 table of the relationship between a pair of classifiers.

Dy correct (1) Dy, wrong (0)
D; correct (1) NU N0
D; wrong (0) NO! N

Total, N = N 4+ NOT 4 N10 4 N1

Vi = Dy -, yN,,']T, such that y;; = 1, if D; recognizes correctly z;, and 0, otherwise,
i=1,...,L.

There are various statistics to assess the similarity of two classifier outputs (Afifi & Azen,
1979). Yule’s Q statistic (1900) for two classifiers, D; and Dy, is

NIINOO _ NOINIO

Qix = NIIN00 1 NOINT0”

3)

where N is the number of elements z j of Z for which y; ; = a and y; ; = b (see Table 1).

For statistically independent classifiers, the expectation of Q; ; is 0. Q varies between
—1 and 1. Classifiers that tend to recognize the same objects correctly will have positive
values of Q, and those which commit errors on different objects will render Q negative.
For a team D of L classifiers, the averaged Q statistics over all pairs of classifiers is,

L

Qik “)
+1

2 L—1
Ouw = LL—1) ;k

3.2.  The correlation coefficient p

The correlation between two binary classifier outputs (correct/incorrect), y; and yy, is
NllNO() _ NOINIO
B \/(Nll + NIO)(N()I + NOO)(NII +N01)(N10 + N()O)
For any two classifiers, Q and p have the same sign, and it can be proved that |p| < |Q].
In Kuncheva et al. (2000) we chose Q to measure the dependency because it has been

designed for contingency tables such as Table 1, and is simpler than p to calculate from the
table entries.

Pik )

3.3.  The disagreement measure

This measure was used by Skalak (1996) to characterize the diversity between a base
classifier and a complementary classifier, and then by Ho (1998) for measuring diversity in
decision forests. It is the ratio between the number of observations on which one classifier
is correct and the other is incorrect to the total number of observations. In our notation,

NOI +N10
NII+N10+NOI+NOO

Dis,-,k =

(6)
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3.4. The double-fault measure

This measure was used by Giacinto and Roli (2001) to form a pairwise diversity matrix for
a classifier pool and subsequently to select classifiers that are least related. It is defined as
the proportion of the cases that have been misclassified by both classifiers, i.e.,

NOO
NI 4 N10 4 NOL 4 AJ00

DF;; = @)

For all pairwise measures we used the averaged values over the diversity matrix, calculated
similarly to (4). We note that all these pairwise measures have been proposed as measures
of (dis)similarity in the numerical taxonomy literature (e.g., Sneath & Sokal (1973)).

4. Non-pairwise diversity measures
4.1.  The entropy measure E

The highest diversity among classifiers for a particular z; € Zis manifested by | L/2] of the
votes in Z; with the same value (0 or 1) and the other L — | L /2] with the alternative value.
If they all were O’s or all were 1’s, there is no disagreement, and the classifiers cannot be
deemed diverse. Denote by /(z;) the number of classifiers from D that correctly recognize
zj, i.e, l(Zj) = ZiL:I Yji-

One possible measure of diversity based on this concept is

1
E=—
N

M-

1 .

j=1

E varies between 0 and 1, where 0O indicates no difference and 1 indicates the highest
possible diversity.

4.2.  Kohavi-Wolpert variance

Kohavi and Wolpert (1996) derived a decomposition formula for the error rate of a classifier.
They give an expression of the variability of the predicted class label y for x, across training
sets, for a specific classifier model

. 1 - >
variance, = 3 (1 — ; P(y = w; |Xx) ) . )]

We use this general idea in the following way. We look at the variability of the predicted
class label for x for the given training set using the classifier models Dj, ..., Dy. Instead
of €2, in this paper we consider two possible classifier outputs: correct and incorrect. The
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authors point out that P(y = w; | X) is estimated as an average over different data sets. In
our case, P(y = 1|x) and P(y = 0]x) will be obtained as an average over D, i.e.,

o l . L—1
P(y=1|x):% and Py =0]x) = L=I® (10)
Substituting (10) in (9),
. 1 5 2 _ 2
variance, = 5(1 —P(y=1|x)"— P(y =0]x)°), (11)
and averaging over the whole of Z, we set the KW measure of diversity to be
1 &
KW= —"1z;)(L — I(z;)) (12)
NL* &

Interestingly, KW differs from the averaged disagreement measure Dis,, by a coefficient,
1.e.,
L—-1_.
KW = TDlSuv. (13)
(The proof of the equivalence is given in the Appendix.) Therefore, the relationship between
the majority vote accuracy (P,) and Dis,, will match exactly the relationship between
P,qj and KW.

4.3.  Measurement of interrater agreement K

A statistic developed as a measure of interrater reliability, called «, can be used when
different raters (here classifiers) assess subjects (here z;) to measure the level of agreement
while correcting for chance (Fleiss, 1981). It has links to the intraclass correlation coefficient
and the significance test of Looney (1988).
If we denote p to be the average individual classification accuracy, i.e.,
1
P=57 2D i (14)

j=1i=l
then

1 Y L)L — 1(z)) (15)
T T T NC DR p)

and so « is related to KW and Dis,, as follows

L 1
=1—— KW =1— ——Disg,. 16
“ (L—1Dp(1— p) 25(1—p) (16)
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Fleiss (1981) defines the pairwise «, as

2(N11N00 _ NOINIO)

= . 17
(N'T 4+ N10OY(NOI 4 NOO) 1 (NTT  NOT)(N 10 - A00) a7)

Kp

However, it can be shown that the (non-pairwise) « (15) is not obtained by averaging « .

Dietterich (2000b) uses the « statistic as a measure of diversity between two classifiers.
Class label outputs were considered and « was calculated for each pair of classifiers from
their coincidence matrix. Scatterplots called “k-error diagrams” were given, where kappa
was plotted against mean accuracy of the classifier pair.

4.4.  The measure of “difficulty” 6

The idea for this measure came from a study by Hansen and Salamon (1990). We define a
discrete random variable X taking values in {%, % ..., 1} and denoting the proportion of
classifiers in D that correctly classify an input x drawn randomly from the distribution of
the problem. To estimate the probability mass function of X, the L classifiers in D are run
on the data set Z.

Figure 1 shows three possible histograms of X for L = 7 and N = 100 data points.
We assumed that all classifiers have individual accuracy p = 0.6. The leftmost plot shows
the histogram if the seven classifiers were independent. In this case X x L has a Binomial
distribution (p = 0.6, n = L). The middle plot shows seven identical classifiers. They all
recognize correctly the same 60 points and misclassify the remaining 40 points in Z. The
rightmost plot corresponds to the case of negatively dependent classifiers. They recognize
different subsets of Z. The figures in the histogram are calculated so that the sum of all
correct votes is L X p x N =7 x 0.6 x 100 = 420. That is, if m; denotes the number of
data points for X = %, in all three histograms, ZiL:I i m; = 420.

h (independent) h (+ dependent) A\ h (- dependent)
: : T I
i 129 i 60 |
B 26 \ |
_ 19 4 | _ o ois
| 13 | |
4 s W I 4 \
2 ! 3 ! ! ! 1 !
012345671 01234567 01234567
77777777 777 7T 777 77777777
(a) (b) (c)

Figure 1. Patterns of “difficulty” for three classifier teams with L = 7, p = 0.6, and N = 100. The dashed line
is the majority vote border. The histograms show the number of points (out of 100) which are correctly labeled by
i of the L classifiers. The x-axis is “proportion correct”, i.e., i /L.
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Hansen and Salamon (1990) talk about a pattern of “difficulty” of the points in the feature
space, which in our case is represented by the histogram over Z. If the same points have been
difficult for all classifiers, and the other points have been easy for all classifiers, we obtain
a plot similar to the middle one (no diversity in the team). If the points that were difficult
for some classifiers were easy for other classifiers, the distribution of X is as the one on the
right. Finally, if each point is equally difficult for all classifiers, the distribution on the left
is the most likely one.

The target is a measure of diversity based on the distribution of difficulty. We can capture
the distribution shape by using the variance of X. Diverse teams D will have smaller variance
of X (right plot). Teams of similar classifiers will have high variance, as the pattern in the
middle plot. Let the three variables X in figure 1(a), 1(b) and 1(c) be X,, X;, and X,
respectively. The three variances are

0, = Var(X,) = 0.034, 6, = Var(X,) = 0.240, 6, = Var(X.) = 0.004.

Based on this, we define the difficulty 6 to be Var(X). For convenience we can scale 0
linearly into [0, 1], taking p(1 — p) as the highest possible value. The higher the value of 6,
the worse the classifier team. Ideally, & = 0, but this is an unrealistic scenario. More often,
real classifiers are positively dependent and will exhibit patterns similar to figure 1(b).

4.5. Generalized diversity

This measure has been proposed by Partridge and Krzanowski (1997).

Let Y be a random variable expressing the proportion of classifiers (out of L) that are
incorrect (or fail) on a randomly drawn object x € 9". Denote by p; the probability
that Y = lZ (Note that Y = 1 — X, where X was introduced for 6). Denote by p(i) the
probability that i randomly chosen classifiers will fail on a randomly chosen x. Suppose that
two classifiers are randomly picked from D. Partridge and Krzanowski argue that maximum
diversity occurs when failure of one of these classifiers is accompanied by correct labeling
by the other classifier. In this case the probability of both classifiers failing is p(2) = 0.
Minimum diversity occurs when failure of one is always accompanied by failure of the
other. Then the probability of both classifiers failing is the same as the probability of one
randomly picked classifier failing, i.e., p(1). Using

~i=1
—~ L (L-1)

L .
p)=) zpi. and pQ)= P (18)
i=1

the generalization diversity measure GD is defined as

Gp—1_P? (19)

p(l)’

GD varies between 0 (minimum diversity when p(2) = p(1)) and 1 (maximum diversity
when p(2) = 0).
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4.6. Coincident failure diversity

Coincident failure diversity is a modification of GD also proposed by Partridge and
Krzanowski (1997).

0, Po = 10,

CFD = 1 & L—i (20)
Zmpi, po <1

i=1

1 — po

This measure is designed so that it has a minimum value of O when all classifiers are always
correct or when all classifiers are simultaneously either correct or wrong. Its maximum value
1 is achieved when all misclassifications are unique, i.e., when at most one classifier will
fail on any randomly chosen object.

5. Relationship between diversity and accuracy of the ensemble

Table 2 shows a summary of the 10 measures of diversity including their types, and literature
sources.

‘We have to be cautious when designing diversity measures based on oracle outputs. The
measures should not be a replacement for the estimate of the accuracy of the team but should
stem from the intuitive concept of diversity. For example, the double fault measure (DF)
is clearly related to the team accuracy as small values of the measure (higher diversity)
will favor more accurate teams. On the other hand, E is not designed to be directly related
to the accuracy of the team. We can show by an example that the relationship between E
and the accuracy of the majority vote by the team is not predefined by design. Assume that
we have 3 classifiers, two of which are the same (D; and D;), and always give the correct

Table 2.  Summary of the 10 measures of diversity.

Name r/ P S Reference

Q-statistic o ) Y Y (Yule, 1900)

Correlation coefficient P ) Y Y (Sneath & Sokal, 1973)
Disagreement measure D (@) Y Y (Ho, 1998; Skalak, 1996)
Double-fault measure DF ) Y N (Giacinto & Roli, 2001)
Kohavi-Wolpert variance kw ™ N Y (Kohavi & Wolpert, 1996)
Interrater agreement K ) N Y (Dietterich, 2000b; Fleiss, 1981)
Entropy measure Ent ) N Y (Cunningham & Carney, 2000)
Measure of difficulty 0 ) N N (Hansen & Salamon, 1990)
Generalised diversity GD ) N N (Partridge & Krzanowski, 1997)
Coincident failure diversity CFD ) N N (Partridge & Krzanowski, 1997)

Note: The arrow specifies whether diversity is greater if the measure is lower (| ) or greater (1). ‘P’ stands for
‘Pairwise’ and ‘S’ stands for ‘Symmetrical’.
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class label, and the third one (Dj3) is always wrong (i.e., y; and y, contain only 1’s, and y;
contains only zeros). Then E = 1 (highest diversity), and P,, = 1. Assume now that D,
is replaced by a classifier identical to D3, so that now P, = 0. But E is still 1, indicating
the highest possible diversity.

Ruta and Gabrys (2001) looked into measures of diversity and their relationship with
the majority vote accuracy. They raised an interesting point of symmetry of the diversity
measures. If we ignore the context of the oracle outputs and treat them as two different
symbols, the measures of diversity should be symmetrical with respect to swapping the
0 and the 1. Table 2 shows which of the 10 diversity measures are symmetric and which
are not. It is perhaps not surprising that later we show that the non-symmetrical measures
exhibit a slightly higher correlation with the team accuracy and tend to be grouped together.

Itis difficult to judge which measure best expresses the concept of diversity, which leaves
question 4, as stated in the introduction, open for further debate. The next section describes
a set of experiments to examine the relationship between the measures themselves and
between the measures and the team accuracy.

6. Experiments
6.1. The experimental plan

There is no standard experimental set up to build a variety of classifier teams. Thus, the
probability that a team D occurs in a real-life experiment is a vacuous notion. Then how
do we create classifier teams for the purpose of finding out whether there is a relationship
between diversity and accuracy of the team?

Section 6.2 gives the results of an experiment where a measure of diversity is chosen in
advance (here Q,,). We do not have a limit for the theoretical range of the values of Q..
Assuming equal individual accuracy p, which is above a certain threshold depending on L,
the range for Q,, is from —1 to 1. However, with more than two classifiers, a large negative
value for Q,, is difficult to achieve in practice. Classifier outputs were generated in the
form of correct/incorrect votes (the oracle outputs) with predefined pairwise Q. We sample
to ensure that all values of Q,, are approximately equally represented.

Section 6.3 gives the results of an enumeration of all possible classifier 0/1 outputs with
accuracy 0.6 for all classifiers. The data set consists of 30 objects which leads to 563 possible
classifier teams. In this way, we show the whole possible range of diversities. This time,
however, the distribution of the number of teams over the diversity will not be uniform.

Uniform generation of outputs is an unlikely scenario if we build classifier teams in a real-
life problem. The same holds for the simulation experiment in Section 6.3. It is reasonable
to expect that the individual classifiers will be positively correlated. To find out how related
diversity and accuracy are in this case, we used a real data set, the Wisconsin breast cancer
data from the UCI Machine Learning Repository Database.

Section 6.4 describes an experiment where we use different subsets of features for each
of L = 3 classifiers. We built 14700 teams by enumerating all possible partitions of the
10 features into three subsets. We considered all subsets of cardinality 4, 3, and 3 (total of
4200 teams) and 4, 4, and 2, (total of 3150 teams). For each team we used three linear or
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three quadratic discriminant classifiers. This time, the classifier outputs were estimates of
the posterior probabilities, so a series of combination methods were applied along with the
majority vote.

Finally, in Section 6.5, we studied how average individual accuracy is related to diversity
and to the ensemble accuracy. Two data sets were used: Phoneme data (UCI) and Cone-
torus data (Kuncheva, 2000). We applied both the bagging (Breiman, 1996) and the random
weak-classifiers methods (Ji & Ma, 1997).

A summary of the experiments is given in Table 3.

6.2. Simulation experiment (uniform distribution)

A Matlab program was designed to randomly generate L binary classifier outputsy, ..., y.
for N objects, so that the individual accuracy is approximately p (i.e., > jYij®Nxp, i=
1,..., L), and with a (symmetric) matrix of dependencies Q = [Q;«]. The parameters
L, N, p and Q are specified by the user. The generating algorithm is beyond the scope of
this paper and will be discussed in a separate publication. The experiments were organized
as follows.

1. Six sets of experiments were carried out with the individual accuracy p € {0.6, 0.7}
and the number of classifiers L € {3, 5, 9}. In all experiments N = 1000.

2. For each of the 6 combinations of p and L, 15 classifier teams D were generated
for each of the 21 values of the averaged pairwise dependency Q,, € {—1.0, -0.9, ...,
0.9, 1.0}, giving a total of 315 classifier teams. In each generation, all off-diagonal elements
of the target matrix Q were set to the specified Q,,. Generating identical or approximately
independent classifiers is trivial unlike generating classifier teams of a fixed accuracy and
dependency. The algorithm is not always able to generate data with the target value for
Q. To overcome this, we split the interval from —1 to 1 into bins of width 0.1. We tallied
the number of Q,, in each bin. For the bins with 10 or fewer points, we used all of them.
For the bins with more than 10 values of Q,, we randomly sampled 10 of them. Thus, the
distribution for Q,,,, although without spanning the whole interval, followed an approximate
uniform distribution.

3. To examine the relationship between the measures, rank correlation coefficients were
calculated between each pair. The rank correlation coefficient was chosen because the
relationships were not linear. The minimum absolute value of the correlation coefficients
for the 6 cases of L and p are displayed in Table 4. All these coefficients are high. This
is due, in part, to the way we have artificially generated the classifier teams to have Q,,
spanning the whole range —1 to 1.

A relationship between the measures of diversity was sought by applying a cluster analysis
procedure. An average-linkage relational clustering was run to find out groups among
the diversity measures.2 The procedure was executed three times, for 2, 3, and 4 clusters
respectively, for each of the 6 combinations of L and p. The “distance” matrix needed for the
input of the program was formed as one minus the absolute value of the rank correlation.
Interestingly, different clusters were found for the different L and p. These results are
combined with further results and summarized in Table 8.

4. Let Pyeqn and Py, be the observed mean and maximum accuracies respectively of the
generated team D. For each combination of L and p, we calculated the correlation between
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Table 3. A summary of the experiments: N is the number of objects, L is the number of classifiers, p is the

individual accuracy.

Data type

N

L

No. of teams
Classifier type

p
Description

Data type

N

L

No. of teams
Classifier type
p

Description

Data type

N

L

No. of teams
Classifier type
p

Description

Data type

N

L

No. of teams

Classifier type

p
Description

Section 6.2. Simulation
Generated 0/1 outputs
1000
3,5,and 9
315
N/A
~0.6 and ~0.7
Classifier teams are generated and then selected so that Q had an approximately
uniform distribution over —1 to 1.
Section 6.3. Enumeration
Generated cell counts (0/1 outputs)
30
3
563
N/A
0.6
All partitions of 30 objects into 2° = 8 cells of possible 3 votes of 0 and 1.

Section 6.4. Feature subspace method
Breast cancer data, UCI repository
569
3
14700
LDC and QDC
Not specified
The set of first 10 features was partitioned into all possible subsets of 4,4, 2 and 4, 3, 3

Section 6.5. Bagging and random weak classifiers
Phoneme data, UCI repository; Cone-torus data
5404 (Phoneme); 800 (Cone-torus)
9 with both methods and both data sets
500 with both methods and both data sets

LDC with both methods and both data sets plus neural
networks (NN) for bagging

Not specified

Random sampling with replacement to form the 9 training data sets for bagging.
Randomly generated LDC for the random weak-classifiers method (this intuitively
leads to more diverse classifiers than trained classifiers.) 500 splits into
training/testing subsets. For the Phoneme data, the split was 1000/4404 and for
Cone-torus 400/400.
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Table 4. Minimum, by absolute value, rank correlation coefficients between pairs of diversity measures for the
simulation experiment with L = 3, 5 or 9 individual classifiers, each of individual accuracy p = 0.6 or 0.7.

p=0.6 p=07
L=3 0.9880 0.9836
L=5 0.9858 0.9809
L=9 0.9536 0.9644

Table 5. Extreme values of the rank correlation coefficients between measures of diversity and the improvement
on the single best accuracy and the mean accuracy of the team for the simulation experiment.

Pmaj — Prnax Pmuj — Prean
p=0.6 p=07 p=0.6 p=07
Minimum 0.9371 0.9726 0.9652 0.9826
Maximum 0.9870 0.9923 0.9909 0.9949

each of P, — Puean and P4 — Ppax with the 10 measures. All measures exhibited high
(by absolute value) correlation as summarized in Table 5.

The relationship between Q,, and P,,4j — Py, is illustrated graphically in figure 2. Each
point in the scatterplot corresponds to a classifier ensemble.

Figure 2 shows the relationship between diversity and majority vote accuracy of the team
for this experiment. Smaller O (more diverse classifiers) leads to higher improvement over
the single best classifier. Negative Q (negative dependency) is better than independence
(Q = 0) as it leads to an even bigger improvement.

On the other hand, total positive dependency (identical classifiers, Q = 1) is not the
worst case. The worst case is obtained for positively dependent but not identical classifiers.
This agrees with our theoretical limits on majority vote (Kuncheva et al., 2000). To see
this phenomenon more clearly, the zero-improvement is marked with a horizontal line in
figure 2. The points below the line correspond to classifier ensembles that fared worse than
the single best classifier. In all these cases, the ensembles consist of positively related but
not identical classifiers.

We have to be cautious when drawing conclusions from experiments. In this case, the
correlation was calculated on generated data with the following characteristics:

—

All individual classifiers have approximately the same accuracy (pre-specified).

2. The pairwise dependency was approximately the same (pre-specified).

3. Not all negative values of Q,, were possible for all L. This means that the distribution
of Q,y, which was intended to range uniformly from —1 to +1 spanned a shorter range
from —a to 1, where a € (0, 1).

If we generated the classifier outputs randomly, the range of all measures of diversity
would be much smaller. Instead of being uniform, the distribution of Q,, would peak at
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Figure 2. Plot of (Pyaj — Pax) versus Qg for the simulation experiment.

0, and the correlation might not show up as it did in our experimental set up. There is no
“true” distribution of Q,, as it depends on the classifier design procedure.

6.3. Enumeration experiment

To look at a wider picture, we carried out an enumeration experiment with L = 3, p = 0.6
and N = 30. All possible distributions of the classifier votes for the 30 elements of Z were
generated so that each of the three classifiers recognizes exactly 0.6 x 30 = 18 objects. In
other words, we generated all partitions of 30 into 2° = 8 cells, each cell corresponding to
a combination of votes. For example, one possible partition is shown below

Dy, Dy, D3 111 101 011 001 110 100 010 000
Number of objects 7 1 2 8 7 3 2 0

The majority vote is (7 + 1 + 2 4 7)/30 ~ 0.5667, and the diversity measures are

Qau = —01580 E = 01704
Pav = —0.0648 KW = 0.7767
Dis,, = 0.5111 k = —0.0648
DF,, = 0.1444 0 = 0.0696

GD = 0.6389

CFD = 0.7174
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The three classifiers in this example exhibit negative correlation (indicating high diversity)
but the majority vote is less than the individual accuracy of 0.6.
In summary, the characteristics of this set of experiments are

1. All three individual classifier have exactly the same accuracy, p = 0.6.

2. The pairwise dependency is not restricted. As the example shows, classifiers of very
different pairwise Q are generated too.

3. All possible classifier outputs with L = 3, p = 0.6 and N = 30 were generated (no
special arrangements for uniform distribution of Q or any other measures have been
made). The total number of possible classifier ensembles is 563.

The pairwise rank correlation coefficients between the measures were calculated. The
lowest coefficient by absolute value was that between Q and CFD, —0.9406. Except for
rank correlations involving either of these two measures, all other correlations were either
1 or —1. This uniformity suggests that the measures of diversity behave exactly in the same
way, hence further cluster analysis was not necessary.

The rank correlations between P,,,; (same as P,,,; — 0.6) and the diversity measures were
—0.5127 for Q,,, 0.7379 for CFD, and identical, with absolute value of 0.5210, for the
other eight measures. Figure 3 shows the scatterplot of P,,,; versus Q,, (left), p,, (middle)
and CFD (right). The other seven patterns were either the same as that of p,,, or a mirror
image of it. The horizontal line at 0.6 marks the (best) individual accuracy.

This experiment shows that

1. The diversity measures were very similar to each other.

2. When the dependency between the pairs of classifiers in D is not approximately constant,
the relationship between the diversity measures and the improvement offered by the
majority vote deteriorates. The rank correlation coefficients in this case are much lower
than when pairwise Qs are approximately equal. Therefore, if we use a diversity measure
in the design of a classifier team, we have to take into account that if classifier pairs have
substantially different pairwise dependencies, the diversity measure might not be useful.

Q P CFD
0.9 . 0.9 . 0.9
0.8 0.8 0.8
07 0.7 0.7
@
€
o
0.6 0.6 0.6
0.5 coocee tm omw e 0.5F = eeseeen 0.5
0.4 0.4 0.4
—1 0 1 -1 0 1 0 0.5 1

Figure 3. Scatterplot of Py, versus Qg (left), pgy (middle) and CFD (right).
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3. There is a threshold value of each diversity measure such that above that value, the im-
provement over the individual error rate is guaranteed, irrespective of whether pairwise
dependencies are symmetrical or not.

6.4. Feature subspace method

We used the Wisconsin Diagnostic Breast Cancer data base® taken from the UCI Repos-
itory of Machine Learning Database.* The set consists of 569 patient vectors with fea-
tures computed from a digitized image of a fine needle aspirate of a breast mass. The
breast masses are grouped into two classes: benign and malignant. Out of the original
30 features we used the first 10; these were the means of the relevant variables calcu-
lated in the image. The study was confined to 10 variables to enable a reasonable enu-
merative experiment. The data set was split randomly into two halves, one being used
for training and one for testing. We considered L = 3 classifiers. All partitions of the
10-element feature set into (4, 4, 2) (3150 partitions) and (4, 3, 3) (4200 partitions) were
generated. For each partition, three classifiers were built, one on each subset of features.
Two simple classifier models were tried, linear and quadratic classifier, leading to 4 sets of
experiments:

)} with linear classifiers;
) with quadratic classifiers;
) with linear classifiers;
) with quadratic classifiers.

A preliminary study suggested that the four experiments were not different in any im-
portant respect, and a pooled data set of a total of 14700 teams was formed. The results in
this and the next section are calculated on the test set, unseen at any stage during training
of the individual classifiers or the ensemble. Based on this data, the rank correlations be-
tween the measures of diversity were calculated. Unlike in the previous experiments, the
rank correlations between some of the measures were not very high. The average-linkage
relational clustering algorithm was run. Two distinct groups were found: DF and 6 in the
one group, and the remaining measures in the other. Figure 4 shows in a pictorial form the
relationships between the 10 measures. It is organized as a correlation matrix but instead of
the correlation coefficients, a scatterplot of the respective entries is shown. Table 6 shows
the correlation coefficients corresponding to the plots.

Since the classifiers had continuous valued outputs, we applied other combination meth-
ods besides the majority vote (MAJ) (Kuncheva et al., 2001). These were Naive Bayes
(NB), the Behavior Knowledge Space method (BKS) (Huang & Suen, 1995); maximum
(MAX), minimum,’ average (AVR) and product (PRO) from the simple methods; and the
decision templates (DT) method (Kuncheva et al., 2001). Table 7 shows the rank correlation
coefficients between the measures and the diversity measures and the improvement of the
accuracy, i.e., Progn — Prax- The values for E and KW are omitted as they are the same as Dis.

The absolute value of the correlation coefficients in Table 7 are so low that the diver-
sity measures considered here have no useful predictive value. Shown in figure 5 is the
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Table 6. Rank correlation coefficients (in %) between the diversity measures for the breast cancer data experiment.

o Dis DF KW K E 0 GD CFD

0 98 -97 65 -97 98 -97 36 —98 -95
o -97 72 -97 100 -97 44 —100 -97
Dis —56 100 —-98 100 —26 98 96
DF —56 70 —56 93 =72 -70
KwW —98 100 —26 98 96
K —98 41 —100 —98
—26 98 96

0 —44 —42
GD 98

Table 7. Correlation in % between the improvement on the single best accuracy (Pregm — Pmax) and the 10

measures of diversity for the breast cancer experiment.

0 P Dis DF p o GD CFD
MAJ —17 21 33 18 ~20 35 28 38
NB —15 ~20 3 20 ~18 37 26 36
BKS —15 —17 17 5 ~15 16 18 18
WER —15 —17 17 5 —16 17 19 18
MAX —1 -0 20 38 0 45 7 1
AVR 13 ~15 34 33 —14 47 by 30
PRO —11 —11 29 33 —11 44 18 24
DT —12 ~15 32 30 —14 44 » 29
p Dis DF KW I3 E ] GD CFD
a o -~ -~ "\ W, "\ o ™ N
b L U G4 \ & N\
Dis “ / \ / ' / /
oF €« £ § ~ & N
KW \ / " / 7~
. e NN
c we /7
0 w .
GD 7

Figure 4. Pairwise scatterplots of the 10 measures of diversity for the breast cancer experiment.
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Figure 5. Scatterplot of the improvement of the majority vote combination over the single best classifier (Pqj —
Pyax) versus the Coincident Failure Diversity (CFD) for the breast cancer experiment.

scatterplot of P,,,; — Py, against CFD (one of the two “highest” correlations (38%) in the
table).

The failure of the diversity measures could be attributed to the nature of the experiment.
First, the improvement over the single best classifier was small anyway. It is possible
that such small improvements (or deteriorations) cannot be detected well by the diversity
measures. Second, only three classifiers were considered, while the number of classifiers L
could also be a factor in the predictive values of the diversity measures. Third, no restrictions
were imposed on either individual accuracy or mutual dependency between classifiers. Thus,
the difference in the results of this experiment to the previous two is maybe not surprising.

6.5. Bagging and random weak classifiers
For this experiment we used two data sets.

— Phoneme data: Five-dimensional data characterizing two classes of phonemes: nasals
(70.65%) and orals (29.35%).

— Cone-torus data: A three-class dataset with 400 2-d points generated from three dif-
ferently shaped distributions: a cone, half a torus, and a normal distribution with prior
probabilities 0.25, 0.25, and 0.5, respectively.6

Each data set was randomly split 500 times into training/testing. For the Phoneme data,
the split was 1000/4404 and for Cone-torus data, 400/400.

We chose L = 9 classifiers for both methods.

For bagging, we sampled from the training subset with replacement 9 times to obtain the
training data for the members of the ensemble. Two classifier models were used, linear and
neural network (NN). The NN was implemented as a multi-layer perceptron with one hidden
layer containing 15 neurons. Fast backpropagation training was used, as implemented in
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Table 8. Coincidence matrix illustrating the results from 36 clusterings of the diversity measures from Sections
6.2 and 6.4. The higher the number, the more similar the measures.

o Dis DF Kw K E 0 GD CFD

0 30 23 1 23 30 23 18 21 6
o 28 4 28 36 28 22 26 8
Dis 4 36 28 36 17 21 7
DF 4 4 4 9 5 11
KW 28 36 17 21 7
K 28 22 26 8

17 21 7
0 22 10
GD 13

Matlab Neural Network Toolbox. The training of each single neural network was stopped
after 300 epochs.

For the random weak-classifiers method, 9 weak classifiers were generated by randomly
assigning the coefficients of the linear discriminant functions. A classifier was accepted for
the team if the training accuracy was greater than the highest prior probability (estimated
from the training set).

As for the simulation experiment, the measures were clustered with the average linkage
procedure into 2, 3, and 4 clusters. The procedure was run for the 6 combinations of a data
set, classifier model and ensemble construction method. To summarize the results from the
clusterings of the diversity measures, we introduce the coincidence matrix C = {cy, m,}
(Table 8) where m and m, stand for diversity measures, and ¢,,, », is the number of times the
two measures were grouped in the same cluster. There were 6 x 3 different clustering results
from Section 6.2, and 6 x 3 obtained here, so the maximum possible entry in the coincidence
matrix would be 36. This happens, for example, for p and «, indicating their similarity.

The difference in the grouping can be explained by the fact that all correlation coefficients
were high, and small (noise) differences could lead to different grouping. Nevertheless, it
is interesting to observe the general tendency for the symmetrical and non-symmetrical
measures to be similar. As discussed earlier, the non-symmetrical measures tend here to
form their own group. The double fault measure DF was the first to seed a separate cluster
in most of the experiments. Also, the equivalence between KW and Dis, and the similarity
to E showed up as the three were consistently standing as a separate cluster for p ~ 0.7.
If we “cut” the coincidence matrix at, say, 15 co-occurrences, the clusters for the diversity
measures would be

\DFHCFDHQ o Dis KW « E 6 GD

The rank correlation between diversity on the one hand and accuracy on the other hand
was calculated. Table 9 shows the average and the extreme values of the rank correlation
coefficients: the minimum by absolute value rank correlation coefficients between diversity
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Table 9. Averaged and extreme values of the rank correlation coefficients for the bagging and weak-classifiers
experiments. For diversity/diversity, the minima by absolute values are shown, for diversity/accuracy, the maxima

by absolute values are shown.

Bagging Bagging Weak
(linear) (NN) classifiers
Phoneme data
Average (Div/Div) 0.90 0.81 0.97
Extreme (Div/Div) —0.66 (E/DF) —0.28 (Q/CFD) 0.87(Q/DF)
Average (Div/Acc) 0.24 0.29 0.11
Extreme (Div/Acc) —0.43(DF/MAJ) —0.95(DF/MAJ) —0.54 (DF/MAJ)
Cone-torus data
Average (Div/Div) 0.86 0.56 0.77
Extreme (Div/Div) —0.54(E/DF) —0.06 (E/GD) 0.21(E/CFD)
Average (Div/Acc) 0.16 0.30 0.08
Extreme (Div/Acc) —0.29 (DF/NB) —0.85(E/PRO) 0.70 (CFD/MAJ)

measures, and the maximum by absolute value rank correlation coefficients between diver-
sity and accuracy. Both of the bagging and the weak-classifiers experiments confirmed the
results obtained in the feature subspace experiment: the relationships among the measures
themselves are strong whereas the relationship between diversity and accuracy is weak.
In general, the relationship between accuracy and diversity was strongest for the DF and
CFD measures with the majority vote accuracy P,,q;. Occasionally other diversity measures
showed high rank correlations when a particular combination method was used. The high
correlation in Table 9 of the entropy measure (E) and the accuracy obtained using the
product combination (PRO) is one of these and should probably be ignored.

The objective of this experiment however was to investigate how individual accuracy is
related to ensemble accuracy and ensemble diversity. Figure 6 illustrates the relationship in
the following manner. The scatterplots show Q versus the averaged individual accuracy of
the ensembles p. Each point on the plot corresponds to one of the 500 ensembles generated
for the respective selection of a data set and an ensemble construction method.

We also illustrate the triple relationship between Q, p and P, in figure 6. The points
printed with ‘4’ denote ensembles where P,,; is a substantial improvement on p (P >
P + €), and points printed with e correspond to ensembles which are worse than the indi-
vidual average (P, > p — €). The gray points on the background correspond to ensembles
in the middle. The threshold € was taken to be one standard deviation of the distribution of
accuracies p.

The results shown in figure 6 are somewhat unexpected. It seems that there is little or
no relationship between the averaged individual accuracy p and diversity Q. The intuition
that less accurate classifiers will form more diverse ensembles is not supported by this
experiment. This finding counters the observation by Dietterich (2000b) where the k-error
diagrams indicate a certain trade-off between diversity and accuracy for three ensemble
design methods. We can offer two lines of explanation of this discrepancy.
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Figure 6. Scatterplot of Q versus individual accuracy of the ensemble p. ‘4’ denote ensembles whose majority
vote was better than the individual average, ‘e’ denote “worse” ensembles, and the gray dots denote ensembles in
the middle.
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First, the relationship might be dependent upon the diversity measure employed. We used
an averaged measure for the whole ensemble, Q,,, and an averaged accuracy across the
L classifiers. Dietterich (2000b) only considers pairs of classifiers, and not the ensemble
as a whole. Thus, the variability of the individual accuracy within the ensemble could
be responsible for the blurring of the trade-off pattern. This argument leads us again to
question 1: how do we define and measure diversity. The explanation of the «-error diagram
(Dietterich, 2000b) suggests that diversity is perceived as statistical independence (x = 0)
but here we look also at alternative interpretations as discussed previously.

Second, as also pointed out by Dietterich (2000b), different methods for building classifier
ensembles might lead to different relationship patterns.

What is even more discouraging is the lack of evidence of a relationship between the
three variables. For the same p (an imaginary line parallel to the x-axis), we would expect
that higher diversity will lead to higher ensemble accuracy. Thus, for smaller values of O
(better diversity), we would expect to see +’s and for the larger values, we would expect
¢’s. Unfortunately, this pattern is not apparent.

7. Conclusions

We studied ten measures of diversity between the classifiers in an ensemble: four pairwise
and six non-pairwise measures (some taken directly and some derived from the literature).
Wherever a link between measures was spotted, it was carried forward to disclosing the
formal relationship between the measures (e.g., between Dis,,,, KW, and «, and also between
the “global” and the pairwise definition of «).

Attempting to answer questions 2 and 3 from the introduction, four experimental setups
were used to investigate the relationship between the diversity measures and the improve-
ment of the majority vote (P,,;) over the single best classifier (P,,,,) and the average of the
ensemble (Ppean)-

In the simulation experiments, we generated classifier outputs (correct/incorrect votes)
for L € {3, 5, 9} classifiers and accuracies p € {0.6, 0.7}. The idea was to span the largest
possible interval for the diversity measures and generate ensembles with classifiers of
approximately the same accuracy (p) and symmetrical pairwise dependency (i.e., the de-
pendency between classifiers D; and Dy is approximately the same as between any other
pair from the ensemble). We found that all measures had approximately equally strong
relationships with the improvement of the majority vote. Also, the measures were strongly
correlated between themselves.

In the enumeration experiments, we generated all possible classifier outputs for L = 3,
p = 0.6 and N = 30. Thus, the symmetry of the pairwise dependency was no longer a
restriction. We found that the relationship between the diversity measures and Py, — Pyiean
weakens because ensembles of the same individual accuracy (p) and the same diversity,
could result in very different P, due to the imbalance of the pairwise dependencies.
However, it was also found that even for the case of unequal pairwise dependency, there are
threshold values for all diversity measures, such that sets of ensemble with diversity higher
than the threshold offer a guaranteed improvement over the single best classifier. Again, the
mutual relationships between the diversity measures were found to be strong.
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In the third experiment we used the breast cancer data and enumerated all partitions of the
set of 10 features into subsets of 4, 3, 3 and 4, 4, 2. Each subset was used as a classifier input.
All teams of three linear or three quadratic classifiers were thereby generated, forming a set
of 14700 classifier teams. The results from this experiment revealed the possible inadequacy
of the diversity measures for predicting the improvement on the best individual accuracy.
The low absolute values of the correlation coefficients between the measures on the one
hand and the improvement, on the other hand, is discouraging. It raises doubts about the
abilities of diversity measures to pick up small improvements and deteriorations. Practical
problems are likely to be exactly in this class. This deficiency was confirmed in the fourth
experiment where 9 classifiers were used with two data sets: Phoneme data and Cone-torus
data. Two ensemble designing methods were tried: bagging and random weak classifiers,
to the same effect. It appeared that there is no clear relationship between diversity and the
averaged individual accuracy, which is counterintuitive, much as most of the other findings
in our study.

We note here that our conjectures are based on a set of experiments, and it is possible
that in different circumstances, diversity and accuracy could exhibit a stronger relationship.
For example, incremental ensemble building through Adaboost (Freund & Schapire, 1997)
is a methodology especially designed to enforce diversity in the ensemble. The ensembles
designed through Adaboost consist of classifiers of greater variability in their overall per-
formance but with good complementary behavior (Dietterich, 2000b). This variablity can
lead to a larger spread of the values of the diversity measures, and consequently to a more
definite relationship with accuracy. Our results in Section 6.2 indicate the possibility of
such a relationship.

The 10 measures exhibited reasonably strong relationships among themselves. In the real
classifier experiments, the uniformly high correlation was preserved between the majority
of the measures. In these experiments, three distinct clusters of measures were discovered:
the double fault measure (DF) and the coincident failure diversity (CFD) formed clusters on
their own, and all the remaining measures formed the third cluster. This suggests that for real
problems, the measures might behave differently, so they can be used as acomplementary set.
The more trivial conclusion that nonetheless might have a greater impact on the development
of this research line is that the notion of diversity is not clear-cut. On the other hand, the
great similarity between measures used by different authors suggests that there is an agreed
upon general idea of diversity, at least on some intuitive level.

At this stage any answers to questions 4: “Is there a measure that is best for the purposes
of developing committees that minimize error?”, and 5: “How can we use the measures in
designing the classifier ensemble?”, can only be speculative.

A choice of measure to recommend can be based on ease of interpretation. Only Q,,,
pav and « have the simple value of O for independence with negative values giving what
the team should be striving for. Both p,, and « have a minimum (negative) value which
depends on the number of classifiers and their accuracies, whereas for Q,, it is unknown
although our experiments suggest there is a minimum value. The relationship between Q,,
and the limits of P,,,; has been formally derived (Kuncheva et al., 2000), and for these limit
cases, Q,, can take values —1 if the individual classifiers are all of accuracy p > % Finally,
Q. 1s easy to calculate. For these reasons we recommend the use of Q.
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The use of diversity measures for enhancing the design of classifier ensembles (question 5)
is still an open question. Given the lack of a definitive connection between the measures
and the improvement of the accuracy, it is unclear whether measures of diversity will be
of any practical value at this stage. This prompts the question, is diversity such a key
issue in classifier combination, as deemed in the literature? Our study suggests that the
general motivation for designing diverse classifiers is correct but the problem of measuring
this diversity and so using it effectively for building better classifier teams is still to be
solved.

Appendix: Equivalence between the disagreement measure
Dis,, and Kohavi-Wolpert variance KW

The Kohavi-Wolpert (1996) variance, in the case of two alternatives, 0 and 1, is

| &
KW = — [(z;))(L —1(z;)) 21
NLZ ; J J
| N[ L L |
= W;(;%:) (L_;yj,i> ZW; Aj, (22)
where

L L
Aj = <Z yj,i) (L - Zyj,i)- (23)
i= i=1

The disagreement measure between D; and Dy used in (Skalak, 1996) can be written as
. 1< 2
Dis; ;. = v j;(yj,i — Yjk) (24)

Averaging over all pairs of classifiers i, &,

1 L &
Disgy = —— — Y i —yiu)’ (25)
L(L_l);%N;YJ Yjk
1 N L L
— 2
NL(L—I);;;())” YJk)
i#k
1 N
_ . 2
NL(L — 1)281’ (26)
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where

Bi=)_

i=1

i — Yix)

Mh

o

=1
k

Dropping the index j for convenience and noticing that )’12 =y,

= L(ZL: Yi> - (i y?) - XL: ZL:Wk

i=1 i=1 i=1 k=1
ik

On the other hand,

B=>"> (—2yiy+¥)

i=1 k=1

L L L
=2L—1) (Z y,-> —2( 20> vin

i=1
=2A.

Therefore,

L—-1_.
KW = TD[SGU.

205

27)

(28)

(29)
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(33)

(34)

Since the two diversity measures differ by a coefficient, their correlation with Pyu; — Prean

will be the same.

Notes

1. Averaged pairwise correlations between P;(ws | x) and Pj(ws |X), i, j = 1, ..., L are calculated for every s,

then weighted by the prior probabilities 2 (w;) and summed.
The package PRtools for Matlab was used (Duin, 1997).

http://www.ics.uci.edu/~mlearn/MLRepository.html.

AR N

the classifier outputs sum up to 1.

Created by Dr. William H. Wolberg, W. Nick Street and Olvi L. Mangasarian, University of Wisconsin.

It can be shown that maximum and minimum combination methods coincide when there are two classes and
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6. Available on http://www.bangor.ac.uk/~mas00a/Z.txt (see for more experimental results with the same data
(Kuncheva, 2000)). A separate data set for testing with 400 more points generated from the same distribution
is also available: Zte.txt.
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