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Gene expression ratios derived from spotted-glass microarray exper-
iments have become invaluable to researchers by providing sensitive
and comprehensive indicators of the molecular underpinnings of cell
behaviors and states. However, several drawbacks to this form of
data have been noted, including the inability to relate ratios to
absolute expression levels or to compare experimental conditions not
measured with the same control. In this study we demonstrate a
method for overcoming these obstacles. First, instead of cohybridiz-
ing labeled experimental and control samples, we hybridize each
sample against labeled oligos complementary to every microarray
feature. Ratios between sample intensities and intensities of the oligo
reference measure sample RNA levels on a scale that relates to their
absolute abundance, instead of to the variable and unknown abun-
dances of a cDNA reference. We demonstrate that results from this
type of hybridization are accurate and retain absolute abundance
information far better than conventional microarray ratios. Next, to
ensure the accurate measurement of sample and oligo reference
intensities, which may differ by several orders of magnitude, we use
a linear regression algorithm, implemented in a freely available PERL

script, to combine the linear ranges of multiple scans taken at
different scanner sensitivity settings onto an extended linear scale.
We discuss future applications of our method to measure RNA
expression on the absolute scale of number of transcripts per cell from
any organism for which oligo-based spotted-glass microarrays are
available.

One of the most successful genomics technologies developed to
date is the DNA microarray (1–4), which permits simulta-

neous detection of expression levels for every gene in an organism.
Currently, spotted-glass microarray experiments are performed by
using probes synthesized from two RNA samples (a reference and
an experimental sample) that are labeled with different color fluors
and cohybridized to an array. Differences in gene expression levels
are reported as the ratio between the experimental and reference
intensities (conventional microarray ratios). However, this technol-
ogy, which has produced large databases of whole-genome expres-
sion data on subjects ranging from bacterial metabolism to human
cancer, is not yet fully mature.

The use of ratios in two-color hybridization experiments
controls for several sources of experimental variation inherent in
the spotted-glass microarray technology, including variation
across ORFs in labeled nucleotide frequency, amount and
quality of DNA spotted onto the array, uneven hybridization,
and spot size and morphology (2, 5). However, conventional
microarray ratios have several properties that limit subsequent
computational analysis, and thus the amount of information that
can be extracted from these large data sets. First, reporting
expression data as ratios between cDNA reference and exper-
imental samples results in loss of the absolute transcript abun-
dance information carried by the individual spot fluorescence
intensities, thus obscuring important differences in levels of gene
expression between ORFs. The use of cDNA reference samples,
which are largely uncharacterized and not easily reproduced,
also hampers comparisons between data sets that use different
cDNA references. One example is the inability to cluster similar

conditions between time-course experiments that use initial time
points as reference samples (supplemental materials to ref. 6).

In this study, we develop a combination of experimental and
computational methods that improves the accuracy and compara-
bility of DNA microarray data by (i) measuring spot intensity
relative to a calibrated reference sample and (ii) extrapolating data
from multiple scans to increase the range of intensities reported. In
this system, labeled cDNA from a sample of interest is hybridized
in conjunction with a set of differentially labeled oligonucleotides
of known abundance (calibrated oligo reference) containing se-
quences complementary to every spot on the array. After hybrid-
ization, spot intensities are measured by scanning at several detec-
tion sensitivity settings, and the results are combined onto a
common linear scale by using a linear regression algorithm imple-
mented in a PERL script called masliner (MicroArray Spot LINEar
Regression). Finally, RNA abundance is expressed as a ratio to the
calibrated oligo reference, a sample that is easily reproduced and
provides significant signal for every feature on the array.

Materials and Methods
Strains and Media. The Saccharomyces cerevisiae strain used in this
study is FY4, a MATa prototroph isogenic to a GAL2� deriv-
ative of S288C (7). Media were prepared as described (8).
Glucose cultures (Glu) were grown in yeast extract�peptone�
dextrose (YPD; 2% glucose), raffinose cultures (Raff) were
grown in SDRaf (2% raffinose), and ethanol cultures (EtOH)
were grown in SDEtOH (2% ethanol). Galactose cultures (Gal)
were grown in YPRaf (2% raffinose) and induced for 20 min by
the addition of galactose to 2%. All cultures were grown at 30°C
and harvested at densities of 1–2 � 107 cells per ml.

Microarray Labeling and Hybridization Reactions. Total yeast RNA
was prepared as described (9). Labeled cDNA probes were
synthesized from 20 �g total yeast RNA by using the Atlas Glass
Fluorescent Labeling kit (CLONTECH). The Cy3–RevORF
oligo (GATCCCCGGGAATTGCCATG), used as the oligo
reference sample for microarrays printed with the yeast ORF
PCR product set, was synthesized with a 5� Cy3 modification.
Oligo reference hybridizations contained 200 pmols of this oligo.
Other oligos used for hybridization were synthesized with 5�
C6-amino modifications and labeled as follows. A total of
500–1,000 pmols of an oligo were resuspended in 10 �l of 2X
Atlas fluorescent labeling buffer (CLONTECH), mixed with 10
�l of 5 mM Cy3 or Cy5 monofunctional reactive dye (Amersham
Pharmacia Biotech), and incubated in the dark at 25°C for 30
min. Labeled oligos were purified by ethanol precipitation and
microcon YM-10 or YM-30 filtration (Amicon).

Microarray production and hybridization are described on our
web site. Arrays were scanned on a ScanArray 5000 (GSI
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Lumonics, Wilmington, MA) at 90% laser power and photo-
multiplier tube gain (PMT) settings ranging from 45–85%.
Constant PMT voltage and varied laser power gave similar
results. Scans taken in increments of 5–10% PMT provided
sufficient intensity ranges for masliner analysis. We did not
observe significant photobleaching with repeated scans. The
range of PMT settings for each slide was visually determined by
finding the lowest setting required to bring the brightest spots
into the linear range and the highest setting with reasonable
background fluorescence.

Microarray Data Analysis. Signal intensities were measured with
the GENEPIX 3.0 image analysis software (Axon Instruments,
Foster City, CA), and results files were used as input for
masliner. For each fluor on each slide, scans were iteratively
processed with masliner (from lowest to highest intensity scan)
by using ‘‘straight’’ mode with a range of 2,000 (�ll) to 60,000
(�lh) and the default parameters. The linear range for the
scanner used in these experiments was determined from scatter
plots of spot background-subtracted intensity (BSI) values from
scans at multiple sensitivities.

Within a set of experiments, the BSIs of all cDNA and oligo
hybridizations were normalized to each other by the ratios of the
total f luorescence values. Because there is no expectation that
total f luorescence of a cDNA sample and a calibrated reference
oligo sample should be equivalent, cDNA and oligo hybridiza-
tions were normalized separately. BSIs less than the value of 1
SD of the local background were assigned the SD value.

Spiked Oligo Experiment. Oligos complementary to Operon oligo
array features with low expression levels in glucose cDNA hybrid-
izations were labeled and spiked into 80-�l hybridization reactions
containing Cy3- and Cy5-labeled glucose cDNA. Cy3-labeled oligos
were added as an equimolar mixture of 0.5 pmols of each oligo.
Cy5-labeled oligos with were added as a 5-fold dilution series from
100 pmols (FBP1) to 0.256 fmols (HXT5). Unadjusted series data
are taken from two pairs of high sensitivity scans: Cy5 at 75% PMT
with Cy3 at 85% PMT, and Cy5 at 65% PMT with Cy3 at 75% PMT.
If Mi represents the measured abundance of spiked oligo i in a
measurement series (unadjusted or masliner-adjusted), and Ai the
actual spiked abundance, we report the accuracy of the measure-
ment series as the average over i of abs(log10(Mi) � log10(Ai))
(accuracy score). The antilog of the accuracy score is the geometric
mean of the fold changes of the greater to the smaller measurement
across the series of oligos (geometric average fold change). The
consistency score, which measures the degree to which measured
abundances of successive dilution series members are close to the
target 5-fold ratio, is calculated as the average over i of abs(5 �
(M

i
�Mi � 1)). The accuracy and consistency scores of a perfect

measurement series are 0. For data from single scans, saturated
spots are those whose BSI is greater than 60,000; for masliner-
adjusted data, the saturated spots are those flagged as saturated by
masliner. Background spots are those whose BSI is less than the
value of 2 SDs of all spot background intensities on the array. The
background intensity of the masliner-adjusted data were derived
from the highest intensity scans in the series.

Software and Supplementary Web Site. Masliner accepts GENEPIX 3.0
files from consecutive scans of the same slide. A series of scans are
combined by processing each GENEPIX 3.0 file for successively higher
scan intensities through masliner along with the output file gener-
ated from the prior scans. Masliner processing is briefly described
below, and the masliner software, additional information on pro-
cessing, supplementary data, and additional methods are available
on our web site (http:��arep.med.harvard.edu�masliner�
supplement.htm).

Results
Common Linear Scaling of Multiple Scans Improves Measurement
Accuracy. The relationship between fluorophore quantity in a
microarray spot and spot intensity reported by a scanner is linear
only within a certain range of intensities, being dominated by noise
below and subject to saturation above that range. Thus, a single
microarray scan usually cannot provide accurate information on the
full range of expression levels of genes in a typical sample. Incor-
porating data from scans acquired at multiple scanner sensitivity
settings has the potential to increase the range of signal intensities
detectable, being limited ultimately by the noise resulting from
background fluorescence on the slide and the number of binding
sites for the labeled probe on the array. Although early microarray
studies increased the dynamic range of detectable gene expression
by using multiple scans at different scanner sensitivity settings (2),
this recommendation is absent from current protocols (10, 11).

To facilitate an accurate comparison between a limited range of
oligo intensities with the full range of gene expression values, we
developed an algorithm that corrects for saturation by combining
data from the linear ranges of scans collected at multiple laser
power or PMT settings into a common extended linear range. An
example is given in Fig. 1. Given data from a low- and high-
sensitivity scan, the linear range measurements for each scan are
combined by using a PERL script called masliner. By using infor-
mation on a scanner’s linear range, masliner computes a linear
regression (12) of the BSIs for the high versus low intensity scans
for spots in the linear range of both and uses it to extrapolate
adjusted BSIs for each spot with BSIs above the linear range in the
higher sensitivity scan. Results are printed to an output file con-
taining adjusted values within and unadjusted values below the
bounds of the common linear scale. The output file also estimates
the error of prediction associated with the linear regression(s) and
indicates any spots too saturated to be calibrated accurately.

Fig. 1. Common linear scaling of microarray spot intensities. A single array
was scanned twice on a ScanArray 5000 at constant laser power (90%) and two
PMT settings (50% and 60%). For each spot, the BSI from the 50% scan (s50)
is plotted against BSI from the 60% scan (s60) (circles and inverted blue
triangles). Six spots are saturated in s60 that were not saturated in s50
(inverted blue triangles). Using masliner, a linear regression was computed for
the 176 s50 vs. s60 values within the linear range of the scanner (blue circles,
2,000 � BSI � 60,000). The regression was used to extrapolate values for the
six s60 saturated spots (orange triangles), effectively generating an extended
common linear scale for spots over both scans. Some spots (n � 6,185) were
below the linear range in both scans (gray circles). A total of 3,288 of these
spots were brought into the common linear scale by additional scans at higher
gains and executions of masliner. These data were taken from the cDNA
intensities of the Glu�oligo experiment presented in Table 2.
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Masliner may be run iteratively to derive a common linear scale for
an entire series of scans taken at different sensitivities to substan-
tially extend the signal intensity range acquired from an array. For
example, a series of masliner adjustments using data from four
scans increased the intensity of the brightest spot on the array in Fig.
1 from 65,535 (saturation) to 3.2 million units, a 49-fold range
increase with a 0.4% estimated error associated with the linear
regression (http:��arep.med.harvard.edu�masliner�supplement.
htm).

To test whether our method of integrating data from multiple
scans was able to accurately maintain relative abundance values
over multiple scans, we conducted a spiked-oligo experiment (Fig.
2). In this experiment, oligos complementary to the features on
microarrays spotted with the Yeast Genome Oligo Set (Qiagen
Operon) were end-labeled with Cy3 or Cy5 and added to a
hybridization reaction as an equimolar mixture of Cy3-labeled
oligos and a five-fold dilution series of Cy5-labeled oligos. To
perform calculations in the context of actual microarray expression
data, oligos corresponding to low intensity spots in a glucose cDNA
sample (http:��arep.med.harvard.edu�masliner�supplement.htm)
were added to a hybridization reaction containing Cy3- and Cy5-
labeled cDNA probes synthesized from total yeast RNA of glucose-
grown cells (Glu). The resulting arrays were scanned several times
at a constant laser power with varied PMT settings, signal and
background intensities from each scan were measured, saturated
BSIs were adjusted by using masliner, and BSIs were normalized to
total fluorescence. Results from this experiment contain two types
of data for which the actual ratio is known, ratios of the spiked
oligos, present in a 5-fold dilution series, and ratios of the self-
versus-self hybridization of the Glu cDNA, present at a ratio of 1.

The ratios of the spiked oligos in this experiment (Fig. 2)
demonstrate that extrapolation of intensities from multiple scans

using masliner was able to accurately maintain abundance
measurements over a large range of ratios. Data processed
through masliner produced a dynamic range of ratios greater
than 4 orders of magnitude with an accuracy score (Materials and
Methods) of 0.272. The limited range at the high end of the
spectrum was the result of a low FBP1 ratio, most likely caused
by a lack of available binding sites on the array for the high
concentration of this oligo (http:��arep.med.harvard.edu�
masliner�supplement.htm). Thus, BSIs adjusted above satura-
tion by the masliner script maintain accurate relative abundance
values over several orders of magnitude.

Fig. 2 also shows the more variable results that can be obtained
from conventional ratios based on individual scans in the series.
One set of scans, scan 65�75, has effectively the same accuracy score
as the masliner series (0.268), representing a geometric average fold
change less than 1% different from that of masliner. The other set,
scan 75�85, has an accuracy score considerably worse than either the
masliner or the PMT 65% series (0.613, geometric average fold
change � 4.1). The accuracy score describes the overall accuracy of
measured abundances for the dilution series but does not describe
their consistency, i.e., how closely the measured abundances of
successive series members are to the target 5-fold ratio. This
property is measured by the ‘‘consistency score’’ (Materials and
Methods). Masliner exhibits better consistency than either scan
65�75 or 75�85 (Table 1). Thus, over the range of spiked oligo ratios
examined, the accuracy of the masliner-adjusted values was equal
to or better than the data derived from any set of single scans.

To further characterize the quality of masliner-adjusted values
with those acquired from a single scan, we analyzed the values
obtained for the remaining 6,298 spots on the spiked oligo arrays
that correspond to the Glu cDNA self-versus-self hybridization.
One means of evaluating the quality of scanning parameters in this

Fig. 2. Adjustment by masliner accurately maintains a 5-fold dilution series of Cy5 to Cy3 ratios over four orders of magnitude. A log plot of the average ratios
of two slides in the spiked oligo experiment is shown � SDs. Data are presented for masliner adjustment (triangles) and from single scans taken at Cy5 65% PMT
and Cy3 75% PMT (circles) and Cy5 75% and Cy3 85% (squares). Actual spiked abundance values are also shown (diamonds). Of the four single intensity scan
pairs examined, scans 65�75 and 75�85 had the largest dynamic ranges and the most accurate values.
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type of experiment is to compare the number of spots with values
that are either below the background noise of the hybridization
(values below 2 SDs of all spot background intensities) or above the
saturation threshold for detection by the scanner (60,000 for the
instrument used in this study). A comparison of results from the
three different data sets (Table 1) clearly demonstrates the advan-
tage of masliner over any single scan. For example, masliner
adjustment brings an additional 1% of the spots on the array above
the background cutoff than scan 65�75 while at the same time
retaining another 2% lost because of saturation. Although masliner
and scan 75�85 have the same number of background spots because
masliner accepts the values of spots below the linear range from the
highest sensitivity scans in a series (the scan 75�85 pair), scan 75�85
loses 4% of spots to saturation. Additional comparisons are avail-
able on our web site. Thus, extrapolation of data from multiple
scans with the masliner algorithm increases the number of spots
with usable data by 3% relative to the best scoring single scan in the
oligo spiking experiment.

A Common Oligo Reference Sample Improves Data Comparability and
Transcript Abundance Estimation. Many of the artifacts associated
with conventional microarray ratios could be eliminated by mea-
suring RNA levels relative to a calibrated reference sample, result-
ing in retention of transcript abundance information and direct
comparability of all samples measured with the reference. To serve
as a reference for RNA abundance calibration, a sample must
produce detectable signal at each array feature, contain all species
in the mixture at known concentrations, and be easily and accu-
rately reproduced. Several nucleic acid mixtures satisfy these cri-

teria to varying extents, including genomic DNA for organisms with
low-complexity genomes (13), equimolar mixtures of PCR products
or oligos complementary to all array features, and oligos comple-
mentary to common sequences present in all array features. Whole-
genome microarrays spotted with ORFs amplified by using the
GenePairs yeast primers (Research Genetics, Huntsville, AL)
contain a universal sequence tag common to every spot on the
array, originally engineered to facilitate PCR amplification. Use of
a labeled oligo complementary to this common sequence as a
reference sample would control for differences in target DNA
quantity, spot morphology, and uneven hybridization, but not
labeling or sequence-specific hybridization differences between
transcripts. Nonetheless, we chose this sequence as a simple,
inexpensive way to test our hypotheses concerning microarray data
measured relative to a calibrated reference.

To evaluate the accuracy of the common oligo reference mea-
surements relative to conventional microarray ratios, we compared
data from hybridizations by using cDNA and oligo reference
samples for yeast grown in four well-characterized media condi-
tions, rich glucose (Glu), rich galactose (Gal), minimal raffinose
(Raff), and minimal ethanol (EtOH). Gene expression levels in the
galactose, raffinose, and ethanol samples were measured conven-
tionally relative to the glucose sample directly or by reconstructing
the same ratios by using the oligo reference values. A sample
comparison is shown for two examples in four classes of genes:
highly induced in Gal, moderately induced in Gal, moderately
induced in Glu, and equally expressed in both Glu and Gal (Fig. 3).
The reconstructed ratios were extremely similar to the values
measured directly by conventional hybridization. Comparison be-
tween the conventional microarray ratios and the reconstructed
ratios for all spots on the array by two-tailed t tests and by a set of
eight Wilcoxon rank sum tests, produced results consistent with the
hypothesis that the two sets of ratios were statistically equivalent
(http:��arep.med.harvard.edu�masliner�supplement.htm). For ex-
ample, 5.5% of all spots had significantly different values between
the conventional microarray and reconstructed ratios for a t test at
P � 0.05, as would be expected for identical distributions. These
results not only demonstrate that the results from the oligo refer-
ence experiments are accurate, but also that users who wish to

Table 1. Quality measure comparison between masliner and
single-scan data from the oligo spiking experiment (averages of
two replicates)

Accuracy
score

Consistency
score

Background
spots

Saturated
spots

masliner 0.272 1.1 652.5 (10%) 0 (0%)
scan 65�75 0.268 1.5 703.5 (11%) 96.0 (2%)
scan 75�85 0.613 2.2 652.5 (10%) 245.5 (4%)

Fig. 3. Accurate reconstruc-
tion of cDNA ratios from oligo
reference values. Directly
measured Gal�Glu ratios from
conventional hybridizations
(gray) and ratios recon-
structed from oligo reference
hybridizations (black) are
shown for two examples in
four gene classes: highly in-
duced in Gal (GAL1, GAL7),
moderately induced in Gal
(COX5A, QCR7), moderately
induced in Glu (RPL3, RPL29),
and equally expressed in both
(PHO88, STE5). Conventional
Gal�Glu ratios are expressed
as the average of the ratios
from four hybridizations � SE.
Reconstructed ratios were cal-
culated as the average of 24
nonredundant combinations
of the 4 Gal�oligo and Glu�
oligo values � SE. Average
values are also printed.
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visualize data as expression ratios may generate these ratios from
any two sets of oligo reference data.

To test whether this common oligo reference could facilitate
better comparisons of gene expression across multiple conditions
than conventional cDNA references, we compared results from
conventional cDNA cohybridizations of galactose to glucose and
raffinose to ethanol samples with common oligo reference hybrid-
izations with each of the four cDNA samples. Table 2 shows results
for two distinct classes of genes, genes involved in galactose
metabolism that are highly expressed in galactose, but none of the
other carbon sources, and genes involved in mitochondrial function
that are moderately induced in the three semi- or nonfermentable
carbon sources relative to glucose (10, 14). In this example, use of
conventional cDNA reference ratios obscures expression pattern
differences between the two classes. With conventional ratios, one
sees only that both classes appear to be induced (ratios 	 3) in the
Gal�Glu hybridization and uninduced (ratios � 1) in the Raff�
EtOH hybridization. In contrast, the oligo reference data shows a
clear distinction between the GAL genes, which are induced only in
galactose, and the mitochondrial genes, which are also induced in
raffinose and ethanol. This type of artifact also hampers subsequent
computational analysis, e.g., clustering is able to separate the two
gene classes given the oligo reference, but not the conventional ratio
data in Table 2 (http:��arep.med.harvard.edu�masliner�
supplement.htm). Although correct grouping of these two gene
expression classes can be achieved with conventional ratios by using
certain combinations of experimental and reference cDNAs, such
data requires either prior knowledge of the genes and conditions to
determine the correct hybridization pairs or multiple hybridization
pair combinations. Thus, although conventional cDNA reference
hybridizations work well for direct, pair-wise comparisons, mea-
suring RNA expression levels relative to a common oligo reference
sample facilitates comparison of gene expression patterns across
multiple conditions, allowing accurate grouping of genes or con-
ditions without prior knowledge about the sample.

Our initial examination of the oligo reference data for several
candidate genes suggested a good correlation between the cali-
brated oligo abundance measurements and absolute levels of
expression. For example, the calibrated abundance measurements
for GAL1, GAL7, and GAL10, which are strongly transcriptionally
repressed in the absence of galactose, all have extremely low
calibrated abundance values (�0.1) in the three non-galactose
conditions (Table 2). To estimate how related the calibrated
abundance values were to absolute mRNA transcript abundances,
we performed two types of analyses. First, we assessed whether
differences in calibrated abundance values between two groups of
candidate genes, the GAL and mitochondrial genes presented in
Table 2, were statistically significant. By one-sided Wilcoxon test,
the expression levels of the GAL genes are significantly less than

expression of the mitochondrial genes in the Glu (P � 0.004), Raff
(P � 0.006), and EtOH (P � 0.006) conditions. Next, we compared
our results to published SAGE-derived transcript counts per cell for
yeast grown in comparable conditions (15, 16). The results (http:��
arep.med.harvard.edu�masliner�supplement.htm) demonstrate a
modest, but statistically significant Pearson correlation coefficient
between these two series of values (0.62, P � 0.004), although
differences in strain and growth conditions between the two
experiments may be masking a better correlation. Together, these
data suggest that the common oligo reference data retain absolute
abundance information far better than expression levels based on
conventional microarray ratios and allow at least a rough approx-
imation of absolute transcript abundance.

Discussion
One of the next challenges in functional genomics is the devel-
opment of experimental techniques capable of measuring key
components of cellular function, such as RNA expression,
protein abundance, and metabolite concentration, in terms that
reflect copy number per cell by using methods that are both cost
effective and high throughput. This type of data permits com-
parison between different experiments, laboratories, experimen-
tal systems, and data types, a crucial aspect of the database-
dependent analysis of biological systems that the field of
functional genomics requires. In addition, this type of informa-
tion will facilitate the exploration of areas not currently possible
given the limitations of data derived with current techniques,
including the calculation of in vivo rate and binding constants,
characterization of threshold- and gradient-based regulatory
switches, analysis of codon adaptation indices, analysis of trans-
lational efficiency, measurement of promoter and transcription
factor strength, and cross-species comparisons of RNA, protein,
or metabolite abundance.

In this study, we have made three important contributions to the
measurement of absolute RNA expression levels by using spotted-
glass microarrays. First, we have demonstrated that mRNA expres-
sion values measured relative to a common oligo reference sample
produce transcript abundance values that can be compared across
multiple conditions and experiments. This type of data also facil-
itates more accurate analysis using computational methods, such as
gene or condition clustering. Next, we facilitate accurate compar-
isons between a limited range of oligo intensities and the full range
of gene expression values by combining intensity measurements
onto a large, common linear scale using a linear regression algo-
rithm. This method may be used with any microarray system that
has the ability to acquire scans at multiple illumination intensities
and�or detector sensitivities, which in theory includes Affymetrix
chips. Finally, we have laid the foundation for a system that will
accurately report the absolute abundance of RNA transcripts in a

Table 2. Conventional versus oligo reference hybridization results for subsets of genes involved in galactose
metabolism and mitochondrial function

Oligo reference values with a statistically significant induction over the glucose values are shaded (one-sided Wilcoxon rank sum
test, P � 0.006), for the galactose metabolism (light gray) and mitochondrial function (dark gray) gene data.
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way that will be convertible to units of transcripts per cell. Although
our common oligo reference does not control for some important
aspects of the spotted-glass microarray system, including sequence-
specific hybridization and labeling differences between transcripts,
it is a simple and affordable method of retaining a level of
information lost in conventional ratios. Moreover, the results of our
oligo-spiking experiment (Fig. 2) demonstrate that referencing
cDNA intensities to an equimolar mixture of oligos, which do
control for these aspects, permits the accurate measurement of
abundances. Thus, the use of a calibrated reference containing an
equimolar mixture of oligos (equimolar oligo reference) comple-
mentary to every feature on an oligo array, such as the whole-
genome oligo arrays used in this study, would facilitate RNA
abundance measurements on an absolute scale that could be easily
converted to units of transcripts per cell. A direct comparison
between this type of calibrated microarray abundance data and data
from a transcript counting method, such as SAGE or MPSS (17),
should provide a more accurate assessment of the ability of our
system to measure absolute transcript abundance with the cost-
effective, high-throughput technology of spotted-glass microarrays.

Although our data suggest that a single scan with optimal scanner
settings can accurately measure ratios over much of the same range
as the masliner adjusted values, other considerations suggest ad-
vantages of the masliner system. First, the scanner sensitivity
settings required to produce accurate results from a single scan were
not known at the time of scanning, but only identified in subsequent
analysis of multiple scans. Therefore, a strategy of relying on single
scans depends critically on identifying optimal sensitivities over a
wide range of experiments, equipment, and array designs. In
contrast, our results show that masliner was able to leverage the
content of the optimal scans from a series of scans in an entirely
automated and unsupervised manner. Second, identification of
individual scans that were optimal in the spiked oligo experiment
required knowledge of the spiked oligo abundances, whereas
masliner was able to generate accurate results without use of this
prior knowledge. A strategy identifying single optimal scans may
therefore require development of appropriate spiked controls.
Finally, masliner-like regression analysis of multiple scans allows
detection of variability in individual scans and may allow for
correction of error introduced by the scanning process (Jean
O’Malley, personal communication; and http:��arep.med.harvard.
edu�masliner�supplement.htm).

An important consideration for any new technology is cost. Our
combination of experimental and computational techniques allow
us to easily compare intensities generated from 0.5 pmol of an
end-labeled oligo with the entire range of cDNA intensities gen-
erated by a typical microarray experiment. As a result, the retail cost

of an equimolar mixture of 6,300 oligos corresponding to the
reverse complement of the Operon oligo set for yeast should be less
than 9 dollars per slide. Although the large-scale synthesis and
normalization of such a large set of oligos is beyond the capacity of
an academic laboratory, we hope that commercial sources will
make such products available to the academic and pharmaceutical
communities. Another cost factor is the �2-fold increase in vari-
ance incurred in the calibrated oligo reference system (http:��
arep.med.harvard.edu�masliner�supplement.htm), which can be
addressed by replicates, and which we consider a tradeoff for the
increased information content and comparability of data obtained
by the system.

Recently, much attention has been given to improving the
computational analysis of RNA expression data, and several algo-
rithms have been developed in an attempt to improve data nor-
malization, error estimation, data comparability, and result confi-
dence estimates. Previous work from our laboratory examined
these issues for conventional microarray data and concluded that
many of the bioinformatic problems related to ratio data were the
result of properties inherent to the cDNA-reference experimental
system itself (6). The experimental modifications to the current
microarray protocol and bioinformatic tools described in this study
resolve many of these issues and offer other notable advantages. For
instance, by producing significant reference signal for each array
feature, use of a calibrated oligo reference sample provides both a
quality control measure for every microarray feature and ‘‘landing
lights’’ for improved alignment by image analysis software. Data
obtained by using our system also has several bioinformatic advan-
tages, including retention of RNA abundance information, more
accurate measurement of highly expressed genes that often produce
saturated intensity measurements, estimation of error based on the
feature intensity, and increased ability to compare data between
different experiments and laboratories. Although this study dem-
onstrated the utility of our system in a well-characterized organism
with a relatively simple genome, the application to higher eu-
karyotes with more complex genomes, such as humans and mice,
will be equally applicable if not more important.
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