
Open Research Online
The Open University’s repository of research publications
and other research outputs

Measuring Accuracy of Triples in Knowledge Graphs

Conference or Workshop Item

How to cite:

Liu, Shuangyan; d’Aquin, Mathieu and Motta, Enrico (2017). Measuring Accuracy of Triples in Knowledge
Graphs. In: Language, Data, and Knowledge: First International Conference, LDK 2017 Galway, Ireland, June 19–20,
2017 Proceedings (Gracia, Jorge; Bond, Francis; McCrae, John P.; Buitelaar, Paul; Chiarcos, Christian and Hellmann,
Sebastian eds.), Lecture Notes in Computer Science, Springer, Cham, pp. 343–357.

For guidance on citations see FAQs.

c© 2017 Springer International Publishing AG

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1007/978-3-319-59888-829

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/doi:10.1007/978-3-319-59888-8_29
http://oro.open.ac.uk/policies.html

Measuring Accuracy of Triples in Knowledge

Graphs

Shuangyan Liu, Mathieu d’Aquin, and Enrico Motta

Knowledge Media Institute, The Open University, UK
{shuangyan.liu, mathieu.daquin, enrico.motta}@open.ac.uk

Abstract. An increasing amount of large-scale knowledge graphs have
been constructed in recent years. Those graphs are often created from
text-based extraction, which could be very noisy. So far, cleaning knowl-
edge graphs are often carried out by human experts and thus very inef-
ficient. It is necessary to explore automatic methods for identifying and
eliminating erroneous information. In order to achieve this, previous ap-
proaches primarily rely on internal information i.e.the knowledge graph
itself. In this paper, we introduce an automatic approach, Triples Accu-
racy Assessment (TAA), for validating RDF triples (source triples) in a
knowledge graph by finding consensus of matched triples (among target
triples) from other knowledge graphs. TAA uses knowledge graph inter-
links to find identical resources and apply different matching methods
between the predicates of source triples and target triples. Then based
on the matched triples, TAA calculates a confidence score to indicate
the correctness of a source triple. In addition, we present an evaluation
of our approach using the FactBench dataset for fact validation. Our
findings show promising results for distinguishing between correct and
wrong triples.

Keywords: Data Quality, Triple Matching, Predicate Semantic Simi-
larity, Knowledge Graphs, Algorithm Configuration Optimisation

1 Introduction

The concept of Knowledge Graph (KG) was introduced by Google in 2012, to
refer to a knowledge base used for enhancing its web-based search results. It
is now often used to describe semantic web knowledge bases, i.e. RDF-based
representation of some wide domains. Such an RDF representation is known
as an RDF triple (subject, predicate, object). An example of RDF triples is
(dbr:Birmingham dbo:populationTotal “1123000”ˆˆxsd:integer), which represents
the fact that the city of Birmingham has a total population of 1123000 (dbr and
dbo are the namespace prefixes of DBpedia repositories).1 In recent years, several

1 dbr refers to http://dbpedia.org/resource, dbo points to http://dbpedia.org/

ontology, xsd refers to http://www.w3.org/2001/XMLSchema#.

http://dbpedia.org/resource
http://dbpedia.org/ontology
http://dbpedia.org/ontology
http://www.w3.org/2001/XMLSchema#

large-scale knowledge graphs have been constructed such as DBpedia2, YAGO3,
Freebase4, Wikidata5, and others.

Many of these knowledge graphs were created by extracting Web contents
or through crowdsourcing. These processes could be very noisy, and the created
knowledge graphs are unlikely to be fully correct. There is an increasing interest
in quality assessment for knowledge graphs [1] [4] [17] [20] [8] [6]. Some ap-
proaches focus on completing or correcting entity type information, while others
target towards relations between entities, or interlinks between different knowl-
edge graphs. However, research in identifying erroneous literal values automati-
cally is very rare [16]. Proposing a generic approach for measuring the accuracy
of triples can identify erroneous information and thus improve the quality of
knowledge graphs.

In this paper, we propose the Triples Accuracy Assessment (TAA), an ap-
proach for automatically validating RDF triples in a KG (source triples) by
collecting consensus of matched triples (among target triples) from other knowl-
edge graphs. A confidence score is assigned to a source triple that is validated
to represent the accuracy of this triple. Our approach searches external infor-
mation for assessing the correctness of triples, which is similar to [8] [6]. The
main difference is that we explore other semantic web knowledge bases to find
evidence while [6] searches proofs from the Web for validating facts. The main
contributions of this paper are presented as follows:

(1) we present an automatic approach that finds consensus from other knowledge
graphs for validating the correctness of RDF triples;

(2) we propose a predicate semantic similarity metric based on word-to-word
similarity and corpus-based information content;

(3) we enrich our triple validation model to support different types of data in-
cluding numerical, date and string;

(4) we apply the iterated racing algorithm for tuning the parameters of our
system, which finds the best configuration of the parameters of our system.

(5) we evaluate the performance of our approach using gold standard data ex-
tracted from a benchmark dataset for fact validation. The findings show that
we achieve a competitive F-measure of 95.2% on a train set and 96.1% on a
test set.

The initial description of our approach was presented in a workshop pa-
per [12]. The main additions include that we present a new method to compute
predicate semantic similarity based on word-to-word similarity and corpus-based
information content; we apply the iterated racing algorithm for tuning the pa-
rameters of our system, which finds the best configuration of our system; and we
also report a systematic evaluation of our approach using a benchmark dataset
in this paper.

2 http://wiki.dbpedia.org/
3 http://yago-knowledge.org/
4 https://developers.google.com/freebase/
5 http://www.wikidata.org

http://wiki.dbpedia.org/
http://yago-knowledge.org/
https://developers.google.com/freebase/
http://www.wikidata.org

2 Related Work

There is a growing body of work on fact validation [6] [20] [10] [5]. This literature
can be categorised into two groups in terms of the sources utilised: (1) approaches
such as [20] and [10] using internal information (i.e. the knowledge graph itself)
for proofs; and (2) approaches such as [6] exploring external information as
sources for evidences. Our approach is similar to methods of the second kind,
which validate triples using external sources. The main difference from them
is that we match evidence triples from other knowledge graphs, not from web
documents.

Different methods have been adopted for the fact validation tasks. The ap-
proach DeFacto [8] [6] transforms statements into natural language sentences,
and retrieves web pages in a web search engine that contain these sentences.
A low confidence score is assigned to statements if no or only a few web pages
support these sentences. The approaches [20] and [5] apply outlier detection
methods to identify errors in numerical property values that are extracted from
a data repository. The work [5] improves the prior work by lowering the influ-
ence of natural outliers. In more details, [5] performs a second outlier detection
on the same property values from equivalent instances to confirm or reject the
assessment of a wrong value. However, the work [5] did not address the identifi-
cation of the same properties of an additional instance for a given instance. Our
approach proposes a predicate matching algorithm for finding similar properties
of triples.

For predicate matching, we intend to find properties of two different triples
which are semantically equivalent but not necessarily syntactically the same.
In this paper, we combine a predicate semantic similarity metric and outlier
detection techniques for predicate matching, which is different from [3]. The
work [3] adopts a string-based similarity method for measuring the similarity
between properties.

3 The Proposed Approach

TAA is composed of five components (Figure 1). The first two components iden-
tify equivalent subject links for a set of source triples, while the middle two
components find target triples having matching predicates to the source triples.
The last component generates a confidence score for each source triple, repre-
senting the level of accuracy of the source triple.

The first component, Subject Link Fetching (SLFetching), is used to obtain
equivalent links of the subject of a source triple (i.e equivalent subject links).
Since non-resolvable and duplicate subject links might be retrieved from the first
step, the Subject Link Filtering component (SLFiltering) tries to filter out these
subject links to achieve an overall efficiency of the subsequent components. Then
the Predicate Object Retrieving component (POR) collects target triples from
external knowledge graphs which contain the identified subject links. In addi-
tion, the Target Triple Matching component (TTM) combines a set of functions

Source Knowledge Graph External Knowledge Graphs

Target RDF

Triples

Subject Link Fetching:

Querying sameAs Service and Source KG

Subject Link Filtering:

Identifying Resolvable and Non-duplicate

Subject Links

Predicate Object Retrieving:

Content Negotiation,

Querying SPARQL Endpoint

Target Triple Matching:

Predicate Semantic Similarity Metric,

Type and Value Comparison

Confidence Calculation:

Consensus from External Knowledge Graphs

Source RDF

Triples

Matched RDF

Triples

WordNet Corpus

Triples Accuracy Assessment

Source Triple

Confidence

sameAs Service

Fig. 1. The TAA approach.

for identifying matched triples among the target triples which have predicates
semantically similar to the source triple. Finally, the Confidence Calculation
component (CC) generates the confidence score for the source triple based on
agreement among matched triples from different knowledge graphs.

3.1 Fetching and Filtering Equivalent Subject Links

The SLFetching component takes the subject of a source triple as input and query
the sameAs service6 and the source knowledge graph to fetch equivalent links for
the subject link. The sameAs service can provide equivalent links to arbitrary
URIs, and currently serves 200 million URIs. We use the SameAs4J API 7 to fetch
equivalent subject links that are provided by the sameAs service. In addition,
according to a recent analysis of the LOD cloud datasets [19], owl:sameAs8 is the
most commonly used predicate for linking. Hence, we also try to query the source
KG using the owl:sameAs property. This provides us an alternative way to fetch

6 sameAs service, http://sameas.org
7 SameAs4J API, http://99soft.github.io/sameas4j/
8 owl is a namespace prefix referring to http://www.w3.org/2002/07/owl#.

http://sameas.org
http://99soft.github.io/sameas4j/
http://www.w3.org/2002/07/owl#

equivalent subject links when they might not be covered in the sameAs service.
Suppose SPARQL query language is implemented in the source KG management
system and subject uri denotes the URI link of the subject of the source triple,
then the equivalent subject links can be obtained using the following SPARQL
query.

SELECT ?e WHERE { <subject_uri> owl:sameAs ?e . }

Different techniques are combined in the SLFiltering component for filtering
the fetched subject links. For identifying a non-resolvable subject link, an HTTP
HEAD request is sent to the host where the resource is stored, and the SLFilter-
ing component checks whether a success or redirection HTTP status code can
be returned from the host within a given time limit. If not, the subject link is
treated as non-resolvable. Meanwhile, an URI equality comparison method is
used to clean duplicate subject links.

3.2 Retrieving Predicates and Objects

The clean set of subject links come from different sources which serve data
in their own formats and provide different access methods. There are different
ways of accessing a data repository. Many knowledge repositories e.g. DBpedia,
GeoNames9, LinkedGeoData10 support content negotiation. Another widely ac-
ceptable way is querying SPARQL endpoint. We combine these different data
access methods in the POR component for providing a more resilient predi-
cate and object retrieving mechanism. To enable the POR component to handle
requests to different SPARQL repositories, we maintain a mapping between com-
mon repositories and their SPARQL endpoints. This mapping is provided in a
configuration file, which is easy to modify and update.

3.3 Matching Target Triples

We combine a predicate semantic similarity metric which is introduced in the
following subsection and a predicate type and value comparison algorithm to
identify target triples having matching predicates to a source triple. First, we
select target triples with predicate similarity that are higher than a given predi-
cate matching threshold (α) and remove the target triples which are lower than
the given threshold value from the collection of target triples. We then use the
selected triples as inputs for the property type comparison procedure, and filter
out target triples that have mismatched property types. Then we continue the
matching process by applying the predicate value comparison algorithm to re-
move anomaly triples from the set of target triples. Finally, we obtain the set of
matched triples that can be used to examine the accuracy of source triples.

9 http://www.geonames.org/
10 http://linkedgeodata.org/

http://www.geonames.org/
http://linkedgeodata.org/

Predicate Semantic Similarity We present a method to compute the se-
mantic similarity between two predicates based on word-to-word similarity and
corpus-based information content of words. Information Content (IC) is a mea-
sure of concept specificity. More specific concepts (e.g. dog) have higher values
of IC than more general concepts (e.g. animal).

We use a matrix to represent the word-to-word similarity of all pairwise
combinations of words which constitute the two input predicates. The word-
to-word similarity in the matrix is converted from concept-to-concept semantic
similarity by taking over the maximal similarity score over all the concepts of
the words [18] [22]. Metrics such as [18] [11] [7] [22] can be used to compute the
concept-to-concept similarity. In the implementation of TAA, theWu and Palmer
(WUP) method [21] is adopted which measures the depths of the Least Common
Subsumer (LCS) of two concepts in the semantic network WordNet [15]. In terms
of the concept-to-concept similarity metrics such as the WUP method, WordNet
is applied as a concept taxonomy where nodes represent the WordNet concepts
or synsets and edges denote hierarchical relations of hypernym and hyponymy
between concepts.

We choose the maximal similarity score in a row to represent the similarity of
a word in the predicate that the row stands for. Then, we apply the corpus-based
information content of the word as the weighting factor to compute the predicate
similarity. The definition of corpus-based IC proposed in [18] is presented in
Definition 1.

Definition 1. The ICcorpus (c) of a concept c is defined as: ICcorpus(c) =
−logP (c), where P(c) is the probability of encountering the set of instances sub-
sumed by concept c. Let freq(c) =

P
n∈words(c) count(n) be the frequency of

concept c occurs in corpus and words(c) is the set of words subsumed by con-

cept c, then P (c) = freq(c)
N where N is the total number of concepts observed in

corpus.

Then the similarity of two predicates is calculated using the predicate sim-
ilarity metric defined in Eq. (1), which takes the average of the weighted word
similarity in either predicate.

sim(P1, P2) =
1

2
(

P
w∈P1

maxSim(w,P2) ∗ IC(c)
P

w∈P1
IC(c)

+

P
w∈P2

maxSim(w,P1) ∗ IC(c)
P

w∈P2
IC(c)

),

(1)

where maxSim(w,P2), w ∈ P1 is the maximal word-to-word similarity of a word
in the first predicate; maxSim(w,P1), w ∈ P2 is the maximal word similarity
of a word in the second predicate; and IC(c) is the corpus-based information
content of the sense of a word represented by concept c.

In Eq. (1), a word sense disambiguation (WSD) method can be used to find a
concept c in a lexicon to represent the sense of a word. In the implementation of

the TAA system, we adopted the Lesk algorithm [9] for word sense disambigua-
tion. The Lesk algorithm determines the sense of a ambiguous word by selecting
the concept or synset with the highest number of overlapping words between
the context sentence and different definitions from each synset. To determine
the concept that represents the sense of a word in a given predicate, the pred-
icate that contains the word is applied as the context information in the Lesk
algorithm.

Predicate Type and Value Comparison The predicate type and value com-
parison is intended for filtering out target triples which could be assigned a high
predicate similarity score but actually are mismatching. For example, the triples
(dbr:Milton Keynes dbp:latitude “52.04”) and (geodata:2642465 geonames:loca-
tionMap http://www.geonames.org/2642465/milton-keynes.html) have different
types of predicates but the two predicates have a high predicate similarity
score.11

In order to identify the mismatched predicate types, we use a heuristic
method. That is, given the predicate type of a source triple, we will first re-
solve the predicate type that a target triple belongs to and then check whether
it matches the format of the source predicate. For numerical type, we check
whether the target predicate values conform to a numerical format. In terms of
date type, we check whether the target predicate values follow a date pattern
(e.g. “yyyy-MM-dd”, “yyyy-MM-dd‘T’HH:mm:ss‘Z’”). For string type, we treat
a target predicate as a string type if it does not conform to the numerical type
or the date type.

Furthermore, we define a predicate value comparison algorithm (Algorithm
1) to identify mismatched predicates by determining whether there are outliers
in the predicate values. We define two procedures for achieving this.

The first procedure which we call IRange uses Interquartile Range (IQR) for
selecting outliers in a set of predicate values. Many outlier detection methods
assume a specific distribution of the datasets to be validated, and the distribu-
tion of target predicate values is unknown. Hence, we apply the IQR method
here since it is designed for data drawn from a wide range of probability dis-
tributions, especially for distributions that are not normal. The concept of the
IRange procedure is that we first generate the interquartile range, the upper
and lower limits of outliers for a set of predicate values, and then determine
the outliers in target predicate values if a predicate value is out of the range of
(Q1 − ϕ ∗ IQR,Q3 + ϕ ∗ IQR). In the implementation of the TAA system, the
outlier factor ϕ is set to the value of 1.5 by convention.

The second procedure which we call SDeviation is provided to complement
the IRange procedure for identifying outliers in small sets of data values (N ≤ 4).
The idea of the SDeviation procedure is that we first calculate the mean (m) and
standard deviation (s) of a small set of predicate values (A), then we consider
a data value as an outlier if it is a certain number of standard deviations away

11 geodata and geonames refer to http://sws.geonames.org/ and http://www.

geonames.org/ontology# repectively.

http://sws.geonames.org/
http://www.geonames.org/ontology#
http://www.geonames.org/ontology#

Algorithm 1 Predicate Value Comparison

Precondition: A is an array containing the property values of a source triple and its
target triples

1: procedure IRange(A) . Find outliers in A based on Interquartile Range
2: Sort(A)
3: CalculateQuartiles(A)
4: n ← A.length− 1
5: for i ← 0, n do

6: if isOutlier(A[i]) then
7: Mark(A[i], true)
8: else

9: Mark(A[i], false)
10: end if

11: end for

12: end procedure

13: procedure SDeviation(A) . Identify outliers for a small A using Standard
Deviation

14: if A.length > 2 and A.length ≤ 4 then

15: m ← Mean(A)
16: s ← Std(A) . s is the standard deviation of all property values in A
17: n ← A.length− 1
18: for i ← 0, n do

19: if |A[i]−m| ≤ ✓ · s then . ✓ is the predefined threshold
20: Mark(A[i], false)
21: else

22: Mark(A[i], true)
23: end if

24: end for

25: end if

26: end procedure

from the mean (noted as θ · s). The standard deviation threshold θ is set to one
in the implementation of the TAA system.

3.4 Confidence Calculation

The Confidence Calculation component is intended to generate a confidence
score based on multiple different matched triples for each source triple to rep-
resent its level of accuracy. For triples that have numerical property values, we
calculate the confidence score based on a ratio of the difference in property val-
ues between a source triple and its matched triples and the weighted average
of the matched triples. While for triples that have string property values, we
represent the confidence score using a weighted average of the string similarity
of the property values between a source triple and its matched triples. We treat
date properties as a special case of numerical properties. This is because we can
convert a date value into a numerical value representing the number of seconds
counted from January 1, 1970, 00:00:00 GMT.

Table 1. Rating scale for reliability of subject links

Rating Score Definition

1 very unreliable

2 unreliable

3 neutral

4 reliable

5 very reliable

The method to calculate the confidence score for triples having numerical or
date type predicate is formulated in Eq. (2):

Cnum/date(x) = 1−
|x− γ|

|γ|
with γ =

Pm
i=1 ωi · νiPm
j=1 ωj

, (2)

where x is the property value of a source triple; γ is the weighted average of the
property values of its matched triples; ω refers to the product of weighting factors
including the reliability of the subject link of a matched triple and the predicate
similarity between a source triple and a matched triple; νi is the property value
of the ith matched triple; and m represents the total number of matched triples
obtained.

Furthermore, the method to calculate the confidence score of a triple with a
string property value is formulated in Eq. (3):

Cstring(y) =

Pm
i=1 ωi · yiPm
j=1 ωj

, (3)

where yi is the string similarity of property values between a source triple and
the ith matched triple; ω refers to the product of weighting factors including
the reliability of the subject link of a source triple and the predicate similarity
between a source triple and a matched triple; and m is the total number of
matched triples obtained.

In Eq. (2) and Eq. (3), the reliability of the subject link of a target triple
is rated based on the type of service that is used to fetch the subject link. We
define a five-level Likert-scale to represent the reliability of the subject link of a
target triple (Table 1). The larger the rating score, the more reliable a subject
link is. Two types of services are used in our method: the sameAs service and
the source knowledge graph which provides the owl:sameAs interlinks. In the
implementation of the TAA system, the reliability of the subject link of a target
triple which was retrieved from the source knowledge graph was set to be 4 and
the equivalent subject links retrieved from the sameAs service was set to be 3.
This rating method can also be applied to other services for obtaining equivalent
subject links of a source triple.

The confidence score provided by our approach is an indicator for the cor-
rectness of triples. A larger value can indicate a higher possibility that a triple
is correct. To classify a triple to be correct or wrong, we use a given confidence
threshold (β) to apply to the confidence score.

4 Evaluation Methods, Datasets and Experimental

Setting

TAA is a parameterised approach since pre-defined values should be provided
for the predicate matching threshold (α) and confidence threshold (β) for the
system to distinguish between correct and wrong triples. Thus, the performance
(evaluated in F1 measure) of TAA can be strongly affected by the specific values
taken for the parameters. The goal of the evaluation presented in this paper
included: (a) find elite configuration of the parameters that can generate the
best performance measured in F1; (b) evaluate the best configuration on a test
set which is different from the training set.

We adopted a racing algorithm called iRace [13] to find an appropriate set-
ting of the parameters for TAA. The racing methods for algorithm configuration
optimisation were inspired from racing algorithms in machine learning, particu-
larly Hoeffding races [14]. The essential idea of racing algorithms is to evaluate
a given set of potential configurations on provided instances, the poor candidate
configurations are eliminated as soon as sufficient statistical evidence is gath-
ered, and the race continues only with the surviving ones. The iRace algorithm
is an iterative application of F-Race algorithm [2] biasing the sampling of new
configurations towards the better candidate solutions at each iteration.

We chose the iterated racing method for our algorithm configuration for three
reasons. First, the dependence of TAA’s performance on parameter settings is
unknown and no explicit model exist to describe the dependence. The iRace
method as a model-free algorithm configuration method, can be applied straight-
away. Second, the iterated racing methods have been used successfully to auto-
matically configure a variety of state-of-the-art algorithms. Finally, compared
with the brute-force approach, the iterated racing approach is more efficient
since it does not require repeating the cost evaluation steps for each candidate
configuration and poor performing configurations will be discarded as soon as
enough statistical evidence is gathered.

To carry out the configuration tuning and validation procedures, we collected
gold standard data from the FactBench 2016 benchmark dataset12. The collected
data are comprised of two subsets: a train set and a test set. The description of
the datasets used in experiment is listed below.

• Train set was used in the racing procedure for finding the best configuration
for TAA.

- It consists of 750 triples that were extracted from DBpedia: 150 correct
triples and 600 wrong triples.

- These triples represent two types of relations: date when a person was
born and date when a person died. Each triple has either dbo:birthDate
or dbo:deathDate as its predicate.

• Test set was applied in the validation procedure for testing the performance
of TAA using the best configuration found in the racing procedure.

12 https://github.com/SmartDataAnalytics/FactBench

https://github.com/SmartDataAnalytics/FactBench

- It consists of 748 triples that were extracted from DBpedia: 150 correct
triples and 598 wrong triples.

- Each triple in the test set has either dbo:birthDate or dbo:deathDate as
its predicate.

The racing and validation procedures were carried out using the irace pack-
age13, which implements the iterated racing procedure [13]. The irace package
option maxExperiments was set to 1000 as the budget of the experiments for
both the tuning and the validation processes. The Friedman test (F-test) was
used to identify statistically poor performing configurations that can be dis-
carded from the race. The confidence level for the elimination test was set to
0.95. An implementation of TAA was developed and used as the target algo-
rithm to be tuned for irace. An auxiliary program was also implemented for the
evaluation, which is called from irace to execute TAA with a specific configura-
tion and instance and return an evaluation value to irace. The evaluation value
is the additive inverse of F1 score i.e. −1 ∗ F1. This is because the objective of
irace is to minimise the obtained evaluation values, we had to invert the F1 score
to maximise the performance of TAA. For predicate matching, we implemented
the predicate similarity metric in Eq. (1) based on WordNet version 3.014 and
NLTK interface.15 We use the implementation of the word-to-word similarity
method in the Sematch framework16 which adopts the default implementation
of the concept-to-concept similarity methods in the WordNet NLTK interface.
All the implementations of TAA and resources are available publicly.17

5 Evaluation Results

For the experiment on the train set, the racing procedure finished after 19 iter-
ations and executed the evaluations for 458 configurations for finding the best
configuration. The evaluation results for all the configurations on the train set
are plotted in Figure 2.

The results in Figure 2 are grouped by the candidate configuration identi-
fier. For each configuration, the bottom and top of the rectangle represent the
minimum and maximum values of evaluation respectively. The middle segment
stands for the mean of evaluation values across the instances in the race. Note
that the F1 score ranges between 0 and 1, hence, the performance of the TAA
system is maximised when the evaluation value equals to −1. It is shown that
the evaluation values (−1∗F1) have been greatly decreased (dropped below −0.5
in general) after the first iteration of the racing procedure which ended at con-
figuration 55. This demonstrates that the performance of TAA have been largely
increased after the first iteration.

13 http://iridia.ulb.ac.be/irace/
14 https://wordnet.princeton.edu/
15 http://www.nltk.org/
16 https://github.com/gsi-upm/sematch
17 https://github.com/TriplesAccuracyAssessment

http://iridia.ulb.ac.be/irace/
https://wordnet.princeton.edu/
http://www.nltk.org/
https://github.com/gsi-upm/sematch
https://github.com/TriplesAccuracyAssessment

1 6 12 19 26 33 40 47 54 61 68 75 82 89 96 104 113

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

configuration id

s
o

lu
ti
o

n
 q

u
a

lit
y

(a)

115 124 133 142 151 160 169 178 187 196 205 214 223

−
0

.9
−

0
.8

−
0

.7
−

0
.6

−
0

.5

configuration id

s
o

lu
ti
o

n
 q

u
a

lit
y

(b)

228 237 246 255 264 273 282 291 300 309 318 327 336

−
1

.0
−

0
.9

−
0

.8
−

0
.7

−
0

.6
−

0
.5

configuration id

s
o

lu
ti
o

n
 q

u
a

lit
y

(c)

343 353 363 373 383 393 403 413 423 433 443 453

−
1

.0
−

0
.9

−
0

.8
−

0
.7

−
0

.6

configuration id

s
o

lu
ti
o

n
 q

u
a

lit
y

(d)

Fig. 2. Training results of all configurations in the racing procedure

The best configuration obtained from the racing procedure is the configura-
tion that demonstrates the minimum average evaluation value (i.e. the maximum
average F1 score) across different instances. For the racing procedure on the train
set, the best configuration (id=180, α=0.812, β=0.999, mean=−0.952) was ob-
tained. For the test set, the best configuration has obtained a mean evaluation
value of −0.961. The Friedman test results showed that the best configuration
is statistically significant different from all the other configurations in the race
on both data sets.

During the racing procedure, irace iteratively updated the sampling models
of the parameters which enabled the tuning process to focus on the best regions
of the parameter search space. The frequency of the sampled configurations is
presented in Figure 3. It shows that the configurations with a value between

alpha

values

P
ro

ba
bi

lit
y

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

beta

values

P
ro

ba
bi

lit
y

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
Fig. 3. Parameters sampling frequency.

0.8 and 0.9 for the parameter α have the largest density, and are approximately
five times as big as the configurations with a value in between 0.6 and 0.7. For
the parameter β, the configurations with a value in between 0.9 and 1.0 have
the largest density, and are eight times as big as the configurations with a value
between 0.8 and 0.9.

6 Conclusions and Future Work

In this paper, we presented an automatic approach, Triples Accuracy Assessment
(TAA), for measuring accuracy of RDF triples by checking consensus from dif-
ferent knowledge graphs. We exploit knowledge graph interlinks for discovering
equivalent resources, and perform different functions to identify target triples
having matching predicates to source triples. This approach supports checking
the accuracy of fact triples that have numerical, date or string type properties.
The evaluation of the TAA system showed that the best configuration that was
identified by the iterated racing procedure is (α=0.812, β=0.999), which demon-
strates an F-measure of 95.2% on a train set containing 750 triples from DBpedia
and 96.1% on a test set containing 748 triples from DBpedia. The evaluation val-
ues obtained for the best configuration is statistically significant different from
other candidate configurations on both the train set and the test set.

In the future, we hope to explore how multi-lingual knowledge graph inter-
links can be used for fact validation. We also plan to carry out an efficiency
evaluation of our approach on large-scale linked data repositories to investigate
the scalability of our approach on large-scale linked data.

References

1. Acosta, M., Zaveri, A., Simperl, E., Kontokostas, D., Flöck, F., Lehmann, J.: De-
tecting linked data quality issues via crowdsourcing: A dbpedia study. Semantic
Web Journal (to appear)

2. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated f-race: An
overview. In: Experimental methods for the analysis of optimization algorithms,
pp. 311–336. Springer (2010)

3. Cheng, G., Xu, D., Qu, Y.: C3d+ p: A summarization method for interactive entity
resolution. Web Semantics: Science, Services and Agents on the World Wide Web
35, 203–213 (2015)

4. Färber, M., Ell, B., Menne, C., Rettinger, A., Bartscherer, F.: Linked data qual-
ity of dbpedia, freebase, opencyc, wikidata, and yago. Semantic Web Journal (to
appear)

5. Fleischhacker, D., Paulheim, H., Bryl, V., Völker, J., Bizer, C.: Detecting errors
in numerical linked data using cross-checked outlier detection. In: Mika, P., Tudo-
rache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N.,
Janowicz, K., Goble, C. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 357–372.
Springer, Cham (2014)

6. Gerber, D., Esteves, D., Lehmann, J., Bühmann, L., Usbeck, R., Ngomo, A.C.N.,
Speck, R.: Defacto—temporal and multilingual deep fact validation. Web Seman-
tics: Science, Services and Agents on the World Wide Web 35, 85–101 (2015)

7. Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and
lexical taxonomy. arXiv eprint cmp-lg/9709008 (1997)

8. Lehmann, J., Gerber, D., Morsey, M., Ngomo, A.C.N.: Defacto-deep fact valida-
tion. In: The Semantic Web–ISWC 2012, pp. 312–327. Springer (2012)

9. Lesk, M.: Automatic sense disambiguation using machine readable dictionaries:
how to tell a pine cone from an ice cream cone. In: Proceedings of the 5th annual
international conference on Systems documentation. pp. 24–26. ACM (1986)

10. Li, H., Li, Y., Xu, F., Zhong, X.: Probabilistic error detecting in numerical linked
data. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.)
DEXA 2015, Part I. LNCS, vol. 9261, pp. 61–75. Springer, Cham (2015)

11. Lin, D.: An information-theoretic definition of similarity. In: ICML. vol. 98, pp.
296–304 (1998)

12. Liu, S., d’Aquin, M., Motta, E.: Towards linked data fact validation through mea-
suring consensus. In: 2nd Workshop on Linked Data Quality. vol. 1376 of CEUR
Workshop Proceedings (2015)

13. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The
irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives 3, 43–58 (2016)

14. Maron, O., Moore, A.W.: Hoeffding races: Accelerating model selection search for
classification and function approximation. Advances in neural information process-
ing systems 6, 59–66 (1994)

15. Miller, G.A.: Wordnet: a lexical database for english. Communications of the ACM
38(11), 39–41 (1995)

16. Paulheim, H.: Knowledge graph refinement: A survey of approaches and evaluation
methods. Semantic Web Journal 8(3), 489–508 (2017)

17. Paulheim, H., Bizer, C.: Improving the quality of linked data using statistical
distributions. Int. J. on Sem. Web and Info. Sys. (IJSWIS) 10(2), 63–86 (2014)

18. Resnik, P.: Using information content to evaluate semantic similarity in a taxon-
omy. In: 14th Int. Joint Conf. on AI (IJCAI). pp. 448–453. IJCAI/AAAI (1995)

19. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best
practices in different topical domains. In: Mika, P., Tudorache, T., Bernstein, A.,
Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble,
C. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 245–260. Springer, Cham (2014)

20. Wienand, D., Paulheim, H.: Detecting incorrect numerical data in dbpedia. In:
Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.)
ESWC 2014. pp. 504–518. LNCS, Springer, Cham (2014)

21. Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: 32nd annual meet-
ing on Association for Computational Linguistics. pp. 133–138. Association for
Computational Linguistics (1994)

22. Zhu, G., Iglesias, C.A.: Computing semantic similarity of concepts in knowledge
graphs. IEEE Transactions on Knowledge and Data Engineering 29(1), 72–85
(2017)

	Measuring Accuracy of Triples in Knowledge Graphs

