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Measures of finite (r,p)-energy and potentials
on a separable metric space

Tetsuya KAZUMI
and

Ichiro SHIGEKAWA

Abstract. We discuss measures of (r, p)-finite energy associated with a
Markovian semigroup on a separable metric space. We also investigate
a relation with the (r, p)-potentials.

1. Introduction

In this paper, we discuss measures of finite (r, p)-energy on a separable metric space.
Our argument is based on the (r, p)-capacity. As for the (r, p)-capacity, fundamental
results were obtained by Fukushima-Kaneko [11]. Further Sugita [22] considered the
(r, p)-capacity on the Wiener space extensively. He introduced positive generalized
functions on the Wiener space and discussed measures of finite (r, p)-energy. We
will generalize his result in more general setting.

To be precise, let X be a separable metric space. We do not assume that X is
complete in general. We denote the Borel a-field on X by B(X). Let m be a finite
Borel measure on X. Suppose a contraction semigroup on L2(X; m) is given.
We assume that the semigroup is strongly continuous and Markovian but we do not
assume that the semigroup is symmetric in general. In addition, we assume that
the dual semigroup {T~ } is also Markovian. Then by the interpolation theorem,

can be defined on Ln(X m) as a strongly continuous contraction semigroup
for p > 1. For r > 0 and p > 1, set

~ Y r = 1 
and define the Sobolev space by

(1.2) := m)), ~u~r,p = ~f~p for u = Vrf
, f E m)

where denotes the Lp-norm of f . Then, the (r, p)-capacity Cr is defined as
follows: for an open set G 

(1.3) Cr,l> ( G) := inf ~ u E u > 1 m-a.e. on G}
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and for an arbitrary set B C X,

(1.4) Cr,p(B) := G is open and G D B }.

We assume the following conditions:

(A.1) n Cb(X ) is dense in and 1 E 

(A.2) There exists an algebra D C n Cb(X) that separates points of X.

(A.3) The capacity is tight, i.e., for any ~ > 0 there exists a compact set K such
that Cr,p(X B K)  E.

Here Cb(X ) is the set of all bounded continuous functions on X. . We may and

do assume that 1 E D. Note that under the assumption (A.2), D separates tight
measures on X, i.e., if two finite tight measures ~c and v satisfy

d f E D,

then  = v (see, e.g., [6, Theorem 4.5]).
Let be the dual space of We may regard an element of as a

generalized function. cp E is said to be positive if for any f E such that

f > 0 m-a.e.,
(1.5) (f,~) >_ 0.

We will establish that a positive generalized function defines a measure on X. We
call it the measure of finite (r, p)-energy. We also show that an equilibrium potential
is a typical example of non-negative generalized function and give a characterization
of a set of capacity zero by using measures of finite (r, p)-energy.

On the other hand, Feyel-de La Pradelle [8] discussed the capacity of functions
for Gaussian measures. We remark that similar argunent can be done in our setting.

The organization of the paper is as follows. We review fundamental properties
of Sobolev spaces and (r, p)-capacity in the section 2. In the section 3, we define

positive generalized functions and give a correspondence with measures. In the

section 4, we discuss (r, p)-potentials, (r, p)-equilibrium potentials and measures of
finite (r, p)-energy. We also give a characterization of capacity zero set. Lastly, we
discuss the capacity of functions and the relation with positive generalized func-
tions.

2. (r, p)-capacity

We review the Sobolev space and fundaniental properties of (r, p)-capacities.
We keep the assumptions (A.I), (A.2) and (A.3) throughout the paper.

For r > 0 and a > 0 we define an operator on V(X; m) by

(2.1) V(03B1) = 1 0393(r/2) ~0tr/2-1e-03B1tTtdt.
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For r = 0, we set Vo(a) = I for convention where I is the identity operator.
Formally, we sometimes write = (a - A)-r/2 where A is the generator. It is

well-known that for r, s > 0, V(+~ = 

Proposition 2.1. is a Markovian contraction operator. Moreover

~ j strongly as a -~ oo.

Proof. The first assertion is easily obtained from the definition. We show the

convergence of By the definition,

03B1r/2V(03B1) = 03B1r/20393(r/2) ~0tr/2-1e-03B1tTtdt = 1 0393(r/2) ~0 sr/2-1e-sTs/03B1ds.
Now by noting that Tt -> I strongly as t ~ 0, we get a desired result. []

If r = 2, then = Ga where Ga is the resolvent. The following resolvent
equation is well-known:

Ga = (I + (Q - 
We shall extend this identity. By a formal calculation, we can easily presume

(a - = (I + (/? - A)-r/2.
Let us justify this identity. First we define (I + (~i - a)Ga)r/2 by

ao

(2.2) (1 + (/3 - a)Ga)r/2 = ~ c~~~(~ - 
16=0

where = 0,1,2,... are coefficients of Taylor expansion for (1 + i.e.,

(1 +x)r/2 = cnxn.
~~=o

If j/? 2014 a~  a, then (~(~Q -  1 and hence (2.2) converges uniformly. Here
(~ ’ denotes the operator norm in m). We have the following:

Proposition 2.2. If |03B2 - a)  a, then it holds that

= ( j + ( f~ - = + (~ - a)Ga)r~2.
Proof. In general, for any function h(t),

~0e-03B2th(t)Tt(03B2-03B1)G03B1 dt
= ~0 dt e-03B2th(t)Tt ~0 ds e-03B1s(03B2- 03B1)Ts

= ~0 dt ~0 ds e-03B2th(t)e-03B1s(03B2-03B1)Tt+s

= /’°° do- lu ( + ~ = T, t = T)
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where 

Kh(03C3) = (03B2 - 03B1) 03C30 h()e(03B2-03B1)(03C3-)d.
Set g(t) = Then repeating above procedure, we have

r~ ~2~ = r~ ~2~ 
at.

Thus we have

(I+ (03B2-03B1)G03B1)r/2V(03B2)r = 1 0393(r/2)~0 e-03B2ttr/2-1Tt cn{(03B2-03B1)G03B1}ndt

= 1 0393(r/2)~0 e-03B2t cnKng(t)Tt dt.

Now it is enough to show
oo

(2.3) ~ = 

,~=o

To show this, we use the Laplace transform. By integration by parts, we have

= ~0 e-03B1te-03BBt(03B2- 03B1) t0 e-(03B2-03B1)Kng()d
= ~0 e-03BBte-03B1t(03B2- 03B1)(03B1 +03BB)-1e-(03B2-03B1)tKng(t)dt

= ~0 e-03BBte-03B2t(03B2- 03B1)(03B1 +03BB)-1Kng(t)dt.

Hence, inductively we have

o + = .

Therefore

~0e-03BBte-03B2t
cnKng(t)dt

= ~0 e-03BBte-03B2ttr/2-1 cn(03B2- 03B1)n(03B1 + 03BB)-ndt

= + a)-r~2(1 + (,o - a>l(a + a))r~2
= r(r/2)(a -I- ~)-’’~z
= ~0 e-03BBte-03B1ttr/2-1dt.

By the uniqueness of inverse Laplace transform, we have (2.3). This completes the

proof. 0
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By the above proposition, we have that is independent of a. We
simply denote V~1~ by Vr and set

(2.4) := Ran(Vr) = Vr(Lr(X; m)).

Then the following proposition is easily obtained from Proposition 2.2.

Proposition 2.3. is injective and is dellse in V(X; m). .

Defining a norm on by

= for u = VT f, f E m),

forms a Banach space. For negative index -r, we define a norm II ’ (I-r,p
by

= for f E 

We denote the completion of Ll’(X; m) under the norm For r, s > 0,
Vr:Fs,p ~ Fs+r,p is the isometric isomorphism since = More generally:

Proposition 2.4. For s E R and r > 0, --~ the isometric

isomorphism. 
~ 

Proof. It is enough to prove this in the case s + r  0. First we give a precise
definition of For f E C ,~s~~" is already defined and

~Vrf~s+r,p = ~V-s-rVrf~p = ~V-sf~p = ~f~s,p.
Now by noting that LP(X; m) is dense in Vr can be extended uniquely to an
isometry on 

The rest is devoted to prove that is surjective. By noting that is dense in
for any f E LP(X; m) C Fs,p, we can choose a sequence {fn} C_ m)

such that limn~~ ~Vrfn - f~p = 0. Hence

~Vrfn - f ~s+r,p = ~V-s-r(Vrfn -f)~P

~ - is the contraction)
- -~ 0

as n  oo. Since Vr is isometric, is a closed subspace of and hence

v.(~’9,~,) ~ ; m).

Again using the closeness of we have

= 

which completes the proof. []
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Now the following propositions are obvious.

Proposition 2.5. For r ~ 0~ ~ R, is a dense subspace in and it

holds that

t)/!)..p  v/ E 

Furrier, p, then is a dense subspace in and

From now on, we restrict ourselves to the case p > 1 in order to use the re-

flexivity of LP(X; m). Let q be the conjugate exponent ofp, i.e., 1 p + 1 q = 1. We
denote the dual semigroup of by Le., T~ = T~*. Since is

reflexive, is strongly continuous on (see [4, Theorem 1.34]). More-
over is a Markovian contraction semigroup. Hence we can define V~., 
similarly:

~=20142014~~~~-~ and ~=~(~(X;m)).

We denote the norm on by ))~. If is symmetric, then = 

Proposition 2.6. For r ~ 0 and 1  p,q  oo with 1 p + 1 q = 1, -r,q is
isometrically isomorphic to the dual space of Moreover under this

isomorphism, it holds that for / ~ C LP(X; m) and g e Lq(X; m) C 

(2.5) 

Proof. By Proposition 2.4, we have isomorphisms

~ ~ . 

~ : t 

By identifying (L~)* and L~ as usual, we get the isomorphism

2014. (~)~.

Further for / ~ and p 6 Lq(X; m),

= 

= 

= 

= 

This completes the proof. []
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We now turn to the (r, p)-capacity. The (r, p)-capacity has been defined by (1.3),
(1.4) and satisfies the following properties: for any subsets B, C, 81~, n =1, 2, ... ,

(2.6) ~($) ~ Cr,p(B),
(2.7) B C C ~ 

(2.8) Cr,p(U ~ ~ 
11 11

Under the assumption (A.I), any f E has a quasi-continuous modification.
We denote it by /. . Then for any subset B, set

(2.9) ~B = { f E ; f >_ 1 q.e. on B~.

Here, q.e. is the abbreviation of quasi everywhere, i.e., except for a set of zero

capacity.
Fukushiina-Kaneko [11] proved that there exists a unique element en E ~CB

satisfying
(2.10) Cr,?,(B) = ~eB~pr,p = inf{~f~r,p ; f ~ LB}

en is called the (r, p)-equilibrium potential of B. Further Fukushima-Kaneko [11]
proved that
(2.11) B1~ ~ B ~ ~ 

As is well-known, on a Souslin space, for a capacity satisfying (2.11), every Borel
set B is capacitable, i.e.,

(2.12) = K is compact and K C B~.

See, e.g., Bourbaki [3, Theorem IX.6.6]. Combining this with (A.3), (2.12) holds on
our separable metric space.

3. Positive generalized functions

In this section, we introduce positive generalized functions and show that they
correspond to finite measures. Using this correspondence we define measures of
finite (r, p)-energy integral and discuss the relationship with potentials.

Let notations be as before. For r > 0 and p > 1, set

:= {f E i f ~ 0 m-a.e.}.
For Sobolev space with negative index, we can introduce the notion of positivity.
Recall that is isomorphic to where + = 1. Then we say that

~p E is positive if for any f E 

We denote by the set of all positive p E 3f-r,q. We show that cp E 
defines a measure on X.
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Theorem 3.1. For 03C6 C (-r,q)+, there exists a unique finite tight measure 
such that

(3.1) /, p) = ~ /(~M~), Vf e n Cb(X).

Proof. We first note that C In fact, for f ~ L~(X;m),

= ~(~~~ > 0

since >: 0 m-a.e. We notice that c~~ is the contraction not only on
LP(X; m) but also on In fact,

= = = 

By using 1 C we have

= 

~ 

~ 

Thus we have that a family of measures {c~~~’ is uniformly bounded.
On the other hand, by the assumption (A.3), for any 6 > 0 there exists a compact

set K such that

C~(XB~)~.
Set G = X B K and let eG be the (r,p)-equilibrium potential of G. Then

and

l G 
= 

~ ~eG~r,p~03C6~^-r,q
~ ~~03C6~^-r,q

which implies {c~~~ - is tight. Hence there exists a sequence {o:j} and
a finite tight measure  such that limj~~ 03B1j = oo and for f ~ n Cb( X),

/ = lim / x ~X ’

= lim Fr,p 03B1r/2jV(03B1j)rf,03C6F-r,q

= Fr,pf,03C6F-r,q

which proves (3.1). Here we used that o~~ -~ I strongly in Uniqueness
follows from the assumption that T is separating tight measures. []
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In the above proof, it is easy to see that /~ does not depend on the choice of {o:j}
and hence itself converges weakly to /~.

From now on, we regard an element of (~-~g)+ as a measure on X by this
correspondence.

Proposition 3.2. Take any  e (A.r,g)+. Then for any open set G, it holds
that

(3.2) 
In particular, = 0 for any Borel set B with = 0.

Proof. Set J.Ln = m. Since ~  weakly as n --. 0, we have

~(G) ~ 

~ lim / 
M2014~00 ~J~

= 

= 

~ 

= 

which completes the proof. []

By the above proposition, ~ ~ charges no set of zero capacity. We also
have the following proposition.

Proposition 3.3. Take any  e Let / be the quasi-continuous mod-
ification of f ~ Fr,p. Then / e L1(X; ) and

(3.3) (/,/.) 

Further, it holds that
(3.4) 

Proof. We first prove (3.3) when f is bounded and non-negative. We may assume
that / is bounded. By the assumption (A.3) and the proof of Theorem 3.1, there
exists a sequence of compact sets {~} such that is continuous and

(3.5) 

(3.6) lim sup{(03B1r/2r(03B1)  . m)(X B Kn)} = 0.

Since 03B1r/2r(03B1)  ~ it holds that

(3.7) = 
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We easily see that L.H.S. of (3.7) converges to ( f,  as 03B1 ~ ~. We show that
R.H.S. of (3.7) converges to Jx To do this, for any n E N, we take
fn E Cb(X) such that / = f" on K" and by using Urysohn’s
extension theorem. Now we have

 I Jx 
+XBKn|(x)-fn(x)|03B1r/2(03B1)r (x)m(dx) + XBKn|(x) - fn(x)| (dx)

~ |X fn(x)03B1r/2V(03B1)r (x)m(dx) - X fn(x) (dx)|
(~r~2~~a’I-~’ m)(X ~ +~.(X ~ K,.)}.

Letting oo and then ~ 2014~ oo, we have

lim|Xf(x)ar/2V(03B1)r8 (x)m(dx) - X(x) (dx)| = 0.

Thus we have (3.3) for bounded f .
For general f E write f = E LP(X; m). Let g+, g_ be positive part

and negative part of g, respectively. Then f = Eg+ - Y,.9-. Further considering
sequences A we can reduce it to the first case. 

- - -

Lastly, we show the estimate (3.4). By the above notations, f = U,g+ - 
q.e. and q.e. Hence

= f~)
~ ~Vr|g|~r,p~ ~^-r,q
= 

= 

= 

which completes the proof. 0

Lemma 3.4. For p’ > p > 1, r’ > r > 1 and f E there exists a sequence
C (Fr’,p’)+ such tllat jj/ - ~ 0 as n ~ 0. 

Proof Set

Then f"i and hence in LP(X; m). Since f > 0, we have fM V 0 -~ f in
m).
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On the other hand, by noting f E LP(X; m), we have

lim ~03B1r’/2V(03B1)r’ f - f~r,p = lim ~03B1r’/2V(03B1)r’V-1r f - V-1r f~p = 0.
a-oo 

r ’ 

Further, for any fixed a,

Moo

~ lim ~03B1r’/2V(03B1)r’(fM ~ 0)-03B1r’/2V(03B1)r’f~r’,p
M-oo

= lim ~V-1r’03B1r’/2V(03B1)r’(fM ~ 0- f)~pM--~oo

~ lim 03B1r’/2~V-1r’V(03B1)r’~op~fM ~ 0- f~p ~ 0.

Here ~op denotes the operator norm in L1’(X; m). Therefore for any ~ > 0, we
can choose a and M so that

V 0) - f II r,P  ~.

Since f M is bounded, we can easily see that E (.~r~,p~ )+. The proof
is complete. 0

Now the following proposition is easily obtained.

Proposition 3.5. For q > q’ > 1, r’ > r > 0

(’~-~’~~9’)+ 
We give an example of positive generalized function. Recall that the following

Kato’s inequality: for u E and f E (~’2,P)+, 1I p + lI q = 1,

(3.8) (A f , ( f , (sgnu)Au).

Here
1 ifx>0,

(3.9) sgn x = 0 if x = 0,~ - 1 ifx0.

and we denote the generator by A. (3.8) means that (sgnu)Au E (,~ 2,q)+
where q is the conjugate exponent of p. 

Let us discuss the essential self-adjointness of the operator -A + V where V is
a potential function. We suppose that the semigroup is symmetric. Then A is a
self-adjoint operator in m). We can give an sufficient condition as follows.

Theorem 3.6. Let p, p’ > 2 be exponents such that Z + p + p, =1. Suppose
that V E LP(X; m)+ and C is a dense subspace of . Then -A + V is essentially
self-adjoint on C. 



426

Proof. It is easy to see that 2014~4 + V is well-defined on C and symmetric in
L~(~;m). To show the essential self-adjointness, we shall prove

Ker(7-~+VtC)*={0}.

Take g ~ + V f C)*. Then, for f e C,

(3.10) ((7-~+V)/,~)=0.

By the denseness of C, (3.10) holds for f ~ F2,p’ which means

in ~2~,

where q’ is the conjugate exponent of p’. Hence, by Kato’s inequality, for any
~ E (.F2~)+

((A - 7)H,~ ~ 7)~) ~ 0.

which implies (A - ~ (~-2,~)+’
On the other hand, (A - e ~-2,2’ Hence by Proposition 3.5, we obtain

(A - e (.F-2,2)+. Now by noting (~)+

o ~ (~ - = (~ - o.

Thus we have =0 and hence ~ = 0. This completes the proof. [J

4. Measures of finite (r,p)-energy and potentials

In this section, we define the (r,p)-energy and discuss the potentials. First we define
the mapping U: -~ This operator is introduced by Maz’ya-Khavin [14] in
the connection with the Riesz potential on the finite dimensional Euclidean space.
For 03C6 ~ U03C6 is defined by

(4.1) Up = 

where sgn is defined by (3.9). By noting that ~ L~ and E L~ for

~ ~ is well-defined. Moreover U is bijective and the inverse mapping C/"~
is given by
(4.2) = 

To see the continuity of U, we need the following estimates: for g ~ 2,

(4.3) (g - + 

and for q E (1,2),

(4.4) C (JF-~)+.
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Hence, U is continuous and U is continuous at least on (-r,q)+ if q ~ (1,2).
For the proof, see Maz’ya-Khavin [14, Lemma 3.5].

Similarly, we have the following estimates: for p > 2,

(4.5) (p + 

and for p ~ (1,2),

(4.6) ~U03C6-U03C8~p-1r,p, ~03C6,03C8 E (JF-.J+.
Define a function x -~ R by

(4.7) = 

= ~ 
Note that is linear in the first variable but non-linear in the second variable if
p 7~ 2. We can easily see the following: for u, v ~ 

(4.8) == 

(4.9) t~(~~)! ~ 
is a natural extension of ~i, in fact if r = 1, p = 2, then U = G~ = (I - 

and = + (~~)~(~). An element ~ 6 is said to be of finite
(r,p)-energyand the (r, p)-energy of 03C6 is given by

= ~U03C6~pr,p = = Fr,pU03C6,03C6-r,q.
Definition 4.1.  e (F-r,q)+ is called the measure of finite (r,p)-energy. Fur-

ther u = U  ~ is called the (r,p)-potential of . We set So = 

Note that the (r,p)-energy of  is equal to Jx (x) (dx). The following theorems
are fundamental.

Theorem 4.1. . For u e the following are equivalent:
all j.e., there exists  C (-r,q)+ such that u = U .

(ii) For any v E with v ~ 0 a.e., it holds that ~r,p(u,v) ~ 0.
(iii) For any v E a.e., it holds that ~v~r,p > 

Further, under the above conditions, it holds that u ~ 0 a.e.

Proof. Noticing the identity = Fr,pv, >F-r,q, the equivalence of (i)
and (ii) can be easily seen. We postpone a proof of the equivalence of (i) and (iii)
until the section 5, since we need the notion of capacity of functions.
_ 

Lastly, we show ~ ~ 0 a.e. In the proof of Theorem 3.1, we have shown that
K~ ~ 0 a.e. So it is easy to see that L~ ~ 0 from the definition of U. []
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Next we shall show that the (r,p)-equilibrium potential is a potential.

Theorem 4.2. Let eB be the (r,p)-equilibrium potential of a set 2?. Then it

holds that for v 6 such that {; >: 0 q.e. on B,

(4.10) 

In particular, if  = 0 q.e. on B, then ~r,p(v, eB) = 0.

Proof. Set
jC~ = {~ e ~p; ~ ~ 1 q.e. on B}.

e~ is the unique element of /~ which minimizes Take ~ 6 such that

i) ~ 0 q.e. on ~. Then for any c ~ 0, e~ + 6~ ~ jC~ and hence

Therefore

Following Maz’ya-Khavin [14], we calculate L.H.S.

= 

= + + 

Thus

0 ~ + = /’ = p~, ea)
C~ ~=0 ~~

which proves (4.10). []

We can introduce the notion of smooth measure as follows;

Definition 4.2. Borel measure /~ (not necessarily finite) on X is said to be

(r,p)-smooth if the following conditions are satisfied:

charges no set of zero capacity,
(ii) There exists an increasing sequence of compact sets such that

(4.11) ~(~)oo for ~=1,2,...,

(4.12) 

We denote the set of all (r.p)-smooth measures by 6’.
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We remark that ~n K,s) = 0 follows from (i) and (4.12).

Lemma 4.3. Let v be a bounded Borel measure on X. Suppose that there
exists a constant x > 0 such that

v(B)  VB E B(X).

Then v E So.

Proof. For v E with =1, ,

/ I v(x)I v(dx)  v(X) + ~ 2~+1v~2~’  v  2~+1}
X 

~;=o
oo

 v(X) + ~; 
k=a 
oo

 v(X ) + ~ ~. > 2~’}
~=o 

’

00

 v(X) + ~ ~  oo.

~;=o

Hence a function v H fx v(x)v(dx) belongs to and satisfies the positivity.
Thus we have v E (.~ r~~)+ = So. 0

Now the following lemma and theorem can be obtained by the same proof as in
Fukushima [10, Lemma 3.2.5 and Theorem 3.2.3] .

Lemma 4.4. Let v be a bounded Borel measure on X charging no set of zero
capacity. Then tllere exists a decreasing sequence of open sets such that

(4.13) lim Cr,p(Gn) = lim v(Gn) = 0,
(4.14) v(B) ~ 2nCr,p(B) for B E B(X), B ~ X B Gn.

Theorem 4.5. Borel measure v on X is (r, p)-smooth if and only if there
exists an increasing sequence of closed set such that v(X , Fn) = 0,

Cr,p(X , = 0 and ~ v E So.

Now we can give a characterization of capacity zero set by using So. Let eB be
the (r,p)-equilibrium potential of a set B. As was shown in Theorem 4.2, (r, p)-
equilibrium potentials are potentials. Hence there exists a measure vn E 
such that 

x u(x)vn(dx) = en).
We call 03BDB the (r, p)-equilibrium measure of B.
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Lemma 4.6. Let K be a compact set and vK be the (r, p)-equilibrium measure
of K. Then supp[03BDK] C K.

Proof. It is enough to show that for g E Gb(X), 9  0 on K,

We show this by following three steps.
Step 1. J~ 0.

First we note that for x > 0,

e-x = (-x)k k!+(-1)n+1 (n+1)!e-03B8x , 09l.

In particular, for even n,

(-x)k k! 
= e-x + 

1 (n+1)! e-03B8x  ~ 0.

Now set

gm = g(-~g2)k k!.

Then g,n E D and gm > 0 on K. Here we used that D is an algebra. Noticing that

converges to uniformly on X, we have

Take a sequence of increasing compact sets K = Ko C Ki C K2 C ~ ~ ~ such that

Cr,p(X 1 -~ 0. By the Stone-Weierstrass theorem, we can take gn E D satisfying
|gn - g| ~ 1 n on Kn. Setting fn = gn -E- i, we have

fn ~ 0 on K and |fn - g| ~ 2 n on Kn.

Hence fn converges to g q.e. and vK-a.e. Note that the function is bounded.

By the dominated convergence theorem and the Step 1, we have

/ dvK = lim / 0.
~ x

Step3. 
In fact, by using Step 2,

g d03BDK = lim ge-~g2 d03BDK ~ 0.
x e-o x

a
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Theorem 4.7. For B E f3(X ), the following conditions are equivalent:

(i) = o.

(ii) = 0 for any ~u E (J2-r,9)+.

Proof. The implication (i) =~ (ii) was proven in Proposition 3.2.
Conversely, if Cr,p(B) > 0, then there exists a compact set K C B with

Cr,p(K) > 0 since B is capacitable. Let eK be the ( r, p)-equilibrium potential of K
and ilK be the (r, p)-equilibrium measure of K, respectively. Then, by Lemma 4.6

0  Cr,p(K) = ~r,p(eK, eK) = XK(x)03BDK(dx) = KeK(x)03BDK(dx).
Noting that 1 q.e. on K, we obtain > 0. Thus we have 

> 0. This shows (ii) =~ (i). 0

5. Capacity of functions

Following Feyel-de La Pradelle [8], we introduce the (r, p)-capacity of functions. For
[0, ~]-valued lower semicontinuous (l.s.c. in abbreviation) function h, define Cr,p(h)
by
(5.1) Cr,p(h) := E m-a.e.}
and for an arbitrary ~-oo, oo~-valued function f (not assumed to be measurable),

(5.2) := h is l.s.c. and h(x) > ~ f (x) ~, dx 

Here and sequel we use the convention inf ~ = oo.
Then the following properties hold as well as for the capacity of sets. For any

functions f, , f l, ..., and 03BB ~ 0,

(5.3) r 

(5.4) - 

(5.5) ~ fl(x)~  ( f2(x)~ ’ dx ~ 

(5.6) ~ 
n 

n

5.7 ~ ~ ,

n n

(5.8) E - > a ~) -  .

Moreover this capacity is consistent with the capacity of sets. In fact, for any set
B,
(5.9) Cr,n(ln) = .

Here 1p denotes the indicator function of B.
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To show (5.6), we need the following fact as in Fukushima-Kaneko [11]: for any
non-negative l.s.c. function h with CT,n(h)  ~, there exists a unique (up to a.e.
equivalence) u E satisfying

(5.10) = and h  u, m-a.e.

We will extend this to all functions. First, the following lemma is easily obtained.

Lemma 5.1. (i) Let h be non-negative l.s.c. and u be quasi-continuous. If

h  u, m-a. e., then h ~ u q.e.
(ii) For any function f, = 0 if and only if f = 0 q.e.
(iii) Let f l, f 2 be any functions. |f2| ( q.e., then and if

Ifl) = |f2| q.e., then = Cr,Plf2).

Proof. We first prove (i). Since h is l.s.c., there exists a sequence of continuous
functions ~cn~ such that

h(x) = 

Noticing that m-a.e., we obtain q.e. (see e.g., [11, §3]). Now we easily
have h  ~ q.e.

To show (ii), assume Cr,?,( f ) = 0. By (5.8), for any a > 0,

Cr,PI ( ( f I > - ~) -  1 l, Cr,p( f ) =0.
Hence we have > 0) = 0, i.e., f = 0 q.e.

Conversely, assume that f = 0 q.e. Then there exists a decreasing sequence of

open sets such that

Cr,p(On) ~ 1 , f = 0 on ( On)c.’ ~ 

2’~ t=i

Set fn = sup mlo",. Clearly, f,~ is l.s.c. and f (x)~  for x E X. Hence by
~"

(5.5), (5.6) and (5.9), we have

00 00 00 mp
~ ~ ~ ~ L-~ m ’

Tft=M m=n 
2

Letting n -~ oo, we get = 0.

(iii) is obtained easily from (ii). . []

Proposition 5.2. For u E holds that where u is the

quasi-continuous modification of u.
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Proof. For u E n Cb(X ), there exists f E m) such that u = Vr f .
Hence ~u)  Vr) f m-a.e. Since ~u~ is l.s.c.,

Gr,p(u) ~ ~Vr|f|~r,p = ~|f|~p = ~f~p = ~u~r,p.

For general u, we take a sequence C Cb(X) such that un - u in 
By taking a subsequence if necessary, we may assuine that

o oo

~r (Iun+1 - and ~  oo q.e.-x.
n=1 

~ 

n=1

Then we have

oo

|u(x)| ~ |un(x)|+|uk+1(x)-uk(x)| q.e.-x.

Now by (5.7), we have

oo

 + ~, ’ ’ 

k=n 
’

00

~ ~un~r,p + ~uk+1-uk~r,p

Letting n ~ ~, we have  as desired. 0

Now we shall extend (5.10). For any function f , set

~f~ q.e.}.

Proposition 5.3. For ally function f , it holds that

(5.11) Cr,p(/) = u E ~C f}.

Moreover, there exists a unique element u E which attains the infimum of the
right hand side of (5.I1~.

Proo f. Since is uniformly convex, we can show the existence and the unique-
ness of the element which attains the infimum of the right hand side of (5.11).

Take u E ,C f. Then by Lemma 5.1 (iii) and Proposition 5.2,

Cr,plf ) ~ Cr,pBu) ~ 

Hence we have

Cr,p(f)  u E ,c f}.
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Next we show the converse. We may assume that Cr,p( f )  ~. For any ~ > 0,
there exists a non-negative l.s.c. function h such that

+ ~ > Cr,p(h) and  h(x) dx E X.

Further we can take u E such that

Cr,p(h) + ~ > and ~(a?) ~ u(x) m-a.e. x.

By Lemma 5.1 (i), u > h q.e. and hence  ~ III q.e. Thus we have

Cr,p(f) + 2~ ~ inf{~u~pr,p; u E f}.

Letting ê -~ 0, we get a desired result. Q

Now the following proposition can be proven in the same way as in Fukushima-
Kaneko [11, Theorem 2].

Proposition 5.4. (i) Let { f,a} be a sequence of functions such that

~ ~  f2(x) - ...  f1a(x)  ... q.e.-x.

Then it holds that

(5.12) Cr,p(sup fn) = sup 
1i 11.

(ii) Let be a sequence of functions with 0 q.e. Then it holds that

(5.13) Cr,p( lim fn)  lim Cr,p(fn).
~ ’ 

’ 

Following Feyel-de La Pradelle [8], let us define the Banach space L1(X; Cr,p)
as follows. First note that is a norm on fl Cb(X) by (5.7). So we

define to be the completion of n under the norm 

We can give another characterization. Let /~(X; Cr,p) be the set of all functions
f satisfying the following condition: there exists a sequence C n Cb(X)
such that limn~~ Cr,p(f - un) = 0 and f = limn~~ un q.e. Then L1(X; Cr,p) is the

quotient space of Cr,p) under the equivalence relation N: f 2 if and only
if f i = f 2 q.e. To avoid the coniplexity, we identify L1 (X Cr,p) and Cr,p) .

Proposition 5.5. is the dense subspace of Cr,p) and the inclusion is
continuous. 
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Proof. First we give a precise meaning. For any u e there exists a quasi
continuous modification ~ and tE is unique up to q.e. equivalence. The assertion
says that * e Cr,p).

To show this, we take a sequence C n Cb(X) such that 
= 0. We may assume that limn~~ un = u q.e. by taking a subsequence if

necessary. Further by Proposition 5.2,

lim Cr,p (un - um) ~ lim ~un - um~pr,p = 0.

Hence we have u ~ L1(X; Cr,p).
Continuity of the inclusion follows from Proposition 5.2. Further it is easy to

see that is dense subspace in L~(X; Cr,p) by the definition of Cr,p). []

Proposition 5.6. The following holds:

(~14) 
~’15) / e C~) ~ j/j E 

Proof. We divide a proof of (5.14) into three steps. We take arbitrary c > 0.
Step 1. If g ~ D, then e Cr,p).
Set

gn=(-~g2)k k!.
Then gn ~ D converges to uniformly on X. Hence we have

C’.,p(~-~-~)-~0
which implies e 

Step 2. If g e Cb(X), then e Cr,p).
Take a sequence of increasing compact sets such that 0.

By the Stone-Weierstrass theorem, we can take ~ ~ D satisfying j~ - ~j ~ ~ on
Kn. Set ’~

M =  oo.

a;~o

Then we have

= + (~e-~ - 
~ 

and hence e L~(X; Cr,p).
Step 3. If g ~ Cb(X), then g ~ L1(X; C.,p).
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Noting that converges unifornlly to g as ~ ~ 0, we have

lim Cr,p(ge-~g2 - g) = 0.

This implies g E L1(X; Cr,p).
Next we show (ii). By definition, we can take a sequence {un} C n Cb(X)

such that f = q.e. and u) = 0. Then, we easily obtain

I f = limn-o q.e. and limn~~ Cr,p(un - f) = 0 which
shows I f I E Cr,p). U

Let us discuss positive generalized function in this context.

Definition 5.1. An element $ E L1(Xj Cr,p)* is said to be positive if

~ ~’)L’(xiCr,p)‘ ~ ~ for f E Cr,p) with f > 0 q.e.

We denote the set of all positive elements by 

By using Proposition 5.6, we can give an alternative proof of Theorem 3.1. In

fact, Feyel-de La Pradelle proved it for Gaussian measures in this manner.

Proof of Theorem 3.1. We first note that is contained in L1(X; Cr,p)
by Proposition 5.5. Take any ~p E Then by Proposition 5.3, for any

f E Cr,p), there exists u E such that i~ q.e. Now by using the

extension theorem of the positive linear functional (e.g., [16, XI, T3~), y~ can be
extended to a positive linear functional on L1(X; Cr,p) which we denote by ~. Since

Cb(X) C L1(X; by Proposition 5.6, we can define the functional I by

~(~) - ~ ~ E Cb(X).

I is clearly a positive linear functional on We show the continuity of I in

the following sense: for any decreasing sequence C Cb(X), such that f n(x) J, 0,

~x EX, it holds that limn~~ [(In) = 0.
To see this, take any compact set K. Then

+ 

~ + 

Here denote the supremum norm on K. Since = 0 by

Dini’s theorem, we have

11111 _ 

We can make the right hand side as small as we want, and hence limn~~ [(In) 
= 0.

Now by Daniel’s extension theorem (see e.g., [15, p. 29]), there exists a Borel

measure  on X such that

I(f) = x df E 

which completes the proof. []
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Next let us discuss the relation between Z~(X; and We have the
following:

Theorem 5.7. (i) Ll(X; = and the norm is preserved.
(ii) For any ~ L1(X; Cr,p)*+, which is regarded as a measure oa X, it holds that

L1(X; Cr,p) C L1(X; ). Moreover it holds that

(5.16) Vf E 

Proof. We denote the inclusion by t : 2014~ Cr,p). Let t* be the dual
operator, i.e., i* : ~ (Fr,p)* = Take any  ~ We
regard ~ as a Borel measure on X as in the section 3. For any f ~ L~(X; C,.p),
there exists u 6 such that fj  ~ q.e. and = by Proposition 5.3.
Then, by Proposition 3.3 and 

X |f|d  ~ Xd  ~ ~u~r,p~ ~^-r,q = Cr,p(f)1/p~ ~^-r,q.

Thus we have ~ ~ and Conversely, we have
since 

~ ~~~ ~’~

 

Hence we have = This completes the proof. []
(5.15) shows that is a Banach lattice (as for Banach lattice, see e.g.,[17, Chapter V]). Here the order in this space is given as follows: / ~ ~ if and

only q.e. Hence its dual space is a Banach lattice as well.
4l E cr,p)*, thereby can be written as $=$+-$_ where ~+ = $ V 0
and $_ = (-$) V 0. This means that 4l defines a signed measure and the above
decomposition corresponds to the Hahn decomposition. Further, combining this
with Theorem 5.7, we have that the range ~(L~; C~)’) is the set of ~ 
which can be written = ~ - ~_, ~, (~_~. )~ 

’~

Lastly, we shall give a proof of Theorem 4.1 which was put off. We prove it in
the following theorem.

Theorem 5.8. For u E tAe following conditions are equivalent each other:
(i) u is aa 

(ii) For any v E with v ~ u a.e., it holds that jbtL. > 
(iii) = 0 a.e. 

’ " " ’ " " 
"

Proof. The equivalence of (ii) and (iii) is clear. We can prove the implication(u)=~(t) in the same manner as Theorem 4.2. In fact for any w ~ 
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Next we shall show Noting that C~u) ~ it is enough to

show ~,p(tt) ~ Without loss of generality, we may assume u ~ 0. Take

~ ~ (.F-r,g)+ = L~(X; so that u = Then noting

and
,

we obtain

= ~~~.F~..
= ~’(X;C,.,)(M,~)~’(X;C~)’
~ 
= 

= Cr,p()1/p~u~p/qr,p.

Now dividing both hands by we get a desired result. Q

Using the fact that I~(X; Cr,p)* is the Banach lattice, we can give an another

expression of the capacity. ,

Lemma 5.9. For any f 6 L~(X; C,.,p),

(5.17) = E 1}.

Moreover, the infimum of the right hand side is obtained by a unique element

!/ ~ (:F-,.,,)+ with = 1.

In particular, if/= eB, i.e., the (r,p)-equilibrium potential for a set B, then
the unique minimizing element where 03BDB = U-1eB.

Proof. By the general theory of Banach lattice, we have

= ~’(~).; ~ E 1}.

Now, (5.17) is easily obtained by Theorem 5.7 (i). On the other hand, {~ E
 1} is bounded closed set in and hence weakly compact.

The existence of a maximizing element easily follows from this.

To show the uniqueness, we recall that is uniformly convex. Suppose that

~ and v maximize the left hand side of (5.17). If ~ v, then + ~!  2 by the

uniform convexity. Therefore

(~ + + 

> + = 
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which is the contradiction.

If f = then

= = 

where ~ = Hence

= 

= 

= 

which shows that the maximizing element. [J

Lemma 5.10. . Suppose that a sequence C (-r,q)+. converges to v *-weakly
in Then 03BD C Ll(X; and converges to v *-weakly jn L1(X; Cr,p)*.

Proof. is bounded in since converges. But = 

by Theorem 5.7, is bounded in as well. Moreover,

Noticing that is dense in we can see that v C and

{~J converges to v *-weakly in Ll(X; C"’,1’)* . Q

Proposition 5.11. Let eB, ec be (r,p)-equilibrium potentials for sets B and
C. Set 03BDB = . Then we have

(i) G  1 

(ii) B C C ==~ ec 

Proof. We first prove (ii). To show this, we note

= (Theorem 5.8 (iii))
= 

= 

~ A ec) (~c A ec  1~ q.e.)
 

.

Therefore we have

(~18) 
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Since Cr,p) is a Banach lattice, we have en A eo E L~(X; Cr,p). Now from
Lemma 5.10, there exist v, ~c E (.~_r,q)+ with = = 1 such that

X eBd03BD = Cr,p(eB)1/p,

XeB ^ eCd  = Cr,p(eB ^eC)1/p.

Since v is the maximizing element for en, we have

XeBd  ~ XeBd03BD = Cr,p(eB)1/p .

Therefore

Cr,p(eB^ eC)1/p = XeB ^ eCd  ~ XeBd  ~ XeBd03BD = Cr,p(eB)1/p.

Combining this with (5.18), we have

X eB ^eCd  = XeBd

which implies eB A ec = en p,-a.e. and further we have

which implies  = v by the uniqueness of the maximizing element.
To show (i), it is enough to replace eD by 1 in the above proof. []

Now we can discuss the support of vn for a general set B.

Theorem 5.12. For any set B, let eD be the (r, p)-equilibrium potential of’B
and vn be the (r, p)-equilibrium measure, i.e., v~ = Then we have

(i) supp[03BDB] C B
(ii) Cr,p(B) = vD(B). ’

Proof. We first prove (i) and (ii) for a compact set K. (i) was proven in
Lemma 4.4. To see (ii), note that eK > 1 q.e. on K by the definition and 1

vK-a.e. Accordingly, we have eK = 1 vK-a.e. and hence

= X eKdvK = K 1d03BDK = vK(K)
which shows (ii) for K.

Next we prove the assertion for an open set G. Since G is capacitable, there

exists an increasing sequence of compact sets ~K,~~ such that Kn C G and

oo

lim Cr , K,L = CT ,(G), m(G B U = 0.
~1 ( ) , 

~i=1
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Define ,CG and n = 1, 2, ... by (2.9). We claim that G = In

fact, ,CG C is evident. To see the converse, take u E Then u > 1

q.e. on Kn for all n. Therefore u > 1 q.e. on K,.. Since we have chosen ~Kn}
so that K,l) = 0, we have u > 1 m-a.e. on G. But i~ is quasi-continuous,
we eventually obtain u > 1 q.e. on G, i.e., u E Thus we get ,CG = 

Set en = eKn. Then

= = Cr,p(G)  00.

Hence we can take a subsequence such that

--~ e weakly in 

Here we used that is reflexive. Note that is convex closed set in 
Therefore is weakly closed. Moreover it is easy to see that e ~ =

LG. Hence 
On the other hand,

~e~pr,p ~ lim ~enj~pr,p ~ lim Cr,p(Knj) = Cr,p(G).’ ’ ’

Thus we have = and hence e = eG by the uniqueness of minimizing
element. The limit eG does not depend on a choice of subsequence, we eventually
obtain that

(5.19) en -~ eG weakly in 

Moreover

(5.20) lim ~en~pr,p = lim Cr,p(Kn) = Cr,p(G) = ~eG~pr,p .

Since is uniformly convex, (5.19) and (5.20) implies

lim ~en - eG~r,p = 0,

(see, e.g., [5, 11.4.28]). Now, using inequalities (4.5) or (4.6), we have

lim ~03BDKn  - 03BDG~^-r,q = 0.

Further, by Lemma 5.10,

-> vG *-weakly in 

Take u E Cb(X) with supp[u] n G = 03C6. Noting that C L1(X; we get

which asserts that supp[vG] C G.
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(ii) can be obtained as follows:

Cr,p(G) = lim Cr,p(Kn) = lim 03BDKn(Kn) = X 1Kn dvKn
= lim X 1 d03BDKn = X 1 d03BDG = 03BDG(G).

Lastly we prove the assertions for a general set B. For any u E Cb(X) with
supp[u] n B = ~, take a decreasing sequence of open sets such that Gn D B,
supp[u] n G~a = ~ and J, Noting that eGn E ~C~ and ,CB is weakly
closed, we can obtain

eG,, -~ en strongly in 

by the same argument as above. Moreover, we have similarly

--> v~ *-weakly in Cr,p)*.

Hence
= lim = 0

X " 

X 
n

which implies supp[03BDB] C B.
(ii) can be shown by the same way. D

Lastly, we shall give an example satisfying the conditions (A.I), (A.2) and (A.3).
Let (B, H, ~c) be an abstract Wiener space: B is a separable real Banach space,

H is a separable real Hilbert space which is embedded densely and continuously in
B and  is the Gaussian measure satisfying

~) = = 
> C. ~.

We consider the following Ornstein-Uhlenbeck semigroup :

(5.21) Tt f (x) = + 1- for f E L2(~c).

Here A is a strictly positive definite self-adjoint operator in H.
We assume that COO(A*) n B* is dense in under the graph norm of

A*~ for any k E Z+. Here A*: H* --~ H* is the dual operator of A and COO(A*) =

We define to be the set of all functions of the form

(5.22) f(x) = E C°°(A*) 

where n E N, F E The associated Dirichlet form is given by

_ ~(dx)~ E .
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Here D f(z) is an H -derivative of f at z:

Df(x)[h] = lim f(x + th) - f(x) for h ~ H.
t-o t

Let us see that the above Ornstein-Uhlenbeck semigroup satisfies the conditions.
In [19, Proposition 4.2] it is shown that FC~b is dense in sir,p. Hence (A.I) is
satisfied. It is clear that FC~b satisfies (A.2). As for (A.3), the tightness of (r, p)-
capacity is proven by Feyel-de La Pradelle [9]. Hence all conditions are satisfied in
this case.
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