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1. Introduction

Let ¥ be a vector space over C of complex dimension » with an inner product.
If x and y are in ¥, then we will denote by (x, y) the inner product of x and y.
We will denote by B the class of all x in ¥ such that {x, x) < 1, by B the class
of all x in ¥ such that {x, x) < 1, and by S the class of all x in ¥ such that
{x, x» = 1. We recall that the Poisson kernel of B is the function f: B x B —
(0, o0) defined by

B(x, y) = [(l - <y y>)/(1 = <x, )A =<y, x>)]n.

(We remark that f is the Poisson kernel with respect to the Bergman metric on
B and not the Euclidean metric.)

If Y is a locally compact Hausdorff space, then we will denote by M, (Y)
the class of all Radon measures on Y. Thus if u e M, (Y) and E < Y, then
WE) = 0. We will denote by M(Y) the complex linear span of those y in
M (Y) for which u(Y) < oo. (Thus if Y is compact, then M(Y) is the complex
linear span of M, (Y).) We recall that if X and Y are sets, if fis a function de-
fined on the Cartesian product X x Y, and if (s, ) € X x Y, then f; and f* are
the functions defined on ¥ and X respectively by fi(») = f(s, y) and fi(x) =
S(x, 7).

If pue M(S), then we define u*:B— C by u*(y) = [’ du. Thus
u* € C*(B). We will denote by ¢ the Radon measure on S which assigns to
each open subset of .S its Euclidean volume divided by the Euclidean volume of
S (for the purpose of defining ¢ we regard S as the Euclidean sphere of real
dimension 2n — 1). Thus ¢(S) = 1.

There is the following question.

1.1. If pe M(S), if p* is pluriharmonic, and if n > 2, then do we have
u < o?

The purpose of this paper (which is a sequel to [2]) is to state and prove
Theorem 3.15 and Corollary 4.7 which bear on the question 1.1. The results
of the paper [2] suggest that the answer to the question 1.1 is yes. Theorem
3.15 and Corollary 4.7 of this paper support this suggestion.
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2. A class of measures whose Poisson integrals
are pluriharmonic (Theorem 2.4)

If Yis a set, then we will denote by V. (Y) the class of all measures on Y and
we will denote by V'(Y) the complex linear span of those u in V. (Y) for which
w(Y) < . We recall that if ue V,(Y) and if E = Y, then p |_ E:2Y -
[0, o] is defined by (¢ L E)F) = wW(E~ F). Thus y L E€ V,(Y). There
is the following fact of measure theory.

2.1. PROPOSITION. Let Ybeaset. If ue Vo(Y), if f: Y - [0, o], if fis p
measurable, and if we define A: 2¥ — [0, oo] by

z®=fmmLm
then A € V. (Y). Thus if g € L}(u) and if we define a: 2¥ — C by

aw)=fgauLEx

then a € V(Y).
With regard to Proposition 2.1 we write dA = fdu and da = g du. There is
the following fact of the theory of Radon measures.

2.2. PROPOSITION. Let Y be a locally compact Hausdorff space. If e M . (Y),
if f: Y > [0, ], if f is u measurable, if | fdu < o, and if di = fdu, then
Ae M, (Y). Thusifge L'(n) and if du = g du, then « € M(Y).

We recall the following fact of the theory of functions on B.

2.3. ProposiTION. If f: B — (0, ) is pluriharmonic, then f = u* where
e M.(S).

If Y is a topological space and if /: ¥ — C, then we will denote by spt(f) the
support of f. We will denote by Cyo(Y) the class of all continuous functions
g: Y — C such that spt(g) is compact and we will denote (as is usual) by C(Y)
the class of all continuous functions f: ¥ — C.

We will denote by N the class of all positive integers. If k € N, then we will
denote by H, the class of all members of the polynomial ring C[x: x € V'*] that
are homogeneous of degree k. If fe U,2°=1 H,, then we let

I£1 = sup {|f()I: x € S}.

We will denote (as is usual) by D the class of all z in C such that zZ < 1. With
regard to the following theorem (Theorem 2.4) we recall that if z € D, then

Re [(1 + 2)/(1 = 2)] = (1 = z2)/(1 — 2)(1 = Z) = kil Fls ki i

Furthermore with regard to the proof of Theorem 2.4 we refer to the proof of
Proposition 9.5 of [2].



586 FRANK FORELLI
2.4. THEOREM. Let fe ), Hyand let |f]| < 1. If
g = Re[(1 + /A = 1],

then

Jg do < 1. 2.1

If du = gdo and if n > 2, then n* = g | B. (Thus u* is pluriharmonic and
wS) = 1.)

Proof. If z e D, then g(zx) is continuous on B and pluriharmonic on B,
hence [ g(zx) do(x) = g(0) = 1, hence by the Fatou-Lebesgue lemma (2.1)
holds.

By Proposition 2.3, g | B = 1* where A € M, (S). If h € C(S), then

limit jh(x)l#(zx) da(x) = Jh da.
zeD,z—=1

Thusif F = {x: xe S,f(x) = 1} andif h € Cyo(S — F),then { hdu = [ h dA,

hence if E = S — F, then u(E) = A(E). Furthermore by [2, Corollary 1.9]

A(F) = 0, hence © = A which completes the proof of Theorem 2.4.

2.5. COROLLARY. Ifn > 2, then with regard to Theorem 2.4,

limit Jlg(zx) — g(x)| do(x) = 0.

zeD,z—>1

3. An extreme point of {u: u € M. (S), u* is ph, u(S) = 1}
(Theorem 3.15)

If X « V*, then we will denote by X, the class of all x in ¥ such that
x(x) = O for every y in X.

3.1. ProposITION. Let Hy = C. If fe )i H,, if X is a basis of V*, and
iff=00nX,, thenf = 0.

Proof. If fe H,, then Proposition 3.1 holds. We assume that Proposition
3.1 holds if f'e H;.

Letfe H;,;. Ifx,ye X, and ¢t > 0, then x + ty € X, hence f(x + ty) =
0, hence f'(x, y) = 0. Thus by the induction hypothesis if (x, y) e V x X,,
then f'(x, ¥) = 0. Thus since X is a basis of V*, f' = 0, hence f'e C which
completes the proof of Proposition 3.1.

3.2. CoroLLARY. If fel)i, Hy, if X is a basis of V*, and if f = 0 on
SnX,, thenf=0.
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3.3. COROLLARY OF 3.2. Let X be an orthonormal basis of V*, let w € C, let
keN,andletfe Hy,. Iff =wonS n X,, then

f=w <1§X X2>k. 3.0

Proof. 1If we denote by g the right side of (3.1), theng = w on S n X,
hence f — g = 0 on S n X, hence by Corollary 3.2, f = g.

3.4. COROLLARY OF 3.3. Let X be an orthonormal basis of V*, let we C,
letkeN,andlet fe Hy_i. If f=wonSn X, andifn > 2, then f = 0.

Proof. Ifg =3, cx x* then by Corollary 3.3, f2 = w?g?*~1. Let
G={x:xeV, gkx) # 0}

If w # 0, then we define 4: ¥V - C by h| G = f/wg"™, h| G = 0. Thus
h* = g. By the Riemann removable singularity theorem [3, p. 19] 4 is an
entire function. Furthermore if (z, x) € C x V, then h(zx) = zh(x). Thus
he V* Let Y be the basis of ¥ such that X is the dual basis of Y. If x =
>,ey Y, then g(x) = n. Furthermore since he V*, h(x) = n, hence n = 1
which completes the proof of Corollary 3.4.

We will denote (as is usual) by T the class of all z in C such that zzZ = 1. We
will denote by A(B) the class of all functions in C(B) that are holomorphic on B.

3.5. COROLLARY OF 3.2. Let X be a basis of V*, let Y = |J,er 2(S 0 X3),
let fe A(B), and let g = Re (f). If g = O on Y, then f = f(0).

Proof. On B we have

f=f0) + -—21 i (3.2)

where f; € H;. ’

Letxe S n X,. If z e T, then zx € Y, hence g(zx) = 0, hence f(zx) = f(0).
Thus if z € D, then by (3.2), X3, szj(x) = 0, hence fi(x) = 0.

Thus f; = 0 on S n X, hence by Corollary 3.2, f; = 0 which completes the
proof of Corollary 3.5.

With regard to Corollary 3.5, we remark that if u e M(S), if u* is pluri-
harmonic, and if n > 2, then by [2, Theorem 1.7], w(Y) = 0. We will omit the
proof of the following corollary (the statement of which we owe to the referee).

3.6. COROLLARY OF 3.1. Let G = V be open and connected. If f+ G — C is
holomorphic, if X is a basis of V*, if G X, # 0, and if f=00n G N X,
then f = 0.

3.7. THEOREM. If X is an orthonormal basis of V* and if ke N, then
(Eyex ¥ is an extreme point of {f: f€ Hy, |f| < 1}.
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Proof. Let f= (T,exx?) and let ge Hy. If |f+ gl <1 and if
[f —gll <1, theng = 0 on S n X,, hence by Corollary 3.2, g = 0 which
completes the proof of Theorem 3.7.

We will omit the proof of the following theorem.

3.8. THEOREM (cf. Theorem 3.7). Let fe H,. If f is an extreme point of
{g: g € H29 "g" < 1}’

then there is an orthonormal basis X of V* such that f = ¥, cx x>

IfkeN,thenweletT, = {z:ze T, z* = 1}.
Let k € N. We remark that if u € M(S) and if either of the properties 3.9.1
or 3.9.2 which follow hold, then the other holds.

39.1. If E c Sandif z e Ty, then u(E) = u(zE).
3.9.2. Ify e Band if z € Ty, then u*(y) = u*(zy).

We will denote by N, the class of all x4 in M ,(S) such that u* is pluriharmonic,
u(S) = 1, and the property 3.9.1 holds. Thus N, is convex and compact. (If
k = 1, then we let N = N,. Thus N is the class of all u in M ,(S) such that
u* is pluriharmonic and u(S) = 1.)

We remark that if fe H,, if |f|| <1, if g = Re[(1 + f)/(1 — f)], if
du = g do, and if n > 2, then by Theorem 2.4, u € N,.

3.10. THEOREM. Let k € N, let X be an orthonormal basis of V*, let f =
Crex 1D let g = Re [(1 + f)/(1 = f)], and let du = g do. If n > 2, then
U is an extreme point of N,;.

Proof. By Theorem 2.4,

u* = ‘21 FF+1+ jzl fi. (3.3)
= <
If « € N, then by 3.9.2,
ot = Z a + 1+ ,; a; (3.4

where a; € H,,;. Thus if v € S and if z € D, then

8

D18

a*(zv) = .Zl Z%™a ) + 1 + Y z%Mayv).

j=

1
Furthermore «*(zv) is a positive harmonic function on D, hence
la;(0)| < 1. 3.5
Let y e M(S). If u + y € Ny, then by (3.3) and (3.4)

y* =
J

P18

0
G+ X c
i1

1
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where c; € H,;. Furthermore if j € N, then by (3.5), |/ + ¢;| < 1. Thusif
U+ ye Ny and p — y e Ny, then by Theorem 3.7, ¢; = 0, hence y = 0
which completes the proof of Theorem 3.10.

With regard to Theorem 3.10 we recall that if n = 1, if k € N, and if A is an
extreme point of N,, then A L 0. We will omit the proof of the following
theorem.

3.11. THEOREM. With regard to Theorem 3.10, if p < 3/2, then g € (o).
Ifn = 2, then g ¢ I*'*(0).

3.12. PrROPOSITION. Let k €N, let X be an orthonormal basis of V*, let
f=Crex® let g = Re[(1 + )1 = f)], let du = g do, let L e M(S),
and let n > 2 (thus u € N,p).

Ifu+ AeNandpu — A€ N, then

A* = 2Re[p/(0 - f)] (3.6)
where p € Y2571 H;. Furthermore
A=+ +H+pd-7)=0 onS. (3.7)

Proof. We let G = T,, and we define s: M(S) > M(S) as follows: if
E < X, then

(s())E) = (1/2k) ZG «(zE). (3.8)
Thus if « € N, then s(x) € N,;. Hence by Theorem 3.10, s(4) = 0, thus
2k—1 o
=2 Re( >y ¥ gjm> (3.9)
j=1 m=0

where g;,, € H;, 34, We recall that
p* =142 Re(Z f’). (3.10)
=1

Let x€ SN X, and define h: D — (0, ©) by h(z) = (u + D)*(zx). If
z € D, then by (3.9) and (3.10),

0 2k—-1 o
h(z) =1+2 Re<2 z% 4+ Yy ¥ zj+2"'"gjm(x)>. (3.11)
ji=1 Jj=1 m=0
We recall that if « € M(T), then &: Z — C is defined by &(j) = { Z7 du(z).
Since 4 is harmonic

h(z) = 9(0) + 2 Re <§1 % j)zf> (3.12)

where y € M, (T). By (3.11) and (3.12), $(0) = $(2k) = 1, hence y € M, (G),
hence

G + 2km) = 9(j). (3.13)
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We let p; = gjo. If x € S n X, then by (3.11), (3.12), and (3.13), g;u(x) =
pj(x), hence g;,(x) = p;(x)f™(x). Furthermore g;, — p;f™ € H;, 4. Thus
by Corollary 3.2, g;,, = p;f™ henceif p = 37 p;, then by (3.9), (3.6) holds.

We have

(w+ D* =q/0 -1 -] (3.14)
where ¢ = (1 — ff) + p(1 — f) + p(1 — f). By (3.14), ¢ > 0 on B, hence
(3.7) holds.

3.13. LemMmA. Let n = 2. If {g, h} is an orthonormal basis of V* and if
f=g*+ h* then|g — Gf)* = hh(1 — ff) on S.

Proof. Lemma 3.13 follows (by direct verification) from the definition of f
and the fact that gg + hh = 1 on S.
We will denote by U(V) the class of all unitary transformations of V.

3.14. LeMMA. Let X be an orthonormal basis of V*, let f = ¥, .x x*, and
letpeV* Ifn>2andif|p — pfl <1 — ffon S, thenp = 0.

Proof. If Lemma 3.14 holds when n = 2, then Lemma 3.14 holds when
n > 2. Thusweletn = 2.

Let X = {g, h}. Wehavep = ag + bhwherea, be C. If xe S n X, then
f(x) = 1, hence p(x) = p(x). Thus a,beR. Let ¢ = ag — bh and let
teUW). Ifgot =gandifhot = —h,thenpot = qgand fot = f, hence
lg —Gfl <1 —ffon S Thus [(p +¢)— (P +3)f| <2(1 - ff) on S,

hence
lag — agfl < 1 - ff
on S. Thus by Lemma 3.13,

a’hh(l — ff) < (1 - ff)? (3.15)

onS. If E = {x: xe S, |f(x)] = 1}, then since n > 1 E is nowhere dense in S,
hence by (3.15), a*hh < 1 — ff on S, hence a = 0. Likewise b = 0 which
completes the proof of Lemma 3.14.

3.15. THEOREM. Let X be an orthonormal basis of V*, let f = ¥, .x x*, let
g =Re[(l + )/ —f)], and let du = g do. If n = 2, then u is an extreme
point of N.

Proof. Let Ae M(S). It is to be proved thatif y + Ae Nand u — 1€ N,
then 4 = 0. By Proposition 3.12,

2* = 2Re[p/(1 = /)] (3.16)
where p € V* and

A=-fH+pa-H+pd-F)=z0 (3.17)
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on S. The left side of (3.17) is equal to (1 — ff) + 2 Re (p — pf); thus if
(z, x) e T x S, then

[1 = f(x)f(x)] + 2 Re ([p(x) — p(x)f(x)]z) = 0,
hence |p(x) — p(x)f(x)] <1 — f(x)f(x). Hence by Lemma 3.14, p = 0,
hence by (3.16), A* = 0 which completes the proof of Theorem 3.15.
4. A class of extreme points of {u: u € M, (S), u* is ph, u(S) = 1}
(Corollary 4.7)

If ¥, Z, and N are sets, if ¢: ¥ — Z, and if u: 2¥ — N, then we define
¢*(w): 2% > N by

¢*(W(E) = p({y: y € Y, ¢(y) € E}).
With regard to this definition we recall the following fact of measure theory

[1, p. 72].

4.1. ProposITION. If Y and Z are compact Hausdorff spaces, if ¢: Y — Z is
continuous, and if ue M (Y), then ¢*(u) € M (Z). Thus if ue M(Y), then
¢*(w) e M(Z).

With regard to Proposition 4.1 we remark that if fe C(Z), then
ffd¢>*<u) - ffo b du.
We will denote by G(B) the class of all holomorphic homeomorphisms of B.
With regard to G(B) we refer to [2]. We define T: G(B) x M(S) —» M(S) by
dT(Z, @) = (B o Z) dY*(u)

where Y = Z~!. We remark that if du = g do, then by [2, Proposition 2.4],
dT(Z, u) = (g > Z) do. We recall the following fact of the theory of B [2,
Proposition 8.3].

4.2. PrROPOSITION. If (Z, u) € G(B) x M(S) and if y € B, then
T(Z, W*(y) = w*(Z (). 4.1)
Thus if u* is pluriharmonic, then T(Z, u)* is pluriharmonic.
4.3. ProposITION. If (X, Y) € G(B) x G(B) and if u € M(S), then
T(XY, p) = T(Y, T(X, p).

Proof. Proposition 4.3 can be proved by means of the identity (4.1) or (by
direct verification) by means of the definition of T.

We define ¢: G(B) x N —» N by t(Z, p) = T(Z, p)/u*(Z(0)).
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4.4. PROPOSITION. If (X, Y) € G(B) x G(B) and if u € N, then
tXY, p) = t(Y, t(X, p)).

Proof. Proposition 4.4 (like Proposition 4.3) can be proved by means of the
identity (4.1).

4.5. PROPOSITION. Ifp >0,9>0,p + g=1,Ae N, pe N, and Z € G(B),
then

t(Z,pA + qu) = p't(Z, ) + q't(Z, w)
where

P =\ ZO)/(pA + gq)*(Z(©0) and q' = qu*(Z0)/(pA + q)*(Z(0)).
Proof. Ifr = (pA + qu)*(Z(0)), then
HZ, pA + qu) = T(Z, pA + qu)r
[pT(Z, ) + qT(Z, w]/r
=p't(Z, M) + q't(Z, .

4.6. PROPOSITION. Let (Z, p) € G(B) x N. If u is an extreme point of N,
then t(Z, u) is an extreme point of N.

Proof. If t(Z,pu) = pa + qy where p >0, ¢ >0, p+g=1, aeN,
ye N, and if Y = Z ™!, then by Proposition 4.4 and Proposition 4.5,

p=tY,px+ qy) =p't(Y,a) + q't(Y,y)

where p’ > 0,q" > 0,p" + q¢' = 1, hence u = ¢(Y, a) = t(Y, ), hence by
Proposition 4.4, t(Z, u) = o = y which completes the proof of Proposition 4.6.

4.7. COROLLARY OF THEOREM 3.15 AND PROPOSITION 4.6. Let X be an ortho-
normal basis of V*, let f = 3, .x 1% let g = Re [(1 + f)/[(1 = f)], let du =
g do,andlet Z € G(B). Ifn = 2, then t(Z, u) is an extreme point of N.
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