
IEEE TRANSACTIONS ON COMPUTERS, VOL C-29. NO- 6 JUNE 1980

Correspondence.

Measures of the Effectiveness of Fault Signature Analysis

JAMES E. SMITH

Abstract-A linear feedback shift register can be used to compress
a serial stream of test result data. The compressed erroneous bit stream
caused by a fault is said to form the "signature" of the fault. Since the
bit stream is compressed, however, it is possible for an erroneous bit
stream and the correct one to result in the same signature.

In this correspondence, measures of the effectiveness of using linear
feedback shift registers for detecting faults in logic networks are ex-
amined. After a brief discussion of the underlying theory of fault sig-
nature analysis, measures of effectiveness proposed by others are
examined and are shown to be of questionable validity since they de-
pend on an assumption of independent errors. To provide more accurate
measures, two classes of dependent errors that are likely to occur in
practice are considered. These are burst errors and errors with in-
correct bits spaced at intervals equal to some power of 2 (because most
digital systems have dimensions based on powers of 2). Means for
determining the effectiveness of fault signature analysis at detecting
these classes of errors are given.

Index Terms-Data compression, dependent errors, fault detection,
fault signature, linear feedback shift registers.

I. INTRODUCTION

An economical way to deal with the large amount of data and op-
erating speeds that are often required for testing digital systems is
to compress test result data using simple compression algorithms. This
involves first designing the system so that test data can be repeated,
beginning with a special "start" signal and ending with a special
"stop" signal. The test stimulus resulting in the repeatable stream
should be carefully chosen to exercise the circuit under test. It is then
possible to monitor key lines in the circuit, using probes [1] or some
built-in mechanism [2], and to compress the data stream observed
during the test. The compressed test result can then be compared with
the one that is known to be correct in order to determine whether a
fault is present in the system. This type of analysis can result in con-
siderable reduction of test result storage, but the compression algo-
rithm must be simple enough to be performed at high speed. For ex-
ample, one could count the number of l's in the stream or the number
of 0 to 1 or 1 toO transitions ("transition count testing" [3]). Refer-
ence [4] contains a summary of count functions that have been pro-
posed.
A data compression technique that is of interest in this paper is

based on linear feedback shift registers (LFSR's) as in [1], [2], [5].
Fig. 1 shows such a shift register. Beginning with the register in an
initial state (typically all O's), serial input data are shifted into the
register. This compresses the stream of inputs to the length of the
LFSR and forms what is-referred to as a "signature."
The use of LFSR data compression has a number of applications

Manuscript received August 6, 1979; revised January 30, 1980. This work
was supported by the National Science Foundation under Grant ENG78-
05778.
The author is with the University of Wisconsin-Madison, Madison, WI

53706.

in digital systems. It can be used in a production test stand or built
into a system for periodic testing during operation [2]. Because it leads
to accurate fault diagnosis requiring relatively simple diagnostic
equipment, fault signature analysis is particularly attractive for field
testing of microprocessor-based systems. For this reason, examples
used in this correspondence are drawn from microprocessor sys-
tems.

As with other data compression techniques, LFSR signature
analysis allows some errors to go undetected. Hence, some circuit
faults may go undetected. It is the purpose of this correspondence to
evaluate and develop measures of the effectiveness of LFSR's at de-
tecting faults. We emphasize that it is the detection of faults that is
of primary concern. However, one cannot directly observe faults, only
their effect: errors. Hence, measures are formulated in terms of errors
detected. Nevertheless in order for a measure to be meaningful it must
be based on the detection of errors that are likely to occur in response
to network faults. Accordingly, measures are discussed in light of
fault/error relationships.

Section II of the paper briefly presents the mathematics underlying
signature analysis. Only the binary case is discussed, since this is of
greatest practical interest; however, all the results can be easily
generalized to include multivalued systems. Section III discusses
measures of LFSR effectiveness proposed by others. Section IV de-
velops new measures based on errors that are deemed likely to occur
in response to faults, and the correspondence concludes with Section
V.

II. SIGNATURE ANALYSIS AS POLYNOMIAL DIVISION

The mathematics upon which fault signature analysis is based is
essentially the same as the basis for algebraic coding theory. A more
detailed discussion of the material in this section can be found in
nearly any coding theory textbook, for example, [8].

Binary vectors can be represented as polynomials with bmiary
coefficients. For example, 1, 0, 0, 1, 1 can be represented as X4 + x
+ 1. One can also perform arithmetic on the polynomials, with
coefficient addition and multiplication beyong one modulo 2. Hence,
these are no carries during addition, and when binary polynomials
are added, multiplied, or divided binary polynomials result.

In this paper, we deal primarily with polynomial division imple-
mented with LFSR's. LFSR's have two basic building blocks: storage
devices (for example D-flipflops) and mod 2 adder/subtracters, i.e.,
exclusive-OR gates. Storage devices are drawn as squares, and ex-
clusive-OR gates are represented with the symbol *.

Fig. I (a) shows an LFSR that divides by x5 + X4 + X2 + 1. The
storage elements are set to 0 initially. The dividend is shifted in ser-
ially, highest degree coefficient first. After the entire dividend has
been shifted in, the entire quotient has been shifted out and the re-
mainder is held in the shift register. Fig. I (b) shows a shift register
computation ofx7 + X6 + X5 + X4 + X2 + 1/X5 + X4 + X2 + 1. An
alternate divider circuit for the divisor x5 + X4 + X2 + I appears in
Fig. 2(a). The same division as above is shown in Fig. 2(b). We ob-
serve that the quotient produced by the alternate divider is the same,
but the content of the register after the division is not the remainder
as is the case with the divider shown in Fig. 1. That is, the input/
output behavior is the same, but the internal states are different.
An input data stream of length k can be represented as a degree

001 8-9340/80/0600-0510$00.75 © 1980 IEEE

510



IEEE TRANSACTIONS ON COMPUTERS, VOL. C-29, NO. 6, JUNE 1980

(a)
register contents input stream

Theorem 1 as applied to an LFSR of the type shown in Fig. I is a
fundamental result from algebraic coding theory. A demonstration
than an LFSR of the type shown in Fig. 2 has the stated property
follows from work appearing in [10].

initially:

after 5 shifts:

1

1 0

quotientOl 0 1

D4 D3 D2 D1 0

0 0 0 0

0

0

1 1 1 1 0 1 0 1

1 0 1

0 1

<: remainder

(b)

Fig. 1. (a) An LFSR for dividing by xI + X4 + x2 + 1. (b) The division
of x7 + X6 + x5+ x4 + x2 + 1 by XI +x4+x2+ 1.

,qy -/71% -.Ir% input

output

D4 D3 2 1

(a)

output stream

1 0

quotient*1 0 1

register contents

D4 D3 D2 1 0

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 1

0 1 0 1 1

1 0 1 1 1

0 1 1 1 0

1 1 1 0 1

1 1 0 1 0

input stream

1 1 1 1 0 1 0 1

1 1 1 0 1 0 1

1 1 0 1 0'1

1 0 1 0 1

0 1 0.1

1-0 1

0 1

1

(b)

Fig. 2. (a) An alternate LFSR for dividing by x5 + X4 + X2 + 1. (b)
The division ofx7 + X6 + X5 +x4+x2 + 1 byx5 +X4+X2+ 1. Note:

The final contents are not the remainder.

k - 1 polynomial m(x). We use a divider similar to Fig. I to compress
m(x) into a signature. This is done by shifting m(x) into the divider
and taking the remainder as the signature; the quotient is ignored.
Let p(x) be the degree r polynomial forming the divisor, and let the
rernainder (signature) be s(x), a polynomial of degree less than r.

Then s(x) is related top(x) and m(x) in the following way:

m(x) + q(x) - p(x) + s(x).

We can also express an error pattern as a polynomial e(x) so that
each nonzero coefficient represents an error in the corresponding bit
position. For example, if 1011 1 is the correct data stream and an er-

roneous one is 11101, then we let m(x) = x4 + X2 + X + 1 represent
the correct stream and m'(x) = x4 + X3 + X2 + 1 represent the er-

roneous one. The error pattern is represented by e(x) = X3 + x so that
m'(x) = m(x) + e(x). An undetectable error is one which satis-
fies

m(x) = e(x) = q'(x) * p(x) + s(x);

that is, m(x) and m(x) + e(x) have the signature.
An alternate LFSR for generating a signature is a divider of the

type shown in Fig. 2. This implementation may be preferred because
it does not require placing exclusive-OR gates between shift register
stages; this simplifies MSI realizations. Since the final contents of
the divider of Fig. 2 are not the remainder, the signature differs from
that used by the LFSR of Fig. 1. Nevertheless, the two signature
generators do have an important property in common.

Theorem 1: Let s(x) be the signature generated for input m(x)
using the polynomial p(x) as a divisor in either LFSR shown in Figs.
1 and 2. For an error polynomial e(x), m(x) and m(x) + e(x) have
the same signature s(x) if and only if e(x) is a multiple of p(x).

III. PREVIOUSLY PROPOSED MEASURES OF EFFECTIVENESS

As has been indicated, some circuit failures escape detection when
signature analysis is used because some erroneous sequences are

compressed to the same signature as the correct one. Consequently,
one would like measures of the effectiveness of fault signature analysis
at detecting faults. A primary use of such measures is to assure users
of signature analysis that a satisfactorily high percentage of faults
is detected. In addition, such measures can be used to compare LFSR
signature analysis with other compression techniques and to compare
the relative effectiveness of different polynomials at detecting
faults.
We begin by considering measures proposed in [ 1]. Although the

results are the same as those in [ 1], the proofs are simpler since they
use Theorem 1 as a starting point.

Theorem 2: For a data stream of length k, if all possible error

patterns are equally likely, then the probability that a length r sig-
nature generator will not detect an error is

2k-r - 1

2k- I

Proof: If a length k data stream is being compressed, it can be
represented by a degree k - 1 polynomial. An error can be repre-

sented by an error polynomial of degree k - 1 or less. There are 2k
- 1 possible error polynomials because there are k coefficients in a

degree k - 1 polynomial and each coefficient can be 0 or 1. The I is
subtracted from 2k to eliminate e(x) = 0.

Ifp(x) is degree r, then it has 2k-r - 1 nonzero multiples of degree
less than k. Each of these represents an undetectable error, and all
undetectable errors are represented by one of the multiples of p(x)
(from Theorem 1). Hence, 2k-r - 1 of the 2k -1 errors are unde-
tectable, and the theorem follows. O3
As k o, the probability of Theorem 2 approaches 2-. The

degree r of the polynomial chosen in [1] is 16, and the probability
from Theorem 2 becomes 0.000015. This low probability is often
quoted to point out the effectiveness of LFSR signature analysis.
However, we observe that there is no qualification in Theorem 2 as
to what degree r polynomial is used. That is, it holds regardless of the
polynomial chosen. This includes the polynomial Xr that has a de-
generate LFSR with no feedback; the signature is just the last r bits
of the data stream. In fact, further examination reveals that we could
also use the first r bits, truncate the test sequence to length r, and still
have probability 2-r of an undetected error. Consequently, if all error

patterns are indeed equally likely, signature analysis is not called for
since long test sequences are not needed.
A second measure used in [1] is based on the detection of single

bit errors.

Theorem 3: An LFSR based on any polynomial with two or more
nonzero coefficients detects all single bit errors.

Proof: Let p(x) be any polynomial with two or more nonzero

coefficients. Then all nonzero multiples of p(x) must have at least
two nonzero coefficients. Hence, any error with only one nonzero

coefficient cannot be a multiple of p(x) and must be detectable from
Theorem 1.

The polynomial x + 1 fits the constraint of having 2 or more non-

zero coefficients, so a simple LFSR consisting of only one storage
element and one exclusive-OR gate detects all single bit errors.

Two measures from [11 have been discussed and it has been shown
here that very simple shift registers are just as effective as the more
complex one given in [1]. Nevertheless, one tends to have an intuitive
feeling that the more complex register should detect more faults. The
reason for this apparent contradiction can be traced to the difference
between types of errors that occur in digital systems due to faults and
the error assumptions used as a basis for the measures.

If one assumes all error patterns are equally likely, then as k -a )

input

output stream

511



IEEE TRANSACTIONS ON COMPUTERS, VOL. C-29, NO. 6, JUNE 1980

this becomes equivalent to assuming each individual bit has proba-
bility l/2 of being in error independent of the others. Concern with
single errors also follows from an assumption of independent errors
although in a more indirect way. In many communication channels,
assuming independent errors makes single errors the most likely type
of error.

For many communication applications, an assumption of inde-
pendent errors is quite valid; hence, much of classical coding theory
uses this assumption. However, as has been pointed out ([6, p. 6], for
example), a logic network with a fault does not behave in the same
way as a classical communication channel. Quite simply, errors due
to a logic fault are not independent.

Before continuing to the next section, where dependent errors are
discussed, we should first mention measures of effectiveness proposed
in [5]. In [5], polynomials of the form Xr + 1 are suggested, and
measures are developed not only for the detection of errors, but for
locating them. These follow from the observation that different faults
are likely to result in different error patterns. If the errors result in
different signatures then the faults can be distinguished. The measures
are intended to indicate the likelihood of getting different signatures
for different errors.

All of the results derived in [5] are based on an assumption of in-
dependent errors. Since such an assumption appears to be of ques-
tionable validity, we do not discuss them in detail. Briefly, it appears
that all polynomials of degree r with a nonzero coefficient of x° will
do equally well using the measures given in [5], although this has not
been proved.

IV. NEW MEASURES BASED ON DEPENDENT ERRORS

In this section we develop measures of the effectiveness of fault
signature analysis based on dependent error assumptions. To do this,
we first develop error models by considering the behavior of faulty
logic networks under test.

A. Burst Errors

Consider a microcomputer system consisting of a microprocessor,
some ROM's, some RAM's, and some I/O interfaces. Such a system
is typical of one where signature analysis might be used. A common
way of testing such a system (see [7], for example) is to perform the
following steps in sequence:

1) Test the "kernel"; the kernel consists of that part of the system
which is required for the execution of any instruction, i.e., the fetching
of instructions from memory in correct sequence.

2) Use the kernel to test each microprocessor instruction and the
registers.

3) Use the microprocessor to test ROM 1, ROM2, , ROMi.
4) Use the microprocessor to test RAM 1, RAM2, , RAMj.
5) Use the microprocessor and a RAM to test the I/O inter-

faces.
Since many parts of the system are only exercised during one step

of the sequence (or during only a portion of one step), many faults
result in errors where erroneous bits are restricted to occur within
some neighborhood. That is, a burst error occurs while the faulty
portion of the system is being exercised.

Definition 1: A (n, d)-burst error is one where all erroneous bits
are within n consecutive bit positions and at most d bits are in
error.
We now turn to coding theory to determine measures for the de-

tectability of (n, d)-burst errors. In the following theorem a poly-
nomial p(x) generates a code of length n if all multiples ofp(x) of
degree less than n represent code words.

Theorem 4: Let p(x) be a degree r.polynomial that generates a
d-error detecting (distance d + 1) code of length n. Then. LFSR
signature analysis using p(x) detects all (n, d)-burst errors re-
gardless of the length of the input stream.

Proof: Any polynomial e(x) with fewer than d + 1 nonzero
coefficients and degree less than n is detected since p(x) generates
a d-error detecting code. Hence, e(x) does not contain p(x) as a
factor. An (n, d-burst is of the form xie(x) where e(x) is of degree
less than n with fewer than d + 1 nonzero coefficients. Ifp(x) = xi,

the theorem holds trivially because d = 0. Otherwise ifp(x) is not
a factor of e(x), it is not a factor of xie(x). The theorem then follows.

D
For comparison here and in the next section, we choose four specific

polynomials:

PA(X) = x16 + x12 + x9 +x7 + 1; used in [1].
PB(X) = X16 + X15 + X12 + X7 + X6 + X5 + X4 + 1;

a generator for a length 31, 7-error detecting BCH code.

PC(X) = X16 + 1; proposed in [5].

PD(X) = X 16; the polynomial requiring no feedback.

As was pointed out earlier, all four polynomials perform equally well
when all errors are equally likely, and all but PD(x) detect all single
errors.

PA(x) is a primitive polynomial [8]. A primitive polynomial of
degree r generates a 2-error detecting Hamming code of length 2'
- 1. Hence, all (216 -1, 2)-burst errors are detected by PA(x).
On the other hand, ifone uses PB(x), then all (31, 7)-burst errors

are detected. In the same neighborhood of 31, PA(x) can detect at
best all (31, 4)-burst errors since the polynomial itself has 5 nonzero
coefficients. In the larger neighborhood 216 -1, PB(x) cannot detect
all 2 errors. There appears to be a tradeoff between n and d, and we
have indicated two points in the tradeoff curve. A related tradeoff is
well known in coding theory where the tradeoff is between the code
distance and the number of check bits. The two polynomials just
discussed optimize n for the given value of d, however, there are some
polynomials that detect all (n, d)-bursts for neither high n nor d. For
example, PC(X) fails to detect the (17, 2) burst corresponding to e(x)
= PC(X). PD(x) generates a distance 1 code so it is very ineffective
against bursts. One can study the (n, d)-burst detecting character-
istics for a given polynomial more completely by referring to
"shortened cyclic codes" [8]. However, we choose to end this dis-
cussion with a final theorem that holds when the length of the burst
neighborhood is reduced to r, the degree ofp(x).

Theorem 5: Ifp(x) is degree r and the coefficient ofx° is 1, then
all (r, r)-bursts are detected with signature analysis using p(x).

Proof: Any nonzero multiple of p(x) must have two nonzero
coefficients appearing farther apart than r. A more complete proof
of this well-known theorem as it applies to coding theory can be found
in [8]. 0

B. Errors Due to Repeated-Use Faults

The second type of dependent error we consider are those where
all the erroneous bits are in a regular pattern in positions, i, i + bn ,
i + bn2, - - , where b is a power of 2, typically the byte or word length.
In terms of polynomials, these are errors of the form e(x) = xiE(Xb)
O < i < b - 1. For example, if b = 4 then xi((x4)3 + (x4)1 + (x4)0)
= x13 + x5 + x is of this type.

For an example of a fault that results in such an error, refer to Fig.
3 where 4-bit bytes of data are being converted to serial form. Such
a conversion is common in microprocessor systems where pin counts
must be kept low and speed is not critical. The x2 input ofthe multi-
plexer is stuck-at-i . The 4 bytes shown at the left of the figure are to
be transmitted, and the correct and erroneous outputs are shown at
the right. In this case, b = 4 and the error polynomial is x13 + X5 +
x.

Such errors were first pointed out in [9] and are the result of "re-
peated-use faults." According to Avizienis, "this error pattern occurs
in a byte-organized computer during transfer, complementation, and
addition; it will also be observed in parallel multiplication and division
which employ b-bit shifts." Since short word length microprocessors
have many characteristics of the byte-organized computers of which
Avizienis is speaking, these errors also appear to have relevance in
microcomputer systems. Errors with erroneous bits separated by
powers of 2 are also mentioned in [1 ] although no measures are given
for their detection.
We now determine the proportion of these errors that are detected

by p(x); or equivalently, the probability of detecting such an error
if they are equally likely. We assume p(x) has a nonzero coefficient

512



IEEE TRANSACTIONS ON COMPUTERS, VOL. C-29, NO. 6, JUNE 1980

Output

correct = 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 1

incorrect = 0 1 1 0 1 1 1 0 0 0 1 0 0 1 1 1

error = 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0

time o

Fig. 3. The error behavior of a multiplexer with an input fault.

of x0 for convenience and because it is now apparent that these are

the most useful polynomials in practice. Some results adapted from
the theory of Galois field are useful. As mentioned earlier we only
consider the binary case.

Definition 2: A polynomial is irreducible if it cannot be expressed
as the product of two polynomials of degree > 1.

Theorem 6: Any polynomial p(x) has a unique factorization:

p(x) =pi(X)m p2(x)m2 . pt(X)mt
where the pi (x) are irreducible.

This is analogous to the unique factorization of a positive integer
into primes.

Theorem 7: E(Xb) = E(X)b when modulo 2 polynomial arithmetic
is used and b is a power of 2.
We first determine the number of errors of the form xiE(xb), O

< i < b, that are multiples of p(x).
Because the p(x) that we are considering have no factor x', i > 0,

one can show rather easily that xiE(xb) is a multiple ofp(x) if and
only if E(xb) is a multiple of p(x). Consequently, we determine the
number of errors E(xb) that are multiples of p(x), and finding the
number of xiE(xb), 0 < i < b is then straightforward.

First, factor p(x) into its irreducible factors:

p(X) = pI(x)m
- p2(X)m2_- . p(X)MI.

Due to Theorem 7, we need to consider polynomials E(x)b that are

multiples ofp(x). Each of these must contain each of the pi(x) as a

factor some multiple of b times. Let 1i = rmi/bl. bli is the minimum
number of times each pi (x) must appear as a factor of E(X)b. Or,

pI(X)bll p2(X)bl2. (pt(X)bl: = P(X)

must be a factor of E(x)b. If the degree ofpi(x) is di then the degree
of P(x) is '= l blidi = d. Now, E(x)b = g(x) - P(x) and g(x) must
be representable as h(x)b. Our problem is then reduced to finding the
number of possible h(x). If a degree k - 1 polynomial is being
compressed, i.e., the degree of E(X)b < k then the degree of g(x) <
k - d and the degree of h(x) ' L(k - d - 1)/b]. There are

2L(k-d-1 )/b]+ -1 such nonzero polynomials, and this is the number
of multiples of p(x) that are of the form E(x)b = E(Xb). The total
number of nonzero polynomials E(xb) is 2L(k-l)/bJ+l-1.
By similar reasoning, the total number of nonzero polynomials of

the form xiE(xb) is 2L(k-1-i)/bJ+I - 1, and the number of nonzero
multiples ofp(x) of the form xiE(Xb) is 2L(k-d-1-i)/b]+I - 1.

This discussion gives us the following theorem. Recall that

b byte length (errors are separated by multiples of b),
k length of data sequence being compressed,
d degree of P(x) 2'=.bl1dj.
Theorem 8: If the errors xiE(Xb) are equally likely, the probability

that a polynomial p(x) will not detect such an error in a length k data
stream is

b-I
E 2L(k-d-1-i)/b]+1 -
i=O

b-I

E, 2L(k-I-i)/bJ+l
i=O

As k -- o, this probability becomes 2-d/b. Furthermore, bit errors

remain dependent, and the choice of a polynomial can lead to a sig-
nificant difference in the detection probability. This is due to the
dependence of d on the factorization of the polynomial used.

Corollary 1: If each of the irreducible factors ofp(x) appears only
once, as k a, ), the probability of not detecting an error of the form

xiE(xb) is minimized, and the probability is 2
Proof: To minimize the probability of an undetected error, we

need to maximize d:

d = EU di.= b

Furthermore, I 1 midi = r which we assume is fixed. rm,/b1 < mi
so

b- mi| di<b - Emid.
i=i b =

rm,/bl = mi when mi = 1 (or in the degenerate case b = 1).

Hence,

b
b di

is maximized when all the mi = 1 and

d = b E d = b -r.
i=1

Consequently, 2-d/b = 2-b.r/b = 2r 0
Corollary 2: If each of the irreducible factors ofp(x) appears an

integral multiple of b times, then as k o, the probability of not

detecting an error of the form xiE(Xb) is maximized, and the prob-
ability is 2-r/b

Proof: li = rm,/bl so bli > mi and
t t

d = E blidi > midi = r.
i=l i=l

When mi = bli then

d = E midi = r.
i=l

Here, the probability of an undetected error is 2d/b = 2r/b
We now use the above measures to compare the four polynomials

given earlier. We let b = 8, as might be the case in a microprocessor
system. Then PA (x) and PB(x) have the minimum probability of
missing an error, 2 2-16 0.000015, because each has its irre-

ducible factors appearing only once (PA (x) is itself irreducible). On
the other hand, PC(X) and PD(x) have the maximum probability of
missing an error, 2-rlb = 2-8 0.004, because each has one factor

appearing 16 times (x + 1 and x, respectively). If we let b = 16, then
the performance of PA (x) and PB(x) is unaffected, but PC(X) and
PD(x) only detect 0.5 of the errors. It is also interesting to note that
while x 16 +. maximizes missed errors for length 16 signatures, x1 5
+ 1 minimizes them for length 15 signatures because each irreducible
factor of x 1 5 + 1 appears only-once.

Input

0 1 0 0

1 1 0 1

0 1 0 0

0 O 0 1

time .- -

513



IEEE TRANSACTIONS ON COMPUTERS, VOL. C-29, NO 6, JUNE 1980

VI. CONCLUSIONS
Errors due to faults in digital systems are not independent, and any

measure based on independent errors is of questionable value. Con-
sequently, to determine the effectiveness of fault signature analysis
(or any other compression technique) one approach is to characterize
classes of dependent errors that are likely to occur and to determine
the likelihood of their detection. This approach was used here.
An approach of this type, however, does not give a complete mea-

sure because all potential errors are not considered. On the other hand,
measures of this type do tend to give one confidence in LFSR signa-
ture analysis, provided the error classes studied- are realistic. They
are also useful for pointing out weaknesses in certain configurations.
For example, the polynomial x16 + 1 was shown to perform relatively
poorly against the repeated-use errors, and should probably be dis-
carded for that reason.

It is clear that some experimental research in this area is needed.
For example, the (n, d)-burst detecting properties of the polynomials
PA (x) and PB(x) are different, but without experimental data a
choice of one over the other is difficult.

Another area where further research is needed is in error modeling.
That is, one could formulate a model, possibly similar to models for
intermittent faults, and calibrate the model (i.e., adjust parameters)
with experimental data. Then, the model could be used to give a more
complete measure of the effectiveness of test data compression
techniques.

REFERENCES

[1] R. A. Frohwerk, "Signature analysis: A new digital field service meth-
od," Hewlett-Packard J., pp. 2-8, May 1977.

[2] N. Benowitz et al., "An advanced fault isolation system for digital logic,"
IEEE Trans. Comput., vol. C-24, pp. 489-497, May 1975.

[3] J. P. Hayes, "Transition count testing of combinational logic circuits,"
IEEE Trans. Comput., vol. C-25, pp. 613-620, June 1976.

[4] H. Fujiwara and K. Kinoshita, "Testing logic circuits with compressed
data," in Proc. 8th Annu. Int. Conf. on Fault-Tolerant Comput., June
1978, pp. 108-113.

[5] R. David, "Feedback shift register testing," in Proc. 8th Ann. Int. Conf
on Fault-Tolerant Comput., June 1978, pp. 103-107.

[6] D. A. Anderson, "Design of self-checking digital networks," Coordinated
Sci. Lab. Rep. R-527, University of Illinois, Urbana, Sept. 1971.

[7] Hewlett-Packard Corp., A Designers Guide to Signature Analysis, Appl.
222, 1978.

[8] W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes.
Cambridge, MA: MIT Press, 1972.

[9] A. Avizienis, "A study of the effectiveness of fault-detecting codes for
binary arithmetic," Jet Propulsion Lab. Tech. Rep. 32-711, Pasadena,
CA, Sept. 1965.

[101 J. E. Meggitt, "Error correcting codes and their implementation for data
transmission systems," IRE Trans. Inform. Theory, vol. IT-7, pp.
234-244, Oct. 1961.

Minimal Detecting Transition Sequences: Application to Random
Testing

RENE DAVID AND PASCALE THEVENOD-FOSSE

Abstract-This paper presents the new notion of minimal detecting tran-
sition sequence (MDTS). A detectable faultf in a circuit C is detected by any
MDTS in a set Dfcalled detection set associated with f. From a prescribed
set of faults, we obtain a list of detection sets. This list of detection sets is

Manuscript received July 30, 1979; revised January 17, 1980. This work
was supported in part under Contracts IRIA 74.147 and IRIA 78.195 (SURF
Project).
The authors are with the Laboratoire d'Automatique, Institut National

Polytechnique de Grenoble, Grenoble, France.

calculated once for all, for a given circuit C. Once this list bas been obtained
for a circuit, it may be used either to generate a deterministic test sequence,
or to calculate random testing lengths within various hypotbesis (iput vector
probabilities).

Index Terms-Detection set, minil detecting iuffa e seune(MLY
random testing, sequential circuit, transition sequence.

I. INTRODUCTION

Several works on random testing of sequential circuits have been
done [1]-[3]. This paper presents the new notion ofminimal detecting
transition sequence (MDTS). This noti6n has been developed to
analyze random testing but it may also be used to generate a deter-
ministic test sequence. Roughly speaking, a detecting transition se-
quence for a faultf is a string ofbranches (transitions) on the flow
graph of thefault-free machine, which ensures the detection of the
faultfwhatever the initial state of the faulty machine may be. There
is no hypothesis concerning the number of states of the faulty ma-
chine. The set of MDTS's associated with a faultf is called the de-
tection set associated withf.
Once a list of detection sets, associated with a prescribed set of

faults, has been obtained for a circuit (for example a JK flip-flop),
it may be used in several ways [4]. Examples concerning deterministic
testing and random testing are given. An asynchronous version has
already been used [3], [5], [6] to analyze the testing ofa circuit, such
as a flip-flop, when it is included in a larger circuit. Properties 2-4
and Theorem 2 in this paper have been shown in [5].

II. BACKGROUND

Let a Moore-type sequential machine M(X, Q, Z, 6, c), according
to the classical notations, become Mf(X, Qf, Z, f, wi) ifa faultJfis
present. The sets of internal states Q = lq', - -, q,,j and Qf= q, --
qf,j are such that m $ n or m = n. Let Xi and J denote an input
vector and an input sequence, respectively. b(q,, J) denotes the state
reached by applying J to qi. Any Mealy-type machine may be
transformed to an equivalent Moore-type machine (see Fig. 2). Ac-
cordingly, the use of Moore-type machines is not a restriction.
The application of an input test sequence will be called a "testing

experiment." It is assumed that the fault-free circuitM can be ini-
tialized in a preset state qo e Q and that the preset sequence is applied
before a testing experiment.

Definition 1: Let M1 and M2 be two sequential machines having
the same set of inputs. A state qlof MI is said to be i-compatible
(input-compatible) with a state q] of M2 if MI may be in the state
q!,' knowing that 1) at least one input vector has been applied to both
machines and 2) M2 is in the state q2. o

Property 1: q! is i-compatible with q, iff 3 Xm, qL,ql:b(qlpXm)
= ql, 62(ql Xm) = qj2 (Then the i-compatibility is reciprocal.)

Proof:It follows from Definition 1. 0
The idea of this notion is that, at any time during a testing exper-

iment: if the fault-free machineM should be in the state qi E Q, a
faulty machine Mfcannot be in any state in Qf. cf c Qfdenotes the
set of states i-compatible with qi. Let us consider, for example, the
flow -tables ofMl and Mf{. Fig. 1(b): M1 in the state a == the last input
vector has been X0. Fig. 2(c): the last input vector has beenXo Mf
in the state b or c. Hence C{ = I b, cl. This is represented in Fig. 2(d):
a point is associated with a pair of i-compatible states. Another in-
formation appears in Fig. 2(d): a cross is associated with a pair of
states the outputs of which are different. Iftwo states such as b inM1
and din Mf,have the same output vector, they will be called o-com-
patible (output compatible). The table in Fig. 2(d) is called the
compatibility table of Mf, relative to MI.

Definition 2: A transition sequence T is a string of successive
transitions in a machine M. It is defined by a state qiand an input
sequence J. We note T = qiJ (see Fig. 1(c)]. 0

Definition 3: The concatenation oftwo transition sequences T, =
q1Jj and T2 = q2J2 is defined, iff 5(ql, Jj) = q2, by T1 - T2 =
qiJj q2J2 = q1JIJ2. D

For example, [see Fig. 1(c)] aX1XO - bXl = aX1XOXK. The input

0018-9340/80/0600-0514$00.75 © 1980 IEEE

514


