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Measures of effect size
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Brunei University, Uxbridge, England

Twodifferent approaches have been used to derive measures of effect size. One approach is based
on the comparison of treatment means, The standardized mean difference is an appropriate measure
of effect size when one is merely comparing two treatments, but there is no satisfactory analogue for
comparing more than two treatments. The second approach is based on the proportion of variance
in the dependent variable that is explained by the independent variable. Estimates have been pro
posed for both fixed-factor and random-factor designs, but their sampling properties are not well un
derstood. Nevertheless, measures of effect size can allow quantitative comparisons to be made
across different studies, and they can be a useful adjunct to more traditional outcome measures such
as test statistics and significance levels.

Most psychological researchers appreciate in abstract

terms at least that statements describing the outcomes
of tests of statistical inference need to be distinguished
from statements describing the importance of the rele

vant findings in theoretical or practical terms. The latter
may have more to do with the magnitude of the effects in
question than their level of statistical significance.

Cohen (1965) remarked that in research concerned
with comparisons among treatment means, investigators
nonetheless typically confined themselves to reporting

test statistics such as t or F and did not attempt to derive
measures of effect size. More specifically, Craig, Eison,
and Metze (1976) surveyed the articles in three different

psychological journals that had employed Student's t

test; none of these reported a measure of effect size, and
in many instances the "significant" effects proved on
inspection to be relatively slight in magnitude. Craig et
al. concluded that "researchers and journal editors as a
whole tend to (over)rely on 'significant' differences as

the definition ofmeaningful research" (p. 282). This sit
uation does not seem to have altered in the intervening
time.

This paper reviews research on the development and
practical value ofdifferent measures ofeffect size. Clas
sically, two different approaches have been taken in de

riving such measures. One approach is based on the com
parison of different treatment means, and the other
approach evaluates the proportion of the variance in the

dependent variable that is explained by the independent
variable. Winer, Brown, and Michels (1991) noted that
the first approach tends to be used in fixed-effects de-
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signs, where the treatments employed exhaust the popu
lation of interest. The second approach is typically used

in random-effects designs, in which the treatments are
regarded as a sample from some indefinite population of

treatments, and in which it makes little sense to compute
an effect size index by comparing the particular treat
ments that happened to be sampled.

The relevant publications on this topic extend back
over much of this century, and are located in diverse
sources in psychology, education, and statistics that may

not be readily accessible to interested researchers. In
this paper, therefore, I have endeavored to provide a tu
torial overview of the subject, tracing the historical de

velopment of the measures of effect size encountered
in the contemporary literature. At the same time, I want
to argue that measures of effect size have a legitimate

place in the advancement ofcurrent psychological theory
and research; thus I will make practical suggestions
about the strengths and weaknesses of particular mea

sures.
I begin by considering the mean difference and the

standardized mean difference between two independent
populations, with the primary focus on the derivation and

estimation of the latter as a measure ofeffect size and on
its concomitant advantages and disadvantages. I will point
out that this notion does not readily generalize to a situ

ation in which there are three or more populations, and I
will then suggest other measures based on the proportion
ofexplained population variance. These measures repre

sent various attempts to generalize the correlation coef
ficient to research designs in which the independent vari
able defines a number of discrete groups. This strategy
can be employed regardless of whether the groups con
stitute a fixed set oftreatments or only a particular sample

from some indefinite population of treatments. Finally, I
will make some comments concerning the application of
measures ofeffect size in meta-analytic research: that is,

the evaluation and comparison of the findings obtained
across different studies in the research literature.



COMPARISONS BETWEEN

TREATMENT MEANS

The Standardized Mean Difference

In the simplest situation, two samples of size n l and n2

(where n l + n2 = N) are drawn independently and at

random from populations whose means are /.11 and /.1b

respectively, and whose standard deviations are 0"1 and

0"2' respectively. Suppose that the two samples are found

to have means of ml and m2 and standard deviations of

s 1 and S2' respectively. The simplest index of effect size

is the difference between the two population means,

(/.11 - /.12)' This measure has two useful features. First, it

is expressed in terms of the original units of measure

ment, and thus it is intuitively meaningful to researchers

themselves (Wilcox, 1987). Second, although it is a pa

rameter based on the underlying populations and hence

is typically unknown, it has an unbiased estimate in the

difference between the sample means (m I - m2) (Winer

et al., 1991, p. 122).

Nevertheless, this index has a major drawback in that

it depends on the specific procedure that has been em

ployed to obtain the relevant data. In order to make

meaningful comparisons among studies employing dif

ferent procedures or to make useful generalizations about

the relevant phenomena, it is necessary to measure the

effect size in a manner that is not tied to arbitrary tech

nical aspects of individual research studies. Cohen

(1965) pointed out that this could be achieved if the dif

ference between the two population means were stan

dardized against the population within-treatment stan

dard deviation. Assuming that 0"1 = 0"2 = 0", say, this

yields an effect size index 0, defined as follows (Cohen,

1969, p. 18):

0= (/.11 - /.12)/0".

In other words, 0" is regarded as an arbitrary scaling fac

tor, and 0 is the mean difference that would obtain if the

dependent variable were scaled to have unit variance

within both populations (Hedges & Olkin, 1985, p. 76).

Effectively, the magnitude ofa treatment effect is judged

in relation to the degree of error variability in the data

(Winer et al., 1991, p. 121). Cohen (1965) proposed that

"small," "medium," and "large" effects could be opera

tionalized as effects for which the difference between the

population means was 0.250",0.50", and 0", respectively;

subsequently, however (Cohen, 1969, pp. 22-24), he

characterized them as effects for which 0 = 0.2,0.5, and

0.8, respectively.

The most natural manner to estimate 0 would be to

substitute unbiased estimates of its numerator and de

nominator. As just noted, the difference between the

sample means, (m l - m2), is an unbiased estimate of

(/.11 - /.12)' Under the assumption of homogeneity of

variance, an unbiased estimate, s, of the common popu

lation standard deviation, 0", is given by
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2 (nl-l)sf + (n2 - l)si
s = ---- -.

(nl + n2 - 2)

This yields an estimator d = (ml - m2),'s. This is not,

however, an unbiased estimate of 0.1 More specifically,

Hedges (1981) showed that the expected value of d is

equal to O/c(m), where

c(m) = rem /2)

r, (m /2)1 . rr(m - I) / 21

where m = (nl + n2 - 2), and where rex) is the gamma

function. Hedges provided exact values of c(m) for m ~

50, and he also pointed out that it was closely approxi

mated by the function [I - 3/(4m - 1)]. Although it ap

proaches unity when m is large, it is appreciably smaller

than unity when m is small, indicating that d seriously

overestimates o(see also Hedges & Olkin, 1985, pp. 78

80, 104 105).

Hedges then observed that the bias inherent in d could

easily be removed by defining a new estimator d' =

d . c(m). Not only is the latter an unbiased estimator of

0, but it also has a smaller variance and hence a smaller

mean square error than d. In this sense, d' dominates d

as an estimator of 0 (see Hedges & Olkin, 1985, p. 81).

Finally, Hedges showed that when n I = n2' d' is the

unique uniformly minimum variance unbiased estimator

of O. Hedges and Olkin (1985, p. 79) pointed out that d'
was itself a sample statistic, and that its sampling distri

bution was closely related to the noncentral t distribu

tion. Specifically, if n= n1n/N, then vn .d' has a non

central t distribution with noncentrality parameter \In . 0
and (nl + n2 - 2) degrees of freedom. Asymptotically,

the sampling distribution of d' is normal with a mean

equal to 0 and a variance equal to [N/(n 1n2) + 02/(2N)]

(p. 86). Hedges and Olkin (1985, pp. 81 -82) showed that

d' was neither the maximum likelihood estimator of 0,
which is given by d . \I [Nt(N - 2)], nor even the minimum

mean square error estimator of 0 (since a "shrunken" es

timator can be specified that has uniformly smaller mean

square error than d'). Nevertheless, they considered that

d' had good properties for small sample sizes and should

be used as the basic estimator of effect size for data ob

tained from a single study (p. 83).2

Several reviewers have attributed the index 0 to Glass

(1976) (e.g., Hedges & Becker, 1986; Wilcox, 1987; Winer

et al., 1991, p. 122). This is clearly incorrect; Cohen

(1965) discussed the basic notion informally and then

formally as an effect size index (Cohen, 1969). Glass's

particular contribution was to point out that an estimate

of 0could itselfbe used as a dependent variable in order

to evaluate the consistency and the magnitude of a par

ticular phenomenon across different studies in the liter

ature. Smith and Glass (1977) used this approach to

argue for the efficacy of psychotherapy on the basis of

the effect sizes obtained in 375 different studies. Subse-
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quently, Glass, McGaw, and Smith (1981) provided a

more extended account of the meta-analysis of social
research, and nowadays measures of this sort are fairly
widely used, most notably in the investigation of gender

differences (see, e.g., Hyde, 1981; Hyde, Fennema, &

Lamon, 1990; Hyde & Linn, 1986). Glass and his co
authors did not mention Cohen's earlier work in any of

these publications, but Cohen was patently the intended
target oftheir criticism that "there is no wisdom whatso

ever in attempting to associate regions ofthe effect-size

metric with descriptive adjectives such as 'small: 'mod

erate: 'large,' and the like" (Glass et al., 1981, p. 104,

italics in original).
One distinctive characteristic of Glass's (1976) ac

count was that it was concerned with the comparison of
one or more treatment groups with a single control

group. The accompanying illustrations showed hypo
thetical distributions of the treatment groups expressed
in terms of percentiles of the control group. In other

words, Glass standardized differences between the group
means against the standard deviation of the control
group alone (see also Glass et al., 1981, p. 29). Ifthe lat

ter group is arbitrarily designated as Group 2, the esti
mate ofthe population effect size 0 for Group 1would be

(m\ - m2)/s2.However, as Glass et al. (1981,p. 106) them
selves noted, various choices of the standard deviation
with which to scale the differences between the group
means can result in substantial differences in effect size.

Glass's (1976) original paper contained no justifica
tion for this way of computing a standardized mean dif
ference. According to Hedges (1981), Glass's own con

cern was that the standard deviations ofdifferent samples
would vary by chance even if the variances of the under

lying populations were homogeneous. Consequently,pool
ing pairs of sample variances could result in different
standardized values of identical mean differences when

several treatment groups were being compared with a sin
gle control group. Conversely, as Glass et al. (1981,
pp. 106-107) pointed out, standardizing the differences

between the mean scores obtained across several treat
ment conditions against the standard deviation ofthe con
trol group alone would ensure that equal mean differences

were associated with equal effect sizes in the face ofhet
erogeneous within-group variances. They also cautioned

that the latter problem could arise in research practice as
the result of ceiling and floor effects (pp. 109-111).

However, Hedges (1981) argued that, if the assump
tion of homogeneity of variance were tenable, then the
most precise estimate of the population variance would

be obtained by pooling all the sample variances, and that
in any case Glass's reservation simply did not apply to an
investigation that involved merely two samples (see also

Hedges & Olkin, 1985, p. 78). Hedges went on to show
that the expected value of Glass's estimate of owas also
olc(m), where c(m) was defined as above, but where m

was simply the degrees of freedom for the control group

(n2 - 1). Hedges and Olkin (1985, p. 79) pointed out
that the bias and the variance of d were smaller than the

bias and the variance of Glass's estimate, and that con
sequently the former was a uniformly better estimator
than the latter, regardless of the value of o. Rosenthal and

Rubin (1982) and Kraemer (1983) showed how values of
d obtained from several different experiments could be

tested for homogeneity for the purposes ofmeta-analysis.
Hedges (1982a, 1982b) presented an equivalent test for
the homogeneity of values of the unbiased estimate d',
and showed how the latter values could be combined to
yield both a weighted estimator of 0 and confidence in

tervals for o. Hedges (1982c) developed additional proce
dures for analyzing whether effect size could be predicted
by either continuous or discrete independent variables.

Strengths and Weaknesses ofthe

Standardized Mean Difference

Hedges and Becker (1986) identified a number ofpos

itive features of the standardized mean difference as a
measure of effect size. First, they claimed that it was
easy to understand and had a consistent interpretation

across different research studies. Second, it preserves
information about the direction of the relevant effects

(although it is possible to adapt it to measuring differ

ences in either direction by defining 0 = 1)11 - )121 Ia;
Cohen, 1969, p. 18). Third, the sampling distributions of

the uncorrected statistic d and the corrected statistic d'
are simple and well understood, which facilitates the use

of analytic procedures. In addition, Hedges and Becker
pointed out that these quantities can be readily computed
from the values of the test statistics t and F reported by

other researchers in published articles. This is of course
not surprising, since t is normally calculated as (m, 

m 2)1-J[s2(1ln\ + lIn 2)], and since F can be shown to be
equal to t2• Ifa study provides a value of t, then the value
of the uncorrected statistic d can be computed as t .

-J(1ln l + lIn 2); if a study provides a value of F from a
one-way analysis of variance, then the value of d can be

computed as -J[F . (lin, + lIn2)]. Both computations
obviously assume homogeneity ofwithin-group variance
(Glass et al., 1981, p. 108). More complicated computa

tions are needed in the case of factorial designs, but in
each case the value of the corrected statistic d' can be
calculated as d . c(m).

Against these features, a number of criticisms have
been put forward. First, Gibbons, Olkin, and Sobel (1977)

suggested that because the standardized mean difference
was unitless, its specification "requires a much more so

phisticated acquaintance with both the details of the ap
plication as well as the statistical analysis and its impli
cations" (p. 63). Nevertheless, although there may well

be practical circumstances in which an investigator
might find it more congenial to express research findings
in terms of the original units of measurement, there are

also many situations in which the specific scale of mea
surement is of no theoretical or practical interest. Sec

ond, Wilcox (1987) pointed out that the standardized mean
difference assumed that the samples had been drawn from
populations with the same variance, and that if this as-



sumption were violated, a unitless measure ofeffect size

"would seem not to exist" (p. 47). However, Hedges and

Olkin (1985, p. 78) remarked that there were different

ways to create an estimated standardized mean differ

ence of the form (m 1 - m2)/s*, where s* was a standard

deviation; different choices of s* would yield different

estimators, but s* could be defined (for example) either

as s I or as s2 (see also Glass et aI., 1981, p. 106). Finally,

Kraemer and Andrews (1982) noted that the standardized

mean difference reflected the choice of measuring in

strument as well as the magnitude ofthe treatment effect

in that it was sensitive to nonlinear transformations of the

raw data. They put forward a nonparametric measure of

effect size based on the ordinal properties of the mea

surement scales and therefore invariant under all mono

tonic transformations of the data. Nevertheless, their crit

icism would also be true of the nonstandardized mean

difference, and it does not of course detract from the fact

that the standardized mean difference is invariant over all

linear transformations of the raw data.

However, Hedges (1981) himself identified three fac

tors that tend to weaken the standardized mean difference

as a measure ofeffect size. Two of these relate to the fact

that the magnitude of the group difference is compared

with the variability within each of the groups, with the

implicit assumption that the latter results from stable dif

ferences among subjects, an assumption that might not

be valid. First, the responses of different subjects to the

experimental treatment may vary, even if the nature of

the intervention is identical for all the subjects in the ex

perimental group. In other words, there may be a subject

by-treatment interaction, and this will contribute to the

residual term in the structural model, as will any other

unmeasured "nuisance" variables. Second, ifthe response

measure is not perfectly reliable, then measurement error

will also contribute to the within-group variability. If 0
is taken to refer to the standardized mean difference in

the absence of errors of measurement, d' will systemat

ically underestimate that quantity. Hedges then noted that

the standardized mean difference when errors of mea

surement are present is 0' = 0 . '-Jp, where p is the relia

bility of the response measure. Accordingly, ifp is known,

one can remove the bias resulting from measurement

error by dividing d' by -Jp. The third factor is the ade

quacy of the response measures as valid indices of the

underlying traits, abilities, or processes; to the extent that

they have unique factors, they will be partially invalid.

Hedges showed that if the experimental treatment affects

only the common factor assumed to be shared by the tests

measuring a particular trait, ability, or process, then the

presence of unique factors reduces the standardized

mean difference (and hence the estimated value of 0).

The extent of this bias can be computed (and thus cor

rected) if the correlation between the invalid response

scale and a valid response scale is known. However, if the

intervention affects both the common and unique factors,

the effect of invalidity may be either to increase or de

crease the standardized mean difference.
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Generalization to k > 2

As originally defined above, the parameter 0 does

not generalize to designs involving k treatments (where

k> 2) in a straightforward manner. This may encourage

researchers to group together possible treatments into

just two superordinate categories (e.g., experimental vs.

control) for the purposes ofmeta-analysis. Presby (1978)

argued, however, that this would obscure genuine differ

ences among the treatments within these categories.

Cohen (1969, p. 269) suggested that for k ~ 2, one could

define 0 to be the range ofthe standardized means (or the

standardized range of the means), (flmax - flmln)/a,

where flmax is the largest of the k means, flmm is the

smallest of the k means, and a, as before, is the common

standard deviation within each of the k populations.

Cohen suggested that when k = 2, the effect size index

is reduced to that defined earlier, (fll - fl2 )/a. In fact,

however, it reduces to the non directional effect size index,

Iu, - fl21 Ia.Moreover, when k> 2, this new index is not

affected by the precise values of the (k - 2) intermedi

ate means, and hence it is an insensitive measure of ef

fect size among the entire set of k treatments.

Earlier, Winer had described an alternative approach

to this problem as part of the single-factor analysis of

variance (1962, pp. 57-65). He defined the effect of the

ith treatment, t., as the difference between the popula

tion mean for the ith treatment, fli' and the grand mean

of the population means, fl. Winer then pointed out that

one parameter indicating the extent to which the treatment

effects differ is a; = (Irl)/(k - 1) = [I(f1i - fl)2]/(k 
1). He showed that if each sample contains n individuals

and o? is the variance due to experimental error within

each of the populations, then the expected value of the

mean squares across the treatments is (na; + ( 2) , and

the expected value of the residual mean squares is a 2•

The null hypothesis (that a; = 0) might therefore be

tested by computing the usual F ratio between the mean

squares across the treatments and the residual mean

squares. Under the alternative hypothesis (that a; oF 0),

Winer stated that the expected value of the latter ratio

was (no] + ( 2)/a 2, but this is incorrect. The expected

value of the ratio between two variables is a biased esti

mate of the ratio between their individual expected val

ues (see note 1). In particular, if sf and si are indepen

dent unbiased estimators of ar and a], respectively,

then the expected value of sT/si is greater than aria}
(Kendall & Stuart, 1977, p. 242). This error was cor

rected in the second edition of Winer's book (see Winer,

1971, p. 166). Otherwise, he gave no indication as to

how his effect size index might be estimated from sam

ple data.

The rationale for the use of (k - 1) rather than k in

the denominator of Winer's formula for a; is also un

clear. Vaughan and Corballis (1969) noted that it was ap

propriate in the case of a random-effects design where

the k treatments are regarded as a sample from some in

definite population of treatments. However, in this case,

as mentioned above, it makes little sense to compute an ef-
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feet size index by comparing the means of the k treat
ments that happened to be sampled. For a fixed-effects
design, on the other hand, the k treatments exhaust the
relevant population, and Gl is itself a parameter of that
population rather than a statistic. Vaughan and Corbal
lis pointed out that it should therefore be defined as

CLrl)/k (see Winer et aI., 1991, p. 123). The expected
value of the mean squares across the treatments is there
fore [kn . GlI(k - 1) + GZ] (see also Fleiss, 1969), and

it follows that an unbiased estimate of Gl is given by
(k - 1)[MS(Treatments) - MS(Residual)]/(kn) = (k 

I )(F - 1) . MS(Residual)/ (kn)(cf. Winer, 1971,pp. 428

429). Vaughan and Corballis showed how this approach
could be generalized to two-factor and three-factor de

signs with interaction terms and to designs in which

within-subjects comparisons are used.
The variance of the treatment means has the disad

vantage that it is expressed in terms of the square of the
original units of measurement, a scale that might not in
itselfbe meaningful, and that will in any case be contin
gent on the specific procedure that was employed to ob
tain the raw data. Once again, it might be helpful to stan

dardize this measure in some way, so that it is not tied to
arbitrary technical aspects ofparticular research studies.
Hays (1963, p. 384) pointed out that under the alternative

hypothesis the ratio MS(Treatments)/MS(Residual)
would be expected to follow the noncentral F distribu
tion with a noncentrality parameter ofv' [(Ln' rZ)/GZ],
which is equal to v'(NGlIGZ) or (G,/G) . v'N. Consequently,
the variance (or the standard deviation) of the treatment

means might be conveniently standardized against the
variance (or the standard deviation) of the constituent

populations.
Cohen (1969, pp. 267-269) accordingly proposed an

alternative effect size index, f, defined as the ratio be
tween the standard deviation of the treatment means and

the standard deviation within the populations. Thus, / =
G,/G, where G, = v'{[L(.ui - .uP] /k}. As Cohen noted,
this is equal to the standard deviation of the standardized
population means and is a dimensionless quantity. Co
hen claimed that when k = 2, / = Yz8, which is strictly

speaking incorrect: / is nonnegative and nondirectional
and thus is equal to Yz181.Cohen went on to suggest that
small, medium, and large effects could be defined in terms
of values of/equal to 0.1, 0.25, and 0.4 (pp. 277-281).

He also discussed how/could be applied to factorial de
signs (pp. 277-281), and in later writings he described
how it could be generalized to multiple regression (Cohen,
1977, p. 410; 1988, p. 473). This index is in itselfof lim
ited relevance to research practice, however, because
Cohen did not show how it could be reasonably estimated
from sample data. Nevertheless, the square of/is equal
to the ratio between the component of variance that is
explained by the treatment variable and the component

that is not so explained. The alternative approach to de
riving measures of effect size is based on the estimation
of these variance components.

COMPAJUSONSBETWEEN

V~CECOMPONENTS

The Correlation Coefficient

The alternative approach to deriving measures of ef
fect size is based on quantifying the proportion of vari

ance in the dependent variable that is explained by the in
dependent variable. As Hedges and Olkin (1985, p. 100)
noted, the explained "variance" is often not formally a
variance at all, but the difference between the overall vari

ance in the dependent variable and the conditional vari
ance in the dependent variable, taking into account the
effect ofthe independent variable. On this approach, one

tackles the problem of quantifying the magnitude of
treatment effects by measuring the strength of associa

tion between the independent variable and the depen
dent variable, and the latter is expressed in terms ofsome
kind ofcorrelation coefficient (Winer et aI., 1991, p. 121).

Cohen (1965) remarked that the possibility for confu

sion between the levels of statistical significance associ
ated with particular empirical findings and the magni

tude and hence the importance of the relevant effects
could be reduced if the outcomes are expressed as cor
relation coefficients. It is fairly well known that the lin

ear correlation coefficient, Pearson r, has a straightfor
ward interpretation as a measure ofeffect size, in that r Z,

which is often termed the "coefficient ofdetermination,"

is equal to the proportion of the total variation in the de
pendent variable that can be predicted or explained on
the basis of its regression on the independent variable
within the sample being studied (see, e.g., Hays, 1963,

p. 505). Similarly, the square ofa population correlation
coefficient, p, can be interpreted as the proportion of the
variance in the dependent variable that is explained by its

regression on the independent variable within the popu
lation in question (see, e.g., Hays, 1963, p. 512). Else
where, Cohen (1969, pp. 76-77) suggested that in corre
lational research "small," "medium," and "large" effects

could be characterized as values of p equal to .1, .3, and
.5, corresponding to values of pZ equal to .01, .09, and
.25, respectively. In addition, Glass (1976) noted that r

could be employed as an index of effect size in meta
analytic investigations, and Kraemer (1979) described

procedures for evaluating the homogeneity ofthe correla
tion coefficients obtained from several different studies.

Suppose that the number of pairs of observations
within a sample is N, that the independent and dependent
variables are X and Y, respectively, and that the total vari
ation (in other words, the total sum of squares) in Y is

SS(Total). The mean square that is associated with the
linear regression of Y on X will be SS(Total) . r Z with

one degree of freedom, and the mean square that is as
sociated with the residual (i.e., unexplained) variation in
Y will be SS(Total) . (1 - r 2)/(N - 2) with (N - 2) de

grees of freedom (cf. Hays, 1963, pp. 517-521). Under
the null hypothesis ofno correlation between X and Y(i.e.,
p = 0), these are independent estimates ofthe population



variance in Y, and hence the statistic r 2 • (N - 2)/(1 

r 2) is distributed as Fwith 1 and (N - 2) degrees offree

dom. Equivalently, the square root of this quantity, r .

.)[(N - 2)/( I - r 2) ] , is distributed as t with (N - 2) de

grees of freedom.

Under the alternative hypothesis (i.e., P oF 0), however,

the total population variance on Y ((J9, say) is to be di

vided into two parts: the explained variance, p?(J9, and

the residual variance ((J9 x' say). Here, the expected

value of the mean square associated with the total vari

ance in Y is (J9, but the expected value ofthe mean square

associated with the residual variance is (J9Ix' The ratio

between the latter mean square and the former mean

square is thus a reasonable estimate of the proportion of

variance in the dependent variable that is not explained

by its regression on the independent variable, and hence

the following would be a reasonable estimate of p2:

est. p 2 = 1- MS(Residual) .

MS(Total)

The latter quantity is equal to (Nr 2 - r 2 - I)i(N - 2),

which is less than r 2 itself except when r = ± I.
A different approach to the same problem can be taken

if one notes that the expected value of the mean square

associated with the regression of Yon X in the sample is

((J9Ix + Np2(J9), and the expected value of the mean

square associated with the residual variance in the sam

ple is (J9 x. It then follows that the difference between

these mean squares is an unbiased estimate of the quan

tity Np2(J9, whereas the sum of the former and (N - 1)

times the latter is an unbiased estimate ofN(J9.Thus, the

ratio between these quantities would be an alternative es

timate of p2:

2 MS(Regression) - MS(Residual)
est.p = - - -

MS(Regression) + (N - 1) . MS(Residual)

This suggestion was made by Hays (1963, pp. 523-524).

The latter quantity is equal to (Nr 2 - r 2 - 1)/(N 

r2 - I), which is once again less than r? except when r =

± I. The ratio between the first and second estimates of

p2 equals 1 + [MS(Residual)/SS(Total)], which is at

most [1 + II(N - 2)].

If the independent variable is dichotomous, the situa

tion is formally equivalent to the comparison of two

treatment means, as discussed earlier in this article. In

other words, as Cohen (1965) pointed out, an index ofef

fect size for the comparison of two treatment means can

be obtained ifone defines a dichotomous dummy variable

to represent membership of one or the other of the two

populations and computes the point-biserial correlation

coefficient between the continuous dependent variable

and the dichotomous dummy variable. This can be cal

culated from reported values of t or F by the formulae

rpb = ')[t2/(t2 + N - 2)] andrpb = 'I/[F/(F + N - 2)]. In

this situation, rib measures the proportion ofthe total vari

ation in the dependent variable that is associated with

membership of the two treatment groups. Cohen (1969,

p. 22) pointed out that there was a straightforward rela-
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tionship between the population point-biserial correlation

coefficient Ppb and the effect size index 0 described pre

viously. Ifp and q are the proportions of cases in the two

populations, then Ppb = 0/.)[02 + (lIpq)]; more specif

ically, ifp = q = 112, then Ppb = 0/>1(02 + 4). In the case

of the sample statistics rpb and d, however, simple alge

braic manipulation of the formulae already given shows

that rpb = d/>I[d2 + N(N - 2)/n,n2 ] .

The Correlation Ratio

The same procedure can be used in situations in which

there are more than two treatment groups, provided that

they can be assigned meaningful numerical values. Of

course, as Hedges and Olkin (1985, p. 101) pointed out,

in this case the squared correlation coefficient reflects

the degree of linear relationship between the indepen

dent variable and the dependent variable, and does not

necessarily reflect nonlinear components of their associ

ation. Equivalently, in comparing more than two treat

ment samples, the computation of a linear correlation

coefficient will systematically underestimate the effect

size. The appropriate generalization of the correlation

coefficient is the correlation ratio, 1] (eta), which was

first developed by Pearson (1905) to measure the degree

of association between two variables, X and Y, when the

different values ofX are categorized into various classes

or arrays. The square of the correlation ratio is referred

to as the differentiation ratio, and measures the propor

tion of the variability in Y that is associated with mem

bership of the different classes or arrays defined by X. It

can be calculated conveniently with the formula 1]2 =
SS(Treatment)/SS(Total) = 1 - SS(Residual)/SS(Total).

The correlation ratio thus subsumes both the linear

and the nonlinear components ofthe association between

X and Y. If the number of groups is greater than two (k,

say) and they have been assigned numerical values in an

arbitrary way, it does not make sense to talk about the

"direction" of such an association, and hence 1] is con

ventionally taken to be a positive quantity (Peters & Van

Voorhis, 1940, pp. 313, 318). Pearson noted that 1] ~ r,

with equality only when there is a linear relationship be

tween the dependent variable and the numerical values

assigned to the various groups defining the independent

variable; equivalently, the difference between the differ

entiation ratio and the coefficient of determination is an

index of the deviation of the obtained regression curve

from the least-squares regression line (p. 11; cf. Fisher,

1922). The differentiation ratio is also equal to the squared

multiple correlation coefficient obtained when the single

X variable is recoded as (k - I) independent dichoto

mous "dummy" variables (Cohen, 1969, p. 275; Winer

et aI., I991, p. 124).

Ifthe total variation in Y is referred to as SS(Total), the

mean square between the different groups defined by the

Xvariable is SS(Total) . 1]2/(k - I) and the mean square

within the different groups is SS(Total) . (1 - 1]2)/(N - k).

Under the null hypothesis ofno difference among the lat

ter groups, these two quantities are independent esti

mates of the population variance in Y, and hence the sta-
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tistic 1]2(N - k)/[(1 - 1]2)(k - I)] is distributed as Fwith

(k - I) and (N - k) degrees offreedom (Diamond, 1959,

p. 186; Hays, 1963, p. 548; McNemar, 1962, pp. 270-271).

Cohen (1965) pointed out that the corresponding values

of 1] can be calculated from reported values ofFby means

of the following formula: 1]2 = F(k - 1)/[F(k - 1) +

(N - k)]. When k = 2, 1] is equivalent to the point

biserial correlation coefficient and can be calculated

from reported values of t by means of the following for

mula: 1]2 = t 2/(t2 + N - 2) (cf. Hays, 1981, p. 294).

For modern readers, Pearson's (1905) use ofthe Greek

letter 1] is a trifle confusing, because it obscures the fact

that the correlation ratio measures the degree of associ

ation between the X and Y variables within a particular

sample. Subsequent commentators recognized this ex

plicitly or implicitly in their own writings on this subject

(see, e.g., Cohen, 1965; Diamond, 1959, pp. 54-55;

McNemar, 1962, pp. 202-203, 270-271; Peters & Van

Voorhis, 1940, pp. 312-319). Hays (1981, p. 349) sug

gested that the correlation ratio was a perfectly satisfac

tory descriptive statistic for evaluating the extent to

which the experimental treatments accounted for vari

ance in the dependent variable. Nevertheless, it is not

satisfactory for most research purposes because it is not

an unbiased estimate of the corresponding parameter of

the underlying population.

Sample Estimates ofthe Population

Correlation Ratio

This problem had been suspected by a number of re

searchers, including Pearson (1923) himself. However, it

was first properly analyzed by Kelley (1935), who de

fined the true or population value of the correlation

ratio, if, in terms ofthe proportion of the total population

variance in Y that was explained by membership of the

various classes or arrays defined by X. In this case, the

residual variance in Y(i.e., crl ,x ) is equal to the variance

due to experimental error within each of the treatment

populations (i.e., cr2). Consequently, 'iF = 1 - cr2/crf.

An unbiased estimate of the residual variance in Y is

SS(Residual)/(N - k), whereas an unbiased estimate of

the total variance in Y is SS(Total)/(N - 1). Kelley then

argued that an unbiased estimate of iF, which he called

£2, is given by the formula

£2= 1- (N -1) . SS(Residual).

(N -k) . SS(Total)

An informal derivation of this was offered by Dia

mond (1959, p. 130). Since 1]2 = 1 - SS(Residual)/

SS(Total), £2 = (1]2N - k + 1 - 1]2)/(N - k) = 1]2 

(1 - 1]2)(k - 1)/(N - k). Thus, £2 ~ 1]2, with equality

only when 1]2 = £2 = 1. Kelley also noted that when

£2 = 0, 1]2 = (k - 1)/(N - k), which he concluded was

the expected value of 1] 2 under the null hypothesis. It

may be noted that when k = 2, 1] 2== r 2 and £2 reduces to

the first of the two estimates of p2 that were derived ear

lier. Peters and Van Voorhis (1940, pp. 421--422) ob-

served that corresponding values of £2 could be calcu

lated from reported values ofFby means of the formula

£2 = (F - 1)(k - 1)/[F(k - 1) + (N - k)]. First Cohen

(1965) and then Winer et al. (1991, p. 124) pointed out

that the statistic £2 is exactly equivalent to the "shrunken"

estimate ofthe multiple correlation coefficient originally

proposed by Wherry (1931).

Hays (1963, p. 381-385) took an alternative approach

based on the deviation of the mean of the ith population

from the overall mean, t, = J1i - J1. Assuming a fixed

effects design, cri = (I.rl)/k, as noted earlier. In this

case, crf = cr2 + a]. Hays introduced the symbol to? to

refer to the population value of the squared correlation

ratio, and noted that (in the present notation) w2 =

(crf - cr2)/crf = cri!(cr2 + crl) (see also Cohen, 1969,

pp. 273-274). The expected value of the mean square

across the treatments is [kn . cri/(k - 1) + cr2], and the

expected value of the residual mean square is cr2. Under

the null hypothesis (i.e., that cri = 0), the ratio MS(Treat

ments)/MS(Residual) would be expected to follow the F

distribution with (k - 1) and (N - k) degrees of free

dom. Under the alternative hypothesis (i.e., that cri *- 0),

that ratio would be expected to follow the noncentral F

distribution with a noncentrality parameter of -V(Ncri!cr2)

= -V[Nw2/(1 - ( 2) ]. It then follows that the expected

value of (k - I)[MS(Treatments) - MS(Residual)] is

equal to kn . cri, and that the expected value of (k - 1) .

MS(Treatments) plus (N - k + I) . MS(Residual) is

equal to kn( cr2 + cri). Hays concluded that the following

was a reasonable estimate of the squared population cor

relation ratio:

est. w 2 = SS(Treatments)-(k -1) . MS(Residual).

SS(Total) + MS(Residual)

Fleiss (1969) and Winer et al. (1991, pp. 123-125) sub

sequently provided similar estimates of w2. It can read

ily be shown that est. w2 ~ 1]2, with equality only when

est. w2 = 1]2 = 1.

Glass and Hakstian (1969) subsequently noted that

£2 = SS(Treatments)-(k -I) . MS(Residual).

SS(Total)

and hence that £2/(est. ( 2 ) = I + [MS(Residual)/SS

(Total)]. They then commented that this latter quantity

has an upper bound when SS(Residual) = SS(Total) of

[I + l/(N - k)] and tends toward I as N increases, and

they concluded that in practice the two statistics would

probably not differ by more than 0.01 or 0.02. Fleiss (1969)

observed that corresponding values of est. w2 could be

calculated from reported values of F by the formula est.

to? = (k - 1)(F - l)/[(k - I )(F - I) + N], and Craig

et al. (1976) tabulated values ofest. w2 that corresponded

to commonly used threshold probability (alpha) levels

for different values of(N - 2). Hays (1963, pp. 326-327)

himself noted that when k = 2, w2 = (J1, - J12 )2f4crf,

and that values of est. w2 could be calculated from re-



ported values of t by the formula (t2 - 1)/(t2 + N - 1).
However, in this case, 1]2 == r 2 and est. 0)2 reduces to the

second of the two estimates of p 2 derived earlier.

The Intraclass Correlation Coefficient

It should be noted that Hays's derivation of est. w2 as
sumed that the X variable was a fixed factor: That is, the

particular groups included in the study exhausted all the
treatments of interest and were not obtained by sampling
from some wider set of treatments or factor levels. When

X is a random factor, however, it is possible to define an
analogous measure of effect size, the population intra

class correlation coefficient, PI' This expresses the pro
portion of the total variance that is attributable to the
membership ofdifferent categories within this wider set.
(Note that this definition is more akin to that of the co

efficient of determination, r 2, than to that of the coeffi
cient of correlation, r.) Hays (1963, p. 424) commented
that this index was identical to w2 in its general form and

its meaning, but he claimed that different estimation meth
ods applied in this situation.

In fact, it is possible to derive two different estimates

of PI that parallel the two different estimates of the
squared population correlation ratio described earlier. In

the first place, Kelley's (1935) account did not make
any assumption about whether the treatments factor

was fixed or random. Even with a random-effects design,
it remains the case that SS(Total)/(N - I) is an unbiased
estimate of the total variance in Yand that SS(Residual)/

(N - k) is an unbiased estimate of the residual variance
in Y. It thus follows that the ratio between the latter esti

mate and the former estimate provides a reasonable esti
mate of the proportion of the total variance in the depen
dent variable that is not explained by membership of the

set of treatment categories defined by the independent
variable, and that the complement of this ratio, which
Kelley denoted by £2, yields a reasonable estimate of the

population intraclass correlation coefficient.

The second estimate ofPI is derived from the account
that had been presented incorrectly by Winer (1962,

pp. 57-65) in the case of a fixed factor. With a random
factor, the variance of the treatment means, a], is equal
to (2.rT)/(k - 1), and the expected value of the mean

squares across the treatments is (n . ai + ( 2 ) . Vaughan
and Corballis (1969) noted that an unbiased estimate of
aj was therefore given by the expression [MS(Treat

ments) - MS(Residual)]/n. Since F = MS(Treatments)/
MS(Residual), this is equal to (F - 1) . MS(Residual)/n.
Moreover, an unbiased estimate of(ai + ( 2 ) is given by
[MS(Treatments) + (n - 1) . MS(Residual)]/n. It fol

lows that the ratio between these two quantities will be a
reasonable estimate of the population intraclass correla
tion coefficient:

t
_ MS(Treatments)- MS(Residual)

es ,PI ---
MS(Treatments)+(n -I) . MS(Residual)

Vaughan and Corballis pointed out that this was a con

sistent estimate of PI' but also a biased one. They went
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on to show how this approach could be generalized to
two-factor and three-factor designs including estimates

of interaction effects and to designs using within-subject
comparisons. Fleiss (1969), Dodd and Schultz (1973),

and Shrout and Fleiss (1979) made further contributions
to this discussion.

Further Ramifications

It should also be noted that, although the different es

timators of p, i]2, and PIdescribed above are prima facie
reasonable, none of them could be regarded as intrinsi
cally unbiased (cf. Hedges & Olkin, 1985,p.102). Each
is based on estimating the value of a fraction by means

of inserting unbiased estimates of its numerator and de
nominator. Winer et al. (1991, p. 125) justified this as a
"heuristic approach," and yet it is well known that the ex

pected value of the ratio between two variables is a bi
ased estimate of the ratio between their expected values
(see note I). Glass and Hakstian (1969) noted that £2was

not an unbiased estimate of i]2, contrary to Kelley's
(1935) original claim, while Winkler and Hays (1975)

were themselves quite explicit that Hays's estimate of to?

"is biased, and it may not be a good estimator in some

other respects as well" (p. 766). It would perhaps be rea
sonable to think that £2 was more satisfactory than 1]2 as
an estimate of fj 2,and Winer (1971, p. 124) indeed stated

without elaboration that the former tended to be less bi
ased than the latter. At present, however, there is no prin
cipled means ofdifferentiating between £2 and est. 0)2 or

est. PI as estimates offj2.
Hays (1963, pp. 325, 547) introduced the expression

w2 as opposed to 1]2 to make it explicit that the former

was a measure of the strength of the association between
the independent and dependent variables within the un

derlying population, while the latter was a descriptive
statistic based on the comparison of two or more sam
ples. Nevertheless, Hays incorrectly referred to 1]2 itself

as the correlation ratio rather than as the squared corre
lation ratio or differentiation ratio. This usage was also
adopted more recently by Hedges and Olkin (1985,
pp. 101-102).

Moreover, contemporary commentators have come to
use the symbol 1]2 as a parameter of a population (in

other words, the proportion of the total variance of the k
populations that is accounted for by membership of a
particular population) that itself has to be estimated from

statistics calculated from a sample. This practice was
employed by Wishart (1932), who introduced the sym
bol £2 to denote the square of the correlation ratio cal
culated from a sample, but it has also been picked up by
a number of modern authors (see Cohen, 1969, pp. 274
281; Hedges & Olkin, 1985, pp. 101-102; Winer et al.,

1991, pp. 123-124). Cohen (1969) noted that the corre

lation ratio was related to his effect size index, / (the
standard deviation of the standardized population
means), by the formula 1]2 = r« 1 + f2) or, equiva
lently.j'? = 1]2/(1 - 1]2). This is analogous to the asso

ciation between the point-biserial correlation coefficient

Ppb and the effect size index 8 (Winer et al., 1991, p. 124).
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Variance is a quantity that by definition cannot be neg

ative, and it follows a fortiori that measures ofexplained

variance must be nonnegative too. However, Peters and

Van Voorhis (1940, p. 355) pointed out that the estimate

£2 will be negative whenever MS(Treatments) is less

than MS(Residual), and it can easily be shown that the

same is also true of the other estimates of the proportion

of population variance that is explained by the indepen

dent variable in question. Equivalently, these estimates

ofexplained population variance will be negative when

ever the corresponding values of t or F are less than 1.

Hays (1963, pp. 327, 383) recommended that in this case

the researcher should set the estimate of the proportion

ofexplained population variance equal to zero. Vaughan

and Corballis (1969) pointed out that this strategy im

poses a positive bias on these variables, and hence it in

validates them as estimators of the relevant population

variance components. This consequence would not be

important if the researcher's concern were merely to de

termine whether the observed estimate ofexplained pop

ulation variance exceeded some critical level for the sole

purpose of rejecting the null hypothesis. Vaughan and

Corballis argued that the original negative value should

be reported if it is to be compared with estimates ob

tained in other experiments.

Limitations ofMeasures ofExplained Variance

O'Grady (1982) identified three somewhat more fun

damentallimitations on estimates of explained variance

as measures ofeffect size. First, if the dependent variable

is not perfectly reliable, then measurement error will

contribute to the within-group variability and reduce the

proportion ofvariance that can in principle be explained.

In general, an estimate of explained variance will have

an upper bound equal to the product of the reliabilities of

the independent and dependent variables. O'Grady argued

that, since many studies that try to measure explained

variance use only a single manipulation of the supposed

causal factor and a single criterion to evaluate the effects

of that manipulation, the reliabilities of these variables

might be quite low, even if they are sound from a theo

retical point of view. Consequently, much psychological

research would appear to be destined to generate rela

tively small measures of explained population variance.

Second, O'Grady pointed out a number of method

ological issues. Possibly the most important of these is

the observation that measures of the proportion of ex

plained population variance depend on the choice and

number of levels of the independent variable. Fisher

(1925, p. 219) pointed out that when the latter variable is

theoretically continuous, the value of the differentiation

ratio (and hence ofthe correlation ratio) obtained from a

particular sample would depend not only on the range of

values that is explored, but also on the number of values

employed within that range. Similarly, Lindquist (1953)

argued that "in most applications of analysis of variance

to experimental designs, the value of either F or £2 de

pends upon the arbitrary choice of categories in the

treatment classifications, and hence is not meaningful as

an index ofstrength of relationship" (p. 63; see also Glass

& Hakstian, 1969; Hedges & Olkin, 1985, p. 104; Norton

& Lindquist, 1951). Levin (1967) noted in particular that

the percentage of explained variance could be artificially

inflated by the inclusion of a treatment group that was

known to produce a substantially different level ofperfor

mance. Levin suggested that in this situation, SS(Treat

ments) should be partitioned into (k - 1) orthogonal

components and a value of (j)2 calculated for each one.

O'Grady suggested that as a general rule the more diverse

a population is in terms ofthe factor of interest, the higher

will be the estimates of explained variance in the depen

dent variable. As Hedges and Olkin (1985) concluded,

"Indices ofvariance accounted for depend on functions of

arbitrary design decisions as well as the underlying rela

tionship between theoretical constructs" (p. 104).

Finally, O'Grady pointed out that if either or both of

two theoretical constructs are determined by more than

one causal agent, any estimates of explained variance

will be limited to the maximum amount of variance that

is actually shared between the two constructs. Since most

psychological constructs are considered to be multiply

determined, it follows that any measures of explained

criticisms of measures of explained variance are similar

to the limitations of the standardized mean difference

that were identified by Hedges (1981). Essentially they

amount to the point that measures of effect size depend

upon the population of measurements.

APPLICATIONS TO META-ANALYSIS

As noted, one motivation for seeking to derive mea

sures of effect size is to evaluate the results obtained

across different studies in the research literature by means

of the techniques of meta-analysis (Glass et al., 1981).

Investigations of this sort have used measures based on

comparisons of treatment means as well as estimates of

the explained population variance. Rosenthal (1984, p. 23)

noted, however, that most meta-analytic studies compare

just two treatments at a time; thus measures ofexplained

variance are rarely used (though see Hyde, 1981).

As Hedges and Becker (1986, p. 16) remarked, the es

timate d' is well suited to this purpose because it is a di

rectional measure whose sampling properties are fairly

well understood. However, Hedges and Olkin (1985,

pp. 101, 103) argued that estimates of explained popula

tion variance are inappropriate for combining the results

of different studies because they are inherently nondi

rectional and hence can take on similar values for con

flicting patterns of results. They cited a hypothetical sit

uation in which two identical studies generated a

difference between two treatment groups of 1 standard

deviation in magnitude but in opposite directions.

Clearly, all the measures ofexplained variance discussed

earlier in this paper would yield identical values in the

two experiments, suggesting the erroneous conclusion

that the experiments had obtained the same results.



Whether such indices should in fact be used to average
and to compare findings across different studies is quite

another matter. Eysenck (1978) criticized techniques of
meta-analysis on the grounds that they ignore the
methodological adequacy of individual studies. As a re

sult, pooled effect sizes may be influenced by design flaws
as well as by treatment effects. Glass (1976) suggested,
however, that "it is an empirical question whether rela

tively poorly designed studies give results significantly at
variance with those of the best designed studies" (p. 4).
On the basis of his own experience, he claimed that the

difference is typically so small that to eliminate studies of
poor quality would be to discard unnecessarily a large

amount of important data. Hedges (1982c) similarly
claimed that Eysenck's criticism can be resisted (although

not decisively rebutted) within any particular application
of meta-analysis via a demonstration that the obtained es
timates of effect size are homogeneous across the set of

studies available in the research literature.
Nonetheless, Linn and Petersen (1986) made the

more subtle comment that "the research perspectives in

a field influence what researchers study and constrain
the possible outcomes from meta-analysis" (p. 69). Cer

tainly, statistical techniques of whatever sophistication
will not compensate for the preoccupations and biases of

previous researchers. Indeed, computing average mea
sures of effect size across the available research litera
ture if anything tends to legitimate those preoccupations

and biases. Be that as it may, meta-analysis represents
merely one application of measures ofeffect size in psy
chological research, and it has not been the aim of this

paper to argue whether or not it constitutes a useful re
search tool.

CONCLUSION

As Winer et al. (1991, p. 121) pointed out, an experi
mental design that achieves a numerically high level of
statistical power can lead to the rejection of the null hy

pothesis even though the treatment effects are quite trivial
from a practical or theoretical point ofview.The measures
of effect size described in this paper represent different

attempts to evaluate the importance of the observed ef
fects in a way that is independent of the level of statisti
cal significance that they attain.

In designs with just two levels of a fixed factor, it is
quite clear that the statistic d' defined by Hedges (1981)
is the preferred measure ofeffect size. This measure rep

resents the standardized mean difference between the
two treatments, corrected for sampling bias. In the case
of designs that contrast more than two levels of a fixed
factor, there is no satisfactory analogous index of effect
size. Instead, it is necessary to use an index of explained

variance derived from the correlation ratio, such as Kel
ley's (1935) £2 or Hays's (1963, pp. 381-385) est. w2•

Both of these indices incorporate a correction for sam
pling bias, and there is currently no principled basis for

preferring one over the other. In the case of designs that
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contrast more than two levels of a random factor, the
same conclusion holds for Kelley's (1935) £2 and

Vaughan and Corballis's (1969) estimate of the popula

tion intraclass correlation coefficient.
Measures ofeffect size were developed partly to com

pare and evaluate results obtained across different stud

ies in the research literature, but criticisms have been ex
pressed by various authors regarding the weaknesses and
limitations of meta-analytic techniques. However, these

criticisms do not in themselves call into question the
usefulness of measures of effect size in reporting or in

terpreting the findings obtained in single studies. Cohen
(1965, p. 106) and Hays (1963, p. 328) recommended

that researchers routinely report measures of effect size
as well as test statistics and significance levels as a mat
ter ofgood practice, but this is not ofcourse to imply that

such measures should be used uncritically.
Indeed, O'Grady (1982) commented that in research

that is primarily concerned with understanding rather
than with prediction, the theoretical importance of an ef
fect may have more to do with its existence than With its

magnitude. Chow (1988) argued more forcefully that in
the context of theory corroboration, estimates of effect

size may be largely irrelevant. Nevertheless, as Craig
et al. (1976) observed, the important point is that mea
sures of effect size are simply another part of the com

posite picture that a researcher builds when reporting
data that indicate that one or more variables are helpful

in understanding a particular behavior.
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NOTES

I. An estimate is consistent if it converges to the estimated value as

the size of the sample increases. An estimate is biased ifit tends to be

either systematically larger than the estimated value or systematically

smaller than the estimated value. Cramer (1946, pp. 254-255) showed

that the ratio between two consistent, unbiased estimates was itself a

consistent estimate of the ratio between the two estimated values. It is

not an unbiased estimate of the latter quantity, however. In particular,

if x and yare independent variables such that x > 0, then the expected

value of the ratio y/x is greater than or equal to the ratio between their

individual expected values. The latter inequality becomes an equality

only when the distribution of the denominator is wholly concentrated

at a single value or, in other words, when the denominator is actually a

constant (Kendall & Stuart, 1977, p. 242).

2. Strictly speaking, this depends upon the usual assumptions that

the sample means are normally distributed and that the sample vari

ances are homogeneous. As will be discussed, the use of d' assumes

homogeneity of variance, but it is a consistent and unbiased estimator

of 0 regardless of whether the assumption of normality is satisfied.

More generally, issues concerning the robustness of statistical tests

have little bearing on the value of particular estimates of effect size.
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