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MFASURES 01 LACK OF FIT FOR RESPONSE SURFACE DESIGNS
AND PREDICTOR VARIABLE TRANSFORMIATIONSt

G. E. P. Box and N. R. Draper

1. INTRODUCTION

Consider a response surface study in which a polynomial of degree d

in k predictor variables lP2, ... ,Ek, is used to represent the expected

response n = 9( I ,2 , .... k
" Thus, for d 3, we have a third order model

k k k
o+ { E i} + { z zi}

i=l i=l j>l 1i1iJ

k k k

i=l j>i Z>i i 1

Denote the observed response by y and suppose that the errors u = Yu "1u

2are independently and identically normally distributed with variance a2. If,

as is usual, we fit models of this kind with predictors coded in "design units"

xi = (i-Ei)/S i ,  (1.2)

then we can write the model of degree d = 3 in the form

k k k
T o = { Z ixi} + { Z E i. xjx.}

i=l i=l j>i 1
i  3

k k k
+ { z E aijZ'xixjxk}. (1.3)

i=l j>i £>i
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vdels of orders d 1 and d =2 are obtained by omitting the appropriate

bracketed terms in (1.1) and (1.3). To obtain the most parsimonious re-

presentation, (usually corresponding to the lowest possible value of d)

it may be necessary to transform the response y and/or certain of the pre-

dictor variables ~

Now whenever we fit a model we face the possibility that some more

complex model may be needed. We can try to resolve our doubts by employing

a larger design which makes it possible to fit the more complex models, but

then similar questions arise concerning that model, and so on. Clearly we

cannot guard against all possibilities. A practical compromise is

1. to entertain initially at each stage of the experimental iteration,

a model (containing, say, p parameters) which it is hoped will be adequate.

2. to employ an associated design which, with 2 number of runs only

modestly larger than p provides for checks sensitive to particularly

feared discrepancies.

3. if such discrepancies occur, to consider first the possibility of

their elimination by transformation (or retransformation) of y a-id/or

l' 2'".. Ikk

4. because there are situations where a more complex model cannot be

avoided, to employ design arrangements which can be conveniently augmented

to form larger designs appropriate for fitting and checking the more complex

model.
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Our object is to consider some appropriate checks and the possible

elimination of the associated lack of fit by power transformations of the

predictors , for first and second order polynomial models and designs.

Transformation of the response y (Bartlett, 1947; Box and Cox, 1964;

Kruskal, 1968; Draper and Hunter, 1969) will not be considered here.

AecCC:io For " ,

t1 .3- C -r :: ' T

Loll-:: .
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2. FIRST ORDER MODELS AND DESIGNS

2.1 Some first order designs with discrepancy checks.

Useful first order response surface designs are the two-level factorials

and fractional factorials of resolution three or more which use (respectively)

all or some of the 2k runs (+l,+l,...,+l). As discussed, for example, by

Box and Wilson (1951), fractions can be chosen so that checks are associated

with the residual degrees of freedom containing feared interactions. Alter-

natively, or in addition, (see De Baun, 1956), by adding n0 center points to

any such design, a contrast c2 between the average response yco at the center

and the average response Yc at the factorial points is

c Yc - Yco

with (2.1)
k

E(c2) = B ii-i=l

Thus, in the commnon situation where the ii are either of the same sign or

are near to zero, c2 provides an overall check for curvature of second order.

2.2 Can we use a first order model in transformed predictor variables?

When a curvilinear response relationship exists whicn is monotonic in

the predictor variables over the Lurrent region of interest, it may be possible
• I

I
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to use a first order model in which power transformations I ' "

are applied to the F's.

Assume that, at worst, the response may be represented by a second

degree polynomial in transformed variables, namely by

k Xi  k k X

+ E i~i1 + EZ E. 1ij&i j . (2.2)
0 i~l i=l j>i1

Then a first degree polynomial model will be appropriate if the Xi may be

chosen so that aij= 0 for all i and j. In Appendix C, we show that this

requires that

jij , i j (2.3)

nii 6 1 (l-Xi)ni = 0, i = 1,2,...,k. (2.4)

where

j= L , j a (2.5)ni x xi =0  x =

and where

6. = Si/ io (2.6)
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Now suppose that a second order model of the form of Eq. (1.3) with

d = 2 has been fitted to the data from an appropriate design. Then we could

approximate the derivatives of Eq. (2.5) by

^ ^ A 2

ni  = bi/Si; nij : bij/(SiSj) ,  i f j; nii = 2bii/S i t (2.7)

Thus (i) the possibility of a first order representation in transformed

variables i is contra-indicated (see Eq. (2.3)) if one or more interacticn
1 is or

estimates bij, i 4 j, are significantly different from zero, and (ii) supposing

such a transformation to be possible, the appropriate transformation parameters

are roughly estimated by

X i = I + 2b ii/(6ibi), i = 1,2,...,k. (2.8)

More precise estimates can be found by application of standard nonlinear

least squares, fitting the model of Eq. (2.2) with ij 0 directly to the

data.
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3. SECOND ORDER MODELS AND DESIGNS

3.1 Some second order designs with discrepancy checks.

A useful class of second order designs (see Box and Wilson, 1951)

appropriate for fitting Eq. (1.3) with d = 2 consists of the central com-

posite arrangements in which a "cube", consisting of a two-level factorial

with coded points (+,l..+)or a fraction of resolution R > 5 is

augmented by an added "star", with axial points at coded distance at, and

by n 0 added center points at (0,0,... ,O). More generally, both the cube and

the star might be replicated. A simple example of a design of this type for

k =2 is defined by the columns headed xIand x2 in Table 1. (We use n c

and n s for the number of cube and star points and n co and n so for the number

of center points associated with them, respectively. Thus no nc +n

Also shown are some manufactured data whose mode of generation is discussed

in Appendix A.

The fitted least squares second degree equation is

y = 30.59 - 4. 22x 1 - 5.91x 2 - 1.661x 1 1.44x 2 - 3.41x x x2  (3.1)

+ 0.25 +0.17 +0.17 +0.14 +0.14 +0.24

where + limits beneath each estimated coefficient indicate estimated

2 =2standard errors, using the pure error estimate s e 0.457 to estimate o

An associated analysis of variance table is shown as Table 2.



Table 1. A composite design for k : 2 predictor variables and its associated

estimator columns; nc =8, no = 1, ns  4, nso 5, a = 2.

I x1  x2 x2  x 2 XX2  x81CC5 x2,15 8CC Blocks y

1 2 1x 12 1ill 5 222/.

1 -l -1 1 1 1 1 1 1 -1 37.5

1 -1 -1 1 1 1 1 1 1 -1 38.3

1 1 -1 1 1 -1 -1 1 1 -1 34.7

1 1 -1 1 1 -1 -1 1 1 -1 35.1

1 -1 1 1 1 -1 1 -1 1 -1 27.7

1 -1 1 1 1 -1 1 -1 1 -1 29.2

1 1 1 1 1 1 -1 -1 1 -1 12.2

1 1 1 1 1 1 -1 -1 1 -1 11.4

1 -8 -1 30.1

1 -2 . 4 . -2 -1 1 30.2

1 2 4 . . 2 . -1 1 16.1

1 . -2 4 . -2 -1 1 31.4

1 2 . 4 . . 2 -1 1 16.7

1 . . . 0.8 1 30.5

1 . . . . .. 0.8 1 29.9

1 .. . .. 0.8 1 29.9

1 .... 0.8 1 29.8

1 0.8 1 30.2
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Table 2. Analysis of variance associated with the second order model and

its checks,for the data of Table 1.

Source df SS MS F

Mean 1 13,938.934

Blocks 1 7.347 7.347

First order extra 2 842.907 421.453

Second order extra 3 188.142 62.714

Lack b11 il1 7.701 7.701 16.74

of b222 3 1 88.923 79.656 29.691 79.656 64.83. 173.17

fit CC J 1.567 .567 3.14

Pure error 8 3.657 0.457

Total 18 15,069.910



Before acceptinq the utility of the fitted equation we would need to

be reassured on two questions:

1. Is there evidence from the data of serious lack of fit? If not,

2. Is the change in y, over the experimental region explored by the

design, large enough compared with the standard error of y to indicate that

the response surface is adequately estimated?

The analysis of variance of Table 2 shes light on both these questions.

Its use to throw light on the second was stuoied by Box and Wetz (1973);

see also Box, Hunter and Hunter (1978, p. 524) and Draper and Smith (1981,

pp. 129-133).

Clearly, for this example, it is the marked lack of fit of the second

order model that immediately concerns us. In particular, it is natural to

be concerned with the possible effects of third order terms. Associated with

the design of Table 1 are four possible third order columns namely those

formed by creating entries of the form

3 2 3 2 (Q
(xxIx2); (x 2 ,x 2 x 1). (3.2

These form two sets of two items, as indicated by the parentheses.

Now suppose these third order columns are orthogonalized with respect

to the lower order X-vectors. This may be accomplished by regressinc them

against the first six columns and taking residuals to yield columns xlll(from x1,.

x 122 (from xx 2 ), and so on. Then

12-17



x -3xij, U j (3.3)

and the residual vectors are confounded in two sets of two. Furthermore,

the columns xll and x222 are orthogonal to each other. These vectors, re-

duced by a convenient factor of 1.5 to show their somewhat remarkable basic

form, are given in Table 1.

Consider now the column xill in relation to Figure 1, which shows the

projection of the points of the composite design onto the x1 axis. Denoting

the average of the responses at xI = -a, -1, I, a by Y-L, Y-1 , Yl' and y0,

respectively, we see that a contrast c31 associated with xill is

1 1YOL-Y-ct YI-Y-I

c1 36 'I =  3 2 2 - (3.4

where, for our example, a = 2. The expression in the parentheses is an

estimate of the difference in slope of the two chords joining points equi-

distant from the design center. For a quadratic response curve this difference

is zero. Thus c31 is a natural measure of overall non-quadraticity in the x1

direction. A corresponding measure in the x2 direction is, of course, given

by c32 = x 22Y /36.

The corresponding sums of squares for these contrasts, given in Table 2,

indicate a highly significant lack of fit. Corresponding plots of the re-

siduals against x1 and against x2 show a characteristic pattern. A line

joining residuals for observations at xi = a and xi  -a slopes up, while

the tendency of the remaining residuals is down as x. is increased. We

return to discuss these data later.



Figure 1. Projection of design points on the xaxis for the composite design

in two factors given in Table 1. The contrast c 3i is an estimate of

the difference between the slopes of the two chords.

0

-u I 2'
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3.2 General formulas.

In general, a composite design contains

(a) A "cube", consisting of a 2k factorial, or a 2k-p fractional factorial,

made up of points of the type (+,+l ,... ,+l), of resolution R > 5 (Box and

Hunter, 1961) replicated f(>l) times. There are thus nc = f 2 k ' p such points

(where p may be zero).

(b) A "star", that is, 2k points (+c,0,0,...,0), (0,+c,0,...,0),...,

(0,0,0,... ,+) on the predictor variable axes, replicated r times, so that

there are ns = 2kr points in all.

(c) Center points (0,0,...,0), n0 in number, of which nco are in cube

blocks and nso ii star blocks.

It is shown in Appendix B that, for any such design, k sets of

columns can be isolated with the ith set containing the k columns xx j ,

j = 1,2,...,k. This ith set is associated with a single vector xii i which

is orthogonal to the (k+l)(k+2)/2 columns required for fitting the second

degree equation and is also orthogonal to the (k-i) similarly constructed

vectors x..j, j f i.

The elements of these vectors are such that:

for the cube points, xii i = cbxi , with b = 2r2 (1-a 2)/(n c+2r 2 ;

for the star points, xii i = yxi, with y = nc(a2_ 1)/(nc+2ra 2);

for the center points x.. 0= xi -

Thus, the k estimates of third order lack of fit, c3 1 , c32 ,..., c3k are
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×,l i- -Y-1
~iii _ (iai Yad (3.5

c = 1 2- I 2 i- (3.5)

with standard deviation

CF 1 + (3.6)c 3  a 2_l 1 1- 2"

Also

2 1  
k

E(c3 ) iii + (1-2)-I i, (3.7)

and the contribution to the lack of fit sum of squares is

SS(c 3i) =(c -1) c3 ii n c + . (3.)c 2rci 2

Note that even if E(ci) = 0, this does not necessarily mean there are

no cubic coefficients. A combination of non-zero iii and5iii could occur

for which iii + (1-L2)
- l 1Uijj = 0. It is, of course, impossible to guard

against every such possibility unless the full cubic model is fitted.
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3.3 Can we use a second order model in transformed predictor variables?

In some instances, lack of fit of a second order model, revealed by

significant curvature contrasts of the kind just described, might be removed

by transformations of some or all of the predictors. A model of this kind

contains many fewer parameters than a full third order model and is much

easier to analyze and interpret. In order to determine conditions that must

be satisfied to make it possible to remove lack of fit in this way, and the

part that the curvature contrasts play in this, we suppose that, at worst,

the response function may be represented by a third order model in the trans-

formed predictor variables. In Appendix C we show that the conditions
xi

that must then apply if all third order coefficients of the transformed

are to be zero are

nijz = 0, all i f j 1 2 : 1,2,...,k; (3.9)

j+ 1 0, 1 j j = 1,2,... ,k; (3.10)

n 3iii + 0-X + 6(I-X)(1-2X )ni = 0, i = 1,2,... ,k. (3.11)

An important conclusion is thus the following. The possibility of second

order representation in the transformed variables is contra-indicated if one

(or more) interaction estimates b is (are) non-zero.
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In practice, the estimation of the transformation (when not contra-

indicated) is best done using nonlinear least squares directly on the model

of Eq. (2.2); however some interesting light on how the curvature measures

c3i relate to these transformations is obtained by considering how Eqs. (3.10)

and (3.11) could be used to obtain estimates of the Xi"

A composite design does not permit all third order terms in Eq. (1.3)

to be separately estimated. Suppose, however, that a second order model

augmented with only cubic terms

3 3 3
ill + 222x2  + kkk k, (3.12)

was fitted. If the response n could be represented by the third order mcdel

of Eq. (1.3), the estimates bi and bii i obtained from the composite design

would have expectations

E(bi) = ni _ 2'2(i_-2)_i j i  (3.13)
jfl

12 -1 (3.14)

111 6 Vi ii ,2(l-C') I 11.. 3.4

If now bi and bii i are used as estimates of the quantities shown as their

expectations then, after appropriate substitutions have been made in Eqs.

(3.9)-(3.11) we obtain the following k equations for the Xi. (In these

equations, bi i i
= c3i')



-17-

bii + (l-Xi)b + ' ,i(l-Xi)(l-2Xi)bi

2-1 2 2 k

+ c )4 {1-;a 6i(l-2Xi)(l-X.) jZ 6.l-A.)b i } = 0,

i = 1,2,...,k. (3.15)

These equations can be solved iteratively. Guessed values for the Xi

are first substituted in the grouping (l-i)(l-2Xi) wherever it occurs and the

resulting linear equations solved to provide improved estimates for a second

iteration,and so on.

For the example data, this procedure converges to the values X1 = -0.23,
A A

A2 = -0.93. Thc!se may be compared with the values X1 = 0.09, X2 = -0.82

provided by nonlinear least squares (these are maximum likelihood estimates

under the standard normal error assumptions) and with X1 = 0, X2 = -1, the

values used to generate the data; see Appendix A.

An analysis of variance for the transformed data is shown in Table 3

where, as anticipated, no lack of fit appears. (See also Section 3.4 for details.)
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Table 3. Analysis of variance for second order model in predictor

variables kn I and C2
l

Source df SS MS

Mean 1 13,938.934

Blocks 1 7.347 7.347

First order extra 2 552.713 276.357 535.57

Second order extra 3 565.238 188.413 365.14

Lack {CC f1 1.396 1.396 3.05
34 2.021 0.674 1.47

of fit [Third order L 2 0.625 0.313 0.68

Pure error 8 3.657 0.457

Total 18 15,069.910

3.4. A curvature contrast

Consider tne overall curvature measure c2 of Eq. (2.1) used to check the

first order model. When, as in the design of Table 1, center points are avail-

able both in the factorial block(s) and in the star block(s) several (two for

our example) such measures are available. Consider, specifically, the two

block case for a moment. If the average response at the center of the star

is so and the average over all the star points is Y s, then the contrast

k 5

*i = -2(s o
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has expectation

k
E(c ) E ii=l i "

Thus the statistic

C2-Ci = yc-Yco - s SO'

which is the difference of the two measures of overall curvature, should be

zero if the assumptions made about the model being quadratic are true.

From Figure 1, we see that the curvature: measure c2 associated with tie

cube (open circles) is contrasted with ck associated with the star (block dots).

In general the distance from the center of the design to the cube points is

kl/2 and that for the star points is a. When, as in our example, k1/2 and a

are different, a significant value of c2-c could indicate (for example) a

symmetric departure from quadratic fall-off on each side of the maximum, such

as we see (for example) in a normal distribution curve.

In general, for two blocks, the standard deviation for c2- q is given by

+: - + k2 [-L + i1_]}2

nc nco a50Kr so

and the associated sum of squares for the analysis of variance table entry

of Table 2 is obtained from
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SS(c 2 c ) = (c 2 ck)2/{n + n + k2r4 +
2-Y (c2cP n n4

c co 2a a nso

For our example we find

c2-c= 1.3925 + 0.7520

with associated sum of squares 1.567 as shown in Table 2. There is clearly

no evidence of this sort of lack of fit. When transformed predictors are used,

again no lack of fit of this kind is evident, as we see from Table 3.

3.5. Interacticn with blocks?

When composite designs are run in blocks, and if we allow the possibility

that effects from the predictor variables could interact with blocks, then

the various measures of lack of fit would be confounded with block-effect

interactions. flthough such contingencies must always be borne in mind, it

should be remembered that these particular block-effect interactions are no

more likely than any others.
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SUMMARY

In the traditional analysis of second order response surface designs, a

number of degrees of freedom are usually consigned to "lack of fit" and the

corresponding sum of squares is used to test for overall lack of fit. Some

split-up of lack of fit has been previously discussed (Draper and Herzberg,

1971), but a much more ambitious and detailed division is described here. We

show that it is possible to check for cubic lack of fit in the k axial

directions and if it exists, not only to checO if it is possible to eliminate

it by a power triansformation in the predictors, but also actually to estimate

the powers needed to effect the transformatior. The theory is derived in

Appendix C, and a worked two-factor example shows how to carry out the cal-

culations.

It is also shown how a certain curvature contrast can be used to check

overall quadratic fall-off away from the maxirrum of a response surface.

Simpler but similar considerations, one degree down, apply to the first

order model, and appropriate formulas for these are derived as a special case
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Appendix A. Generation of example data.

Figure Al is taken from the manuscript of a book on response surfaces

by G.E.P. Box, N.R. Draper, and J.S. Hunter, in preparation. Figure Al(b)

shows a quadratic response function with a simple maximum in variables

(zn~1 , Ioo2). This figure is redrawn in the metrics (il2) in Figure

Al(a). In the (C, 2) representation, the doubled cube plus star plus center

points design of Table 1 is indicated by the positions of the dots. Response

values were calculated at these points, and random error added to give the

y-values in Table 1. For these generated data, 1I0 = 2.5, 20 12.5,

S1 = 0.75, and S2 3.75.
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n1
2 2 0 0.2 0.4 0.6

2 20. 20 20 5

15 10

1625__ _10 20

1 16.25 1, o -12°

2 30

12.5 C2 30 C2 102"j40

10 15
-1 8.75G I

(: 40

-2 5.0 5 5 20

1 2 3 4 1 2 3 4

1 1.7t 2.5 3.25 41

X -2 -1 0 1 2

(a) (b)

Figure Al. Generation of example data. Surface (a) becomes quadratic,

as in (b), when variables Zn ] and E2 are employed. Data

were taken from (a) with added errors.
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Appendix B. The third order columns of the X-matrix for a composite design.

We here prove the results summarized in Section 3.2. The full cubic

model in k variables xl,x 2 ,... ,xk is given by Eq. (3.2). The form of the

X matrix in the regression model y = Xa + c when the design consists of f

"cubes" plus r "stars" plus n0 center points is as shown in Table Bl.

We can denote columns by placing square brackets around the column head; for

example [xl] will denote the x, column, and so on. We write nc = f2k-p for

the number of cube points.

All of the cubic columns are orthogonal to all of the other columns

with the following exceptions: [x.] is not orthogonal to [xi., nor to [xix.];

[xix2] is not o-thogonal to [x nx3], nor to [xix2]. The first step

is to regress the [x3] and [xix2] vectors on the [xi] and take residuals.

Because the columns involved are orthogonal to [x 1, no adjustment for means

is needed. We denote the "cube portion" of the [xi] and [xix2] vectors by ci,ii

as indicated in the table. These two sets of residuals are, where the prime

denotes transpose,

[x 1 ] = [x3 ] - I[x.]'[x 3]/[x.]'[xjl}[x. (Al)xii i ]  : - i  ( I

and

[xiijj = xix] - {i [xix.]/[xi]'[xi]}[xi] (A2)

both of which reduce to multiples (l-a 2 )m and m, respectively, where

m = 2ra2 /(nc+2rm2 ), of the same vector. For example,
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[x 111'1 [c ,d,-d,d,-d,...,d,-d,O,0,...,0](l-a2 )m, (A3)

where

d = n c/(2ra), (A4)

and where there are r sets of (d,-d's) in the vector. In general, for [xiii]',

c will be replaced by c! and the position of the +d's will correspond to those
1-i

of the ct's in the corresponding [xi]' vector. Note that, because

C!c. = 0, i j, it is obvious that [x.ii] and [x.jj] are orthogonal.
I13 iii] 33

It follows that the k cubic coefficients B aiii  (jfi,j=l,2,...,k,

otherwise) cannot be estimated individually but only in linear combination,

and that an appropriate normalized estimating constrast for this is

liii 0 [xii i]'Y/[1 iii]'[xii i  (A5)

= {cil + d(-rYai+rY-i)}/{nc(l a2

where y, is the portion of y corresponding to the cube part of the design,

and Y Y- are, respectively the averages of observations taken at the ci

and -a axial points on the xi axis. If we similarly denote by i and Y-

the averages of the nc/ 2 observations in yl corresponding to 1 and -l in ci,

T4 V respectively, it follows quickly that Ziii = c3i where c3i is given in Eq. (3.5).

The expected value is
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E(c3 i) = [xiii]'X'B/[xi i ][xiii] (A6)

where X is as in Table Bl and the coefficients of B correspond to the

columns in the obvious manner. Because x.iii] is orthogonal to all columns

of X except the [x.] and [xix2] columns, Eq. (3.7) emerges almost immediately.

1 1
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Appendix C. Conditions for efficacy of transformations on the predictor

variables.

Suppose that an experimental design is run in the k coded variables

x (i-E1i)/Si, i 1 1,2,...,k, (Cl)

in a situation where the underlying response function can be approximated

by a second degree polynomial F{( i )} in the transformed original variables

Ei . Thus

k Ai k k Ai A "

F(EA) : + Z + E Ej j. (C2)i=l i=l Zi

Assume all Xi 0. (The case when any Xi = 0 can be handled as a limiting

case using the fact (see, for example, Box and Cox, 1964) that (-1)/X

tends to ZnA as A tends to zero.)

If (C2) is to be a suitable representation, then all third derivatives

with respect to the Ei must vanish identically. Note that

@F DF 1i I-X.i ~ ~ :@i i = Fi(&i  I/Xi)  (C3)

say, where F. = F/ i Moreover, because of Eq. (Cl),
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aF DF "i S(
- x i  (C4)

so that

X,. = S i (i /x). (C5)

i1

The obvious extensions of these results also follow for the higher derivatives

which involve terms of the form

a2F and aF (C6)

axiaxj ij - axiaxj;xc

If we now carry out the appropriate differentiations, we obtain

I-A.

3F i 1 (C7)__,. - Sii i  C7

X. SX. 1-

1 1

1

a2  F : i j

A. X. S.S. .. ij (C8)
a~ila~jJ I 3 1 3

II
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1-2x.
a r El 

l

a2F _ i (]-Xn h 0 (CIO)

3i 2 j SiSji 1.ijj

1-A l2i (l-x. j).] (dJ

1-33 2 3E.

a3F si f ) i + (1-xi)nii + (l-xi)(l-2Xi)ni 0

3xIi S3 1 (ci

3 (-A. )- 
-

a.F 1 3 (C12)
. A i SS X iAA ij .

Eqs. (CIO) - (C12) are exact conditions on the A's. The ni, nij and nijk

also involve the X's. and cannot be specifically evaluated if the X's are un-

known. If estimates of the ry Tij. and nij, are substituted, however, Eqs.

(CIO) - (C12) can be solved to provide estimates of the A's.

We now assume that the response surface can be approximately represented

by a cubic polynomial in the coded predictor variables, namely, by

I|
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+ bllX1 + ... +bkkX

bx2 + +bx2

+ b1 21x2 + ... + bk- l ,kxkIxk

3 2

+ blX + b122xlX 2 + (C13)

+ b2x + bll2X +

x3 + b x2
+ bkkk k IlkXk + 

+ b123x1x2x 3 +

We can estimate the ni, ij' and iij by the corresponding derivatives of

n evaluated at the center of the design, that is, at xi = 0. In qeneral then,

ni  = b i ,  Tii 2b ii, i i i = 6b ii i ,

(C14)
A A

nij = b i i ,  = b=b i

and we would su)stitute these in (Clo) - (C12), at the same time setting

i = &io' its value when xi = 0. Note that, from Eq. (C12), we require that
xi

1ijx = 0, which implies that the assumed transformations are not suitable

representations unless all three-factor interactions are zero. In practice,

then, we would want b ij to be small and nonsignificant when i j j Z . or

else we have a clear indication that the will not provide a satisfactory

second order representation in (C2). If this aspect is satisfied, however,

1 1
we now solve the 'k(k+l) +- k 4-'(k+3) simultaneous equations:
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A A

Tij j + j(l-X)nj . 0, i j =.

niii + 36i(l-Ai)nii + 61(I-Ai)(-2y )ni : 0, i 1,2,...,k (C15)

where 6i  SiAio, and we have divided through Eqs. (CIO) and (CII) by

factors assumed to be non-zero, namely Si, ,io' X . using the n values from

Eq. (C14).

Composite Designs

An additional complication arises with composite designs. For such de-

signs, we cannot estimate all the third order coefficients individually, a,;

we have explained in Appendix B. This means that, while Eqs. (C15) are still

valid, the values in (C14) cannot be used. For a composite design, the column

3 2vectors xi , xi , and xx are linearly dependent via

xx = (_-,2xi+x3)/(l-x2 (C16)

Thus in the general cubic model, we cannot estimate all k+k+k(k-l) = k(k+l)

coefficients in the terms

+ + a ixi x2. (C17)Bixi 133i1i3
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but only the 2k coefficients of

-X2 k k 30{-i B ij Ix i + { ii + E 6 xi (C18)l- I~ B-Oj i2 I- 2 j i ijjxi

It follows that, in the model so reduced,

b. estimates ni "- i i (C19)

while

l k

1 estimates + 2 ) (C20'j

I -a jti

(By examining Eqs. (3.7), (C14), and the second portion of Eq. (CIB), we

infer that b iii  c3i.) Alternatively, if the model is fitted using xi and

the "orthogenal*zed x, namely xiii x - Wxi , the terms of the model are

k k
{Bi + + I 2 Bijj.x i + 0 + A- j 0.jj}(x. - x.) (C21)

1~ ~ 13i) 1 11 -A j ijj 1

where

8 nc (nc+2rc2), 2 (n c+2ra 4)/(n c+2r2). (C22)

In this form, we have that
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bi estimates ni  + l e E n. (C23)
ei i 2jji 2 ii

and

• estimates I kc24)iii 6Vi ii + -2 -j ijj

where b* is the estimated coefficient of x. and b*. is that for (x - Y#xi )1 11i1

(Note that b* b C but that b* b. + pbi i.) We now describeIii biii c3i, bthab I  i "

how this affects the estimation of the X i" From Eqs. (ClO) and (Cll), and

setting i = Eio we have

nij j + 6j(i-x j)nij : 0 (C25)

and

1il i + 36i(1-Xi)nii + 62(i-Xi)(l-2Xi)n i = 0 (C26)

We now combine i times (C26) with {( 2_ 2 (1-2X)(-X )I times
62(1-at 2 12(1-t2 ) 1 1 1

(C25) summed over j f i to give, for i = 1,2,...,k,
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+ k

Viii 2 1-a2 ji 133

+ n.

6- 2  
1 k

+_.2 (l-;E )(l-2X){n -2 2  i ni  (C27)
a 212jO 133

+k-+ 2 i 2 2 -6<  °i l 2 (-i)} j j(l-j 1 i I j  = .

Thus, if the third order model is fitted in terms of x. and x. (rather than x

3and (xi - xi) as described above) we can substitute appropriate estimates

to give the k simultaneous equations for i = 1,2,...,k.

12

b + 6i(l-xi)b + -6i(l-Ai)(l-2;,)b i1i 1 i t, 1 1 1 1

k1 1k

+ I- 2{I 1- 1 2 62i(l-2Xi)(l-.\i)} ji 6j(l-j - b ij 0

(C28)

which can be solved for X1,x2,..., ,k. These awkward equations can be difficult

to solve unless some care is applied. We suggest an iterative procedure in

which rough estimates of Xi are used in the grouping Qi (l-xi)(l-2Xi)

which occurs in two positions in Eq. (C28). The resulting linear equations
in ei = 1- i are straightforward to solve, and the results are used in the

grouping (l-Xi)(l-2Xi) for a second iteration and so on, until convergence is
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achieved. To aid convergence, each new iteration can be started from the

midpoint of the old and new values, if desired.

Alternative Cubic Case

If the cubic is fitted with estimated terms bix + btii(x -px i ) as

described above, we obtain bi and bii i from!1

b b. - b. and bi  = b* (C29)bi I - biii i l i

Related Work

The expression in (C20) can be alternatively written in the form

ii i + (1-a 2 )- 1 Bi

Draper and Herzberg (1971, p. 226) show that the sum of squares of these

quantities for i = 1,2,...,k occurs in the expected value of a general measure

of lack of fit LI. Thus, the c3i contrasts essentially provide a split-up of

L which permits a more detailed and sensitive analysis. The remaining degrees

of freedom pertaininq to L can be attributed to other contrasts as already

described.
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The First Degree Case

We return to the beginning of this Appendix to examine the simpler case

when the underlying response surface can be approximated by a first degree

polynomial in the transformed variables i In such a case

1. All = 0, in (C2).

2. All second derivatives with respect to must vanish identically.

This condition provides, from Eqs. (C8) and (C9), the equations (2.3) and (2.4).
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