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1. Introduction

Let V be a vector space over C of complex dimension n with an inner product.
If x and y are in V, then we will denote by (x, y) the inner product of x and y.
We will denote by B the class of all x in V such that (x, x) < 1, by the class
of all x in V such that (x, x) < 1, and by S the class of all x in V such that
(x, x) 1. We recall that the Poisson kernel of B is the function fl" x B -(0, oo) defined by

fl(x, y) [(1 (y, y))/(1 (x, y))(1 (y, x))]’.

(We remark that fl is the Poisson kernel with respect to the Bergman metric on
B and not the Euclidean metric.)

If Y is a locally compact Hausdorff space, then we will denote by M+(Y)
the class of all Radon measures on Y. Thus if/ s M+(Y) and E c Y, then
/(E) _> 0. We will denote by M(Y) the complex linear span of those / in
M+(Y) for which p(Y) < oo. (Thus if Y is compact, then M(Y) is the complex
linear span of M+(Y).) We recall that if I" and Y are sets, iff is a function de-
fined on the Cartesian product 1" x Y, and if (s, t) e 1" x Y, thenf andft are
the functions defined on Y and 1" respectively by f(y) f(s, y) and if(x)
f(x, t).

If #eM(S), then we define #*’B C by #(y)= fldl. Thus
# e C(B). We will denote by a the Radon measure on S which assigns to
each open subset of S its Euclidean volume divided by the Euclidean volume of
S (for the purpose of defining a we regard S as the Euclidean sphere of real
dimension 2n 1). Thus a(S) 1.

There is the following question.

1.1. If # e M(S), if p is pluriharmonic, and if n _> 2, then do we have
#<<a?

The purpose of this paper (which is a sequel to [2]) is to state and prove
Theorem 3.15 and Corollary 4.7 which bear on the question 1.1. The results
of the paper [2] suggest that the answer to the question 1.1 is yes. Theorem
3.15 and Corollary 4.7 of this paper support this suggestion.
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2. A class of measures whose Poisson integrals
are pluriharmonic (Theorem 2.4)

If Y is a set, then we will denote by V/ (Y) the class of all measures on Y and
we will denote by V(Y) the complex linear span of those # in V/ (Y) for which
#(Y) < . We recall that if#V/(Y) and ifEc Y, then # L_ E:2r-
[0, c] is defined by (# L_ E)(F) #(E c F). Thus # L_ E V/(Y). There
is the following fact of measure theory.

2.1. PROPOSITION. Let Y be a set. If # V+ (Y), iff: Y - [0, c], iff is #
measurable, and (f we define 2:2Y - [0, c] by

2(E) ;f d(# L_ E),

then 2 V+ (Y). Thus ifg LI(#) and if we define a: 2 r
_
C by

a(E) 19 d(# L_ E),

then V( Y).
With regard to Proposition 2.1 we write d2 f d# and d g d#. There is

the following fact of the theory of Radon measures.

2.2. PROPOSITION. Let Y be a locally compact Hausdorffspace. If# M+ Y),
if.f: Y- [0, ], iff is # measurable, if f d# < , and if d2 f d#, then
2 M+ (r). Thus iJ’g LI(#) and if da g d#, then M(Y).
We recall the following fact of the theory of functions on B.

2.3. PROPOSITION. If f: B--* (0, c) is pluriharmonic, then f # where
# M+(S).

If Y is a topological space and iff: Y - C, then we will denote by spt(f) the
support off. We will denote by Coo(Y) the class of all continuous functions
g: Y C such that spt(g) is compact and we will denote (as is usual) by C(Y)
the class of all continuous functions f: Y --, C.
We will denote by N the class of all positive integers. If k N, then we will

denote by H, the class of all members of the polynomial ring C[;: ; V*] that
are homogeneous of degree k. Iff Uo=I Hk, then we let

Ilfll sup {If(x)l: x S).

We will denote (as is usual) by D the class of all z in C such that z < 1. With
regard to the following theorem (Theorem 2.4) we recall that if z D, then

Re[(1 + z)/(1 z)] (1 z)/(1 z)(1 -)= Ek + 1 + z k.
k=l k=l

Furthermore with regard to the proof of Theorem 2.4 we refer to the proof of
Proposition 9.5 of [2].
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2.4. THEOREM. Letf U= Hk and let Ilfll 1. If

# Re [-(1 + f)/(1 f)],
then

g da _< 1. (2.1)

If dl g da and if n >_ 2, then g lB. (Thus p
/(S) 1.)

Proof. If z D, then g(zx) is continuous on B and pluriharmonic on B,
hence j’ #(zx)da(x)= (0)= 1, hence by the Fatou-Lebesgue 1emma (2.1)
holds.
By Proposition 2.3, B ), where 2 M+(S). If h C(S), then

limit f h(x)2(zx) da(x) f h d2.
zB,zl

Thus if F {x" x S,f(x) } and if h Coo(S F), then j" h d# j" h d2,
hence if E c S- F, then p(E) 2(E). Furthermore by !-2, Corollary 1.9]
2(F) 0, hence/ 2 which completes the proof of Theorem 2.4.

is pluriharmonic and

2.5. COROLLARY. lfn > 2, then with regard to Theorem 2.4,

limit f lg(zx) g(x)l da(x) O.
zD,zl

3. An extreme point of {p: p M+ (S), p is ph, p(S) }
(Theorem 3.15)

If X c V*, then we will denote by X/ the class of all x in V such that
Z(x) >_ 0 for every Z in X.

3.1. PRO’OSlTION. Let Ho C. Iff Uff=o Hk, if X is a basis of V*, and
iff 0 on X+, thenf O.

Proof. Iff Ho, then Proposition 3.1 holds. We assume that Proposition
3.1 holds iff Hs.
Letf Hs/ 1. If x, y X+ and > 0, then x + ty X+, hencef(x + ty)

0, hence f’(x, y) 0. Thus by the induction hypothesis if (x, y) V x X/,
then f’(x, y) 0. Thus since X is a basis of V*, f’ 0, hencef C which
completes the proof of Proposition 3.1.

3.2. COROLLARY.
SX+,thenf= O.

Iff Uo= H, if x is a basis of V*, and iff 0 on
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3.3. COROLLARY OF 3.2. Let X be an orthonormal basis of V*, let w C, let
k N, and letf H2k. Iff w on S c X+, then

f w Z
2 (3.1)

Proof. If we denote by g the right side of (3.1), then 7 w on S c X+,
hencef- 7 0 on S c X+, hence by Corollary 3.2, f 7.

3.4. COROLLARY OF 3.3. Let X be an orthonormal basis of V*, let w C,
let k N, and let f H2k_l. Iff= w on S X+ and if n >_ 2, thenf= O.

Proof. If Ezx Z2, then by Corollary 3.3, f2 W22k- 1. Let

6 {x" x e V, g(x) # 0}.

If w :/: 0, then we define h" V--. C by h[G =f/wgk-l, h[G’ 0. Thus
h2 g. By the Riemann removable singularity theorem [-3, p. 19] h is an
entire function. Furthermore if (z, x)e C x V, then h(zx) zh(x). Thus
he V*. Let Ybethebasis of Vsuch thatXisthedualbasisof Y. Ifx
Y.yr y, then g(x) n. Furthermore since h V*, h(x) n, hence n
which completes the proof of Corollary 3.4.

We will denote (as is usual) by T the class of all z in C such that z 1. We
will denote by A(B) the class of all functions in C() that are holomorphic on B.

3.5. COROLLARY OF 3.2. Let X be a basis of V*,/et Y UzeT 2(S
let f A(B), and let # Re (f). Ifg 0 on Y, then f f(O).

Proof On B we have

f=f(0) + fj (3.2)
j=l

wheref e Hj.
Let x e S c X/. If z e T, then zx Y, hence g(zx) 0, hencef(zx) f(O).

Thus if z e D, then by (3.2), ;--1 zf(x) 0, hencef(x) 0.

Thusf 0 on S c X+, hence by Corollary 3.2, fj. 0 which completes the
proof of Corollary 3.5.
With regard to Corollary 3.5, we remark that if # M(S), if # is pluri-

harmonic, and if n _> 2, then by [-2, Theorem 1.7-], #(Y) 0. We will omit the
proof of the following corollary (the statement of which we owe to the referee).

3.6. COROLLARY OF 3.1. Let G c V be open and connected. Iff: G C is
holomorphic, if X is a basis of V*, if G c X+ O, and iff 0 on G X+,
thenf O.

3.7. THEOREM. If X is an orthonormal basis of V* and if k N, then
(Ez X 2)k is an extreme point of {f: f6 H2k [If _< 1}.
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Proof Let f= (xxT.2)k and let geH2k. If Ilf+gll < and if
[[f- g[[ _< 1, then g 0 on S X+, hence by Corollary 3.2, g 0 which
completes the proof of Theorem 3.7.
We will omit the proof of the following theorem.

3.8. THEOREM (cf. Theorem 3.7). Let f H2. Iff is an extreme point of
(g g H2, Ilgll -< 1},

then there is an orthonormal basis X of V* such thatf -,z x 7,2.

If k e N, then we let Tk (Z" Z 6 T, zk 1}.
Let k e N. We remark that if # M(S) and if either of the properties 3.9.1

or 3.9.2 which follow hold, then the other holds.

If E c S and if z e Tk, then p(E) #(zE).
If y e B and if z Tk, then/*(y) #’(zy).

We will denote by Nk the class of all # in M+(S) such that # is pluriharmonic,
#(S) 1, and the property 3.9.1 holds. Thus Nk is convex and compact. (If
k 1, then we let N Nk. Thus N is the class of all # in M/(S) such that
# is pluriharmonic and #(S) 1.)
We remark that if f Hk, if [If < 1, if g Re [(1 + f)/(1- f)], if

d# g da, and if n > 2, then by Theorem 2.4, # e Nk.

3.10. THEOREM. Let k N, let X be an orthonormal basis of V*, let f
(’-x x 7.2)k, let g Re [(1 + f)/(1 f)], and let d# g da. If n >_ 2, then

is an extreme point ofN2k.

Proof. By Theorem 2.4,
#

If a e N2k, then by 3.9.2,

#

E f + 1 + E f" (3.3)
j=l j=l

E 5j + 1 + E aj (3.4)
j=l j=l

where a n2kj. Thus if v S and if z e D, then

a(zv) 2k5(V)4" 1 4- z2kaj(v).
j=l j=l

Furthermore #(zv) is a positive harmonic function on D, hence

la(v)l _< 1.

Let V M(S). If + V .e Nk, then by (3.3) and (3.4)

E + E
j= j=

(3.5)
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where cj e H2kj. Furthermore ifj N, then by (3.5), lift + cll 1. Thus if
# + ? N2k and # ? N2k, then by Theorem 3.7, c 0, hence 0
which completes the proof of Theorem 3.10.
With regard to Theorem 3.10 we recall that if n 1, if k N, and if 2 is an

extreme point of Nk, then 2 _1_ a. We will omit the proof of the following
theorem.

3.11. THEOREM. With regard to Theorem 3.10, /f p < 3/2, then # LP(a).
If n 2, then # L3/2(a).

3.12. PROPOSITION. Let k N, let X be an orthonormal basis of V*, let
f (xx z2)k, let # Re [(1 + f)/(1 f)], let d# # da, let 2 M(S),
and &t n 2 (thus N2k).

lfv + 2 e N and 2 N, then

2 2 Re [p/(1 -f)] (3.6)
2k-where p = H. Furthermore

(1 ff) + fi(1 + f) + p(1 f) 0 onS. (3.7)

Proof We let G T2k and we define s: M(S) M(S) as follows: if
E = X, then

(s())(E) (1/2k) (zE). (3.8)

Thus if e N, then s() e N2k. Hence by Theorem 3.10, s(2) 0, thus

2 2 Re o 9j (3.9)
kj=

whereg H+z. We recall that

Let xeSX+ and define h:D(0, m) by h() ( + 2)e(x). If
s , then by (3.9) and (3.10),

)h(z) 1 + 2Re zZ + 2 Z z +zm-o.tx) (3.1)
j= j= m=0

We recall that if M(T), then : Z C is defined by (j) de(z).
Since h is harmonic

where e M+(T). By (3.11) and (3.12), PO) p(2k) 1, hence s M+(),
hence

PU + m) PUI. 0.3)
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We let pj Yjo. If x e S c X+, then by (3.11), (3.12), and (3.13), gjm(X)
p(x), hence gim(X) P(x)fm(x). Furthermore gjm pyfm Hj+2km. Thus

2k-by Corollary 3.2, gjm pyfm, hence ifp = P, then by (3.9), (3.6) holds.
We have

(# + 2) q/(1 -f)(1 -f) (3.14)

where q (1 -ff) + /5(1 -f) +p(1 -f). By (3.14), q > 0 on B, hence
(3.7) holds.

3.13. LEMMA. Let n 2. If {g, h} is an orthonormal basis of V* and if
f g2 + h2, then [g f12 h/(1 ff) on S.

Proof Lemma 3.13 follows (by direct verification) from the definition off
and the fact that g0 + h/ on S.
We will denote by U(V) the class of all unitary transformations of V.

3.14. LEMMA. Let X be an orthonormal basis of V*, let f zx Z2, and
let p V*. Ifn >_ 2 and if lp pf[ < ff on S, then p O.

Proof. If Lemma 3.14 holds when n 2, then Lemma 3.14 holds when
n > 2. Thus we letn 2.
LetX= (g,h}. We havep ag + bh where a, b C. IfxSX+,then

f(x) 1, hence p(x)=p(x). Thus a,bR. Let q ag-bh and let
t U(V). If got gandifhot -h, thenpot qandfot =f, hence
[q- tfl <- -ff on S. Thus [(p + q)- ( + 7:t)f[ _< 2(1 -ff) on S,
hence

[ag- af[ <_ -ff
on S. Thus by Lemma 3.13,

a2h(1 ff) <_ (1 ff)2 (3.15)

on S. If E {x: x S, If(x)[ }, then since n > E is nowhere dense in S,
hence by (3.15), a2hli <_ -ffon S, hence a 0. Likewise b 0 which
completes the proof of Lemma 3.14.

3.15. THEOREM. Let X be an orthonormal basis of V*, let f -,x x 2, let
g Re[(1 +f)/(1 -f)],andletdp gda. Ifn >_ 2, then#isanextreme
point of N.

Proof Let2M(S). It is to be proved that if# + 2Nand#- 2N,
then 2 0. By Proposition 3.12,

2# 2 Re [p/(1 -f)] (3.16)
where p e V* and

(1 ff) + p(1 f) + p(1 f) >_ 0 (3.17)
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on S. The left side of (3.17) is equal to (1 -ff) + 2 Re (p pf); thus if
(z, x) e T x S, then

rl -f(x)f(x)] + 2 Re ([p(x) (x).f(x)]z) >_ o,
hence [p(x)- (x)f(x)[ < -f(x)f(x). Hence by Lemma 3.14, p 0,
hence by (3.16), 2 e 0 which completes the proof of Theorem 3.15.

4. A class of extreme points of {p: p e M+ (S),/ is ph, p(S) }
(Corollary 4.7)

If Y, Z, and N are sets, if : Y Z, and if p: 2r - N, then we define
*(p): 2z N by

*(p)(E) #({y: y Y, (y) E}).

With regard to this definition we recall the following fact of measure theory
[1, p. 72].

4.1. PROPOSITION. If Y and Z are compact Hausdorff spaces, if: Y Z is
continuous, and if # M+(Y), then *() M+(Z). Thus if # M(Y), then
*(#) e M(Z).

With regard to Proposition 4.1 we remark that iff e C(Z), then

ff d*(p) ff e d.

We will denote by G(B) the class of all holomorphic homeomorphisms of B.
With regard to G(B) we refer to [2]. We define T: G(B) x M(S) M(S) by

dT(Z, #) (flz() Z) dr*(#)

where Y Z-. We remark that if d# g da, then by [-2, Proposition 2.4],
tiT(Z, p) (g Z) da. We recall the following fact of the theory of B [2,
Proposition 8.3].

4.2. PROPOSITION. If (Z, #) e G(B) x M(S) and if y e B, then

T(Z, #)(y) #(Z(y)). (4.1)

Thus if # is pluriharmonic, then T(Z, p) is pluriharmonic.

4.3. PROPOSITION. If (X, Y) e G(B) x G(B) and if # e M(S), then

T(XY, #) T(Y, T(X, p)).

Proof Proposition 4.3 can be proved by means of the identity (4.1) or (by
direct verification) by means of the definition of T.

We define t: G(B) x m --. N by t(Z, l) T(Z, /z)//$(Z(0)).
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4.4. PROPOSITION. If (X, Y) G(B) x G(B) and if # N, then

(XY, It) (Y, (X, #)).

Proof. Proposition 4.4 (like Proposition 4.3) can be proved by means of the
identity (4.1).

4.5. PROPOSITION. Ifp >_ 0, q _> 0, p + q 1, 2 N, # N, and Z G(B),
then

(Z, p. + q/) p’t (Z, 2) + q’t (Z, #)
where

p’ p2a(Z(O))/(p2 + q/)a(Z(O)) and q’ q#(Z(O))/(p2 + q/)(Z(O)).

Proof If r (p2 + q) (Z(O)), then

t(Z, p2 + ql) T(Z, p2 + qbt)/r

[pT(Z, 2) + qT(Z, p)]/r

p’t(Z, 2) + q’t(Z, #).

4.6. PROPOSITION. Let (Z,/) G(B) x N. If # is an extreme point of N,
then t(Z, /) is an extreme point of N.

Proof. If t(Z,#) =p + qv where p > 0, q > 0, p + q 1, N,
N, and if Y Z-1, then by Proposition 4.4 and Proposition 4.5,

# t(Y, p + qy) p’t(Y, ) + q’t(Y, y)

where p’ > 0, q’ > O, p’ + q’ 1, hence # t(Y, ) t(Y, ), hence by
Proposition 4.4, t(Z,/) , which completes the proof of Proposition 4.6.

4.7. COROLLARY OF THEOREM 3.15 AND PROPOSITION 4.6. Let X be an ortho-
normal basis of V*, let f x x (2, let 7 Re [(1 + f)/(1 f)], let d#
g da, and let Z G(B). Ifn > 2, then (Z, ) is an extreme point ofN.
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