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Basic to many psychological investigations is the

guestion of agreement between observers vho independently ca'tegorize
people. Several recent studies have proposed measures of agre€ment
vhen a set of nominal scale categories have been pre-defiped and
imposed on both observers. This study, in contrast, developes a °
measure of agreement for settings where observers independently
define their own categories. Thus, it is possible for observers to
delineate different numbers of categories, with different names
Computational formulae for the mean and variance of the prOposed
-agreement measure are given; further, a statistic with a large-gample
normal- distribution is suggested for- ‘testing the.null hypothesis of
randonm agreenent. A computer based conpat;sbn of the large samgle
, approximation with the exact distribution of the test statistic shows
. a generally good fit, even for moderate sample sizes. Finally, a
vorked example-involvijig two psychologists! classifications of
children illustrates the coamputations. (Author)
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Aﬁgtract

Basic to many psychological investigations is the questian

of agreement between observers who independently categorize people. ,
Séveral recent studies have proposed measures of agreement whenia_
;et of nominal scale categoriés have{begn pre-defined and imposed

on both observers. This study, in contrast, deve10ps a measure of
"agreement for settings where observers independently define their
own ca;egories. Thus, it is possible for ob§ervers to delineate
different numbers of categories;i@ifh different names. Computa-
.tionallfbrﬁulae for the mean and variancefofﬁthe proposed agreementf&’**"
measure are given; further, a statistic w;th a large-sample norma)
distribution is suggested for testing the fiull hypothesis of'raanm
agreement. A computer based comparison of the large sample approxi- -
mation with the exact distributfon of the test statistic shows a
Nbenerally good fit, even for moderate sample sizes. Finally, a

worked ékample involving two psychologists' c]assificatipns of

children illustrates the compdté;ions. E
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Mah} variations of the problem of measuring agreement between
two or more observers have been investigated by psychologists and
statisticians. When measurements are taken on a variable with a
continuous methic,~agreement is generally'expressed\as a relia-
bility origenera]izabiljty coefficient. AAsfdiScussea_thorohghly
by Cronbach et. al. (1972) these coefficients are.usuaﬁly some
version of the welil- known intraclass correlation. .

;ﬁ; Suppose, on the other hand, that two psycholog1sts each 1nde-
?pendently distribute N people among a set of mutually exclusive
: categorﬂes. when categor1es are specified .in advance, Cohen (1960)
suggested a measure of agreement Kappa for tﬂ//observers who each
assign N people among these categdries. Th}s measure has been
~extended by Cohen (1968), ‘Everitt (1968), anc Fleiss, Cohen, {and -
Everitt (1969). It'was further extenced'to three or more observers
by Light (1971) and -Fleiss (1971). Foar measurtngnagreement mong
several. obserVers Qhén each person is'scored dichotomousiy, Fleiss
'(1965)has suggested procedures that are baS1ca11y comb1nator1tjs
A1l of the suggestions have led to a useful and impressive set of
vprocedures.‘ All of these procedures, however, begin w1th the

vernf
assumpt1on that‘aﬂr categories, each w1th a specific name, haye

A
been prese]ected, and that observers d1str1bute people among hese
ctategories. .

The problem we consider here is somewhat diffefent. pr ose
two psychoLOQists are asked to partition '‘a group of people tnto

several subgroups. The specific criteria for partitioning is \Teft




dp'to.e;ch ps}chologist. ‘Thusﬁthe two psychologists may develop
different'numbers of subgeoups. Moreover, since no precise set.
of subgroups have been labeled in advance, each psychologist meyu
use different criteria resulting in categeries with different
lapeis. Thisvsituation.is;illustrated in Table 1, where two
psychologists, -after studying a Qroup of children, independently
categorized each of 15 ch11dren into one of three subgroups based

.on behav1or patterns.

An important quest1on to be asked of these:data is, "Do the
two observers' lists agree beyond chance’“ In the following sec-
‘ tions ‘we eiemine thi{s question. .Ne'begin by developing a measure
df agreement that proVides a basis for testing the pul] hypothesis
of random agreement. In order td examine the'behavfor of this
emeasure, we present:computatidnal formdlae for its mean and
~variance which"are;then.idcorporated into ‘a large sample,test
statistic. Finally, after investigating‘the eppropriateness of

"the test statistic for moderate sample siies, we apply our procedure

]
to'the"data in Table 1.

%

Develop1ng a Measure of Aqreement

V1ew1ng our data 1n’the format of a two d1mens1ona1 cont1n-
gency table will help to clarify the definition of agreement. The
. _ _ o _ » N
raw data in Table 1 are an.example of data that can always be dis-

p1ayed‘in an R x C table, as illustrated in Table 2. - Notice that

o




the f1rst observer's categories are 1ndexed by ais i.= 1,...,R,

wh1le the second observer s categories are b y J o= 1,..;.Cr Note
also that this format d1ffers from that of - Cohen (1960), Light

(1971), and Fleiss (1971) in that here R can be different from C,
and the row catego}ies are not necessafily the same as‘the-column

categorjes. In Table 2, n represents the number of persons

1J

classified into category a by observer 1, and into category bj by

L2

observer 2. Finally

C_ .. . . - .Rl_ .\_\5

How cen egreement be measured from this table? The strategy
is to study‘allipossible pairs of children, and classify each pair
as an agreemen; or disagreement.in the following way. Let us
focus .on the particular pair of children, Adam and Bonnie. .Let
thislpair'constitu;e an agreement if: . ,

‘a. Observer 1.classifies Adam and Bonnie into the same cate-

gory, say a., and Observer 2 ciassifies Adam and Bonnie

i
into the same category, say by, or

b. Observer 1 classifies Adem ahd Bonnie into different cate-
gories, and Observer 2 classifies Adam and Bonnie into
different categories.

Any other situation constitutes a disagreement, as summarized in

Table 3.



Giéen tbese definitions, the concepts of agreement and dis-
agreement have a relatively simp1e interpretation in terms of the.
‘cell entries in Table 2. If the two persons in any given oair‘are
in the same cell, or they are in.neither the same row nor the same °
column, then that pair constitutes an “"agreement". Using this

idea, and remembering ‘that any table wila ﬁave (N) possible pairs,

the total number of observed agreements in any table Wi}1 reduce to:

R C
M) A= e I Tk - g Ind, 4 ] a2

'The cxpected Number of Agreements-

For any two observers,. we Wish to examine the observed number
of agreements “from (1), and compare this number to the number
expected from "chance" agreement. Thus, we ‘test the null hypothesis:
Hy: A = E(A') against the one-tailed alterrative hypothesis
Hy: A > E{(A'), where A is the population parameter. Let us now
turn to the development of E(A'). | |

The expected number of agreements for any observed set of data
~depends upon the cell entries, n,., of a table such as Table 2.

ij
But the distribution of the nIJ depends upon whether'the marginai
totals of the table are assumed to be fixed (hypergeometric model)
or variable (multinomial model). We will take the marginals to be
fixed, a]though Ken@all and Stuart'(1967) point out that-for 1arge‘

samples'both assumptions lead to the same large sample distribution

for cell entries.
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‘ Therefore, to find the expected number of agreements in ahy
given table, we take the expeeted value of A’ from (1). This
becomes: ' |

. by oo Ny ) .é | oo '
(2) 7B = () - gy ¢ e W)+ §[1u3[23 NI

In equation (2),

\ - : "_ ) +[r]n+-[r],
(3) ” [r] [ ( j ]).;°(n1j-r+])]-éw i N[r]J

J

“where, in general, n[r] = n(n-l).;.(h-r+]). (Kendall and Stuart,

1967.)

Finding the Variance of A' .

Ne now develop the exact var1ance for the agreement statist1c.

i

Although the formulae 'to follow appear ted1ous. they are stra1ght-

forward to apply. The var1ance of A' can be expressed generally as:

. AN

; R.C RCREC 2 h ‘.¢"l‘ 4 a2l
(4) Var(A ) Z Z V(n jh+ z g: E %" Coving iy Neg) » L#K an i >

where the subscripts k'and'z are alterpative'row and column sub-
scripts respectively. To find the first term in (4), we take:

(5) var(nd,) = E(n};) - [E(nz )12

where, in terms of the notation introduced in (3).
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(6a) T E(M) = oyt Syt Tyt vy
and ~ _ : ' o o '_ "
. y _ N ' : ‘ 5 ' .w

Finding the second term of (4) requires breakjng the overall.
covariance into three parts. - The three parts are:
N |
L 2y L 2 2 2 2 . )
(7a) Coy(nij,niz) = E("ij'"iz) - E(nij)ﬁ(niz) where j # 2 ;

( .
A -

) (7b) \R Cov(n1 2 )

L]

22\ 2 2
J,nkJ E("ij'"kj) E(“ij)E(“kj) where i # k ; and

/ . N - .
‘., ) 2 2 v T2 2 / 2 \¢r.2 . y R
K (7¢) Coy(nij,nkl) = E(nij,nkll - E(nij)E(nkz) %here‘ i # k and j f_£<

The factors .in the last term in (7a, b, and ¢) can be found using
the” format given in (6b) above. The computing formulae for the
first terms .in (7a, b, and c) are'given in Table 4. "

An Approximate Test of Significance

{

The null hypothesis 'of random agreement can be tested using

the statistic Z,.:

(8) yi , = A' - E(A.)
A YWar(AT")
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which forllarge R, C, and N has a standard pormal distribution.

-An Empirical'lnvestjgatlon of the Normal Approximation.

In theory, the aoproximation'ZA: given in (8) assumes large
R, C, and N. However, this type of normal approximation is fre-
quently uSed with very modest'sample-sizes. We therefore under-

took an emp1r1cal 1nvest1gat1on to examine the validity of our

l

approx1mat1on for several small tables. Specifically, we chose

~

efght 3 x 3 tahles, one each thh.an N of 15, 30, and 51, and five
with N's of 42. The results aJp presented in Table 5.

u—------------- - -

/

' . TEEEsssss \\ """"" . o /

~ For each of the eight cases 1n Table 5, we generated by com-
puter the exact probab1l1ty d1strlbutlon of the test stat1st1c A',
. Then, us1ng the results of (2) and (4) above, we founf the 0.05
and 001 cutoff values for A' in\terms of the normal approx1mat1on
proposed 1n (8) F1nally, we found what proportion of the area
under the exact distribution fell in the tail beyond these cutoff
1'po1nts. These r--_lts are given in Taole 5. ' |
To 1llustrate how Table 5 was constructed, let_uSnfocus on .

the first row. . Here we have a table where each of the. three rows

iand each of the three columns has a marginal total of 5“:The rext

three columns of Table 5 reference the normal approx1mat1on at the
03? level of s1gn1f1cance S1nce E(A ) = 62 14 and V(A ) = 20 41,
and Z .= 1:65 at o =0.05, the estimated cutoff po1nt for A' from

K
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the normal approximation is 62.14 + l.65/?0.4l = 69.55. Since

the exact distribution of A' is d1screte. we choose the next

—_——— ..

highest value in the exact distribution. This value, 71.00, cuts

5

: off the top 0‘064 of the exact distribut1on of A" S1m1larly. jﬁl
for the 0. 01 level of sign1f1cance, the .normal approx1mat1on cut;
of f value of A' equals 72.66,.which corresponds to’ a valiue of .75.00
in‘the_exact qéstribution. -The ta{l area'in\the exact distribution.'
beyond 75. 00=is 0.016. ' A

Three chclus1ons emerge from Table 5 ‘ F1rst. for»moderatelv
'small sample s1zes, and\for tables of small d1mens1onal1ty (1 e..
R°P c =3), the normal approx1mat1on to the dﬁstribut1onmof A' is
cons1stently quite good. Second, for tables with constant R=¢C=3,
1ncreas1ng the sample size N has no dramat1c effect on the qual1ty
of the normal approx1mation. This conf1rms the results expected
from asymptot1c normal theory (Wilks, 1962), which are that in "’

‘cont1ngency tables such as ours, the val1d1ty of the normal approx1-.
mation is more affected by R and C than by N. Third, we 1nvest1gated
the effects of asymmetry in the marg1nal totals for the five tables..\
with N = 42. These results are given in cases 3 through 7, which
’1nd1cate that the quality of the normal appro\hmat1on is essent1ally

]unaffected by d1fferent degrees of skewness in the marg1nals. Over-
all, then, for any but the smallest tables, the normal approx1mation

should provide a reasonable gu1de for a test of the null hypothesis .

of random;agreement.




A Norked Example o P

-

In this conclud1ng section, we 111ustrate the computations

Wwfor measurlng and testlng agreement using the raw data from the

children in Table ] He be01n by placing “the raw data’into the'“féf“““

"3°x 3 contingency table givih in Table 6. Notice that all the

margina] to!ﬁ&§;n1+ and n y are 5, which follows from the aata‘in-
Table 1. o |
/

I

Computing A' from (l):
A''= 105 + (164 0+ 1+ ... +1)-75=75,

) . . ° - . . ‘
< Computing E(A') from (2) requires us -to find first«.u.[]] and iu-[ZJ:
X o J ! »J

N ] _ _5_’__§_ =, . . 5
45017 7S 1.667  for all i,j;

\

and : ' L ' -
o d

R : ‘ _ 5e4.5.4 _ - . g
| .-' ‘ 1uJ[2]- —*]W- 1.905 : fO?‘ all i, .

. t T . # o’ ',/' ) &
Now, finding E(A'): .,
| E(A') = 105 - 75 + 9(1.667 + 1.905) = 62.143 , - = -
T " We now perform the §1jghtly\Wengthkw;calculation'of the.

. . . . 3 . ead :' : !
variance of A' from (4). F1r5t. wa'?eeQ-tO}find ju;503] and ARG

' | " |
i T
o e
i ~—
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.\*‘\';‘ .
' 5¢4.345.4.3 _ s e L
31 7 TTeeigers ot )l319 forall g o
vJ PR \ . .
and
- . ) 5.4.3.2.5;_4.3.2_ & f,' ) ..._
1Uj[4]']5.‘|4,]3 % X B 0.440 f(_"' all i 2Jd . :

Then, finding other needed terms:

N éfp?j) = 034{0 ¥,6(1.3]9)’+\7(];905) + 1.66? = 23.352
E(nfs)-f;fi;667 + 1.90;) = 3,571 : ;ﬂ.mﬁ
. vér(nIJ) = 23.352'-'3.571.= 10.597 1~‘f' - =
; § Var(n J) =.%(]9,597) ; 95.3;5* - | B /
From the first two computatio;al fo;;qlae in Table 4:
clfnd) = el - SERL - SERSEL
SR SRR - v

and therefore, from formulae (7a) aﬁg (7b):
’ . . K4 ' '

j
) = 8. 242 - (3. 571) = -4,513 .,

- / -
Cov(nIJ

b

b .

. pr . 4
L .

Further, from the third formula in Table 4:

) = Cov(n”,nkJ
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, 2 _ 5:5:5+5  5e5.5.4:5+4  5.4:5:4:5+5

BT TSR Bl 1T v i £ TUY T8 N F RN 3 K
5:4:5.4.5.4.5:4 _ ,
* BTSNy T 15106

and from (7¢): o : -,
v L . Iy

. 2 2 _ N - . ;2"| ’ ..
c°v("ij’"kz) = 15,186 - (?.571) = 2.431°.

So, summing up all the covariance terms,

. 2 2, ' : -
§ } E E,GOV(nij’nkg?'7'36(-4°5]?) + 36(2.431) = -74.961
Finally, we.ffnd‘from (4) the variance of A':

Var(A') = 95.369.- 74.96) = 20.408 ,

These results permit us to test the null hypothesis of random

agreement for our example. Using the test in (8):

-

2,0 = 75.000-62.143 _ , gac
A /20408

Y

S{nce the computed value of 2A' far exceeds the critical value of
,] 65 for the 0.05 level of s1gn1f1tance, we reJect the null hypothe51s
'for the data in Table 6, and conclude that agreement beyond/chance

o

ex1sts between the two psycholog1sts v" /!
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Genera11zab111ty of the Agreemént Statistic

Nh\le the development 1n~this paper has focused ent1re1y on

the problem of measur1ng agreement between two observers who

categor1ze N people, the statistic A'*has substant1ally broader .
N RE]

application< We suggest four such qutﬁnnﬂimut here.'
First,iwh1le our worked example 1nvolved plac1ng people (young
.children) into categories, the procedure fs applicabje for any -
'phenomena that can be nominal]y-scaled Thus, for example, two
psychologists may have a 11st of N behaviors to be classified
accord1ng to some unspec1f1ed set of psycholog1ca1 disorders.
Alternat1ve1y, two read1ng specialists may be asked to classify
a set of N words into sutgroups. accord1ng to. common student mis-
concept1ons in mean1ng. Notice that in these two examples’ 1t was
not people but rather phenomena that were befng categorized.
Second, although in our worked example each dimension of‘the
‘table represented one observer, there is no reason why the
categorizations and the guestion of their agreement couid.not

emerge from two groups working 1ndependent1y |
Th1rd a recurr1ng issue in app11ed research involves eom-
paring data from different stud1es (Light and Sm1th 1971) /For
example, suppose two states 1ndependent1y arr1ve at d1fferent
class1f1cation schemes for the same sc tof job titles. If?one is

interested in the extent to which these two schemes are consistant,

‘or “agree", the measure A{_and its test stat1st1c are app/icable.
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o

Fourth, while in our worked example R = C = 3, it will

frequently occur that R # C. Therefore, the formulas for measuring

T agreement are general, and not restricted-to square-tables:
I ' . .
) | ' | J ’
A
*
A i
&
t
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. Table 1

Data on Two Psychologists' Categorization of 15 Children

Subgroups

Primarily Primarily Primarily
Interested in Interested in Interested in
Athletics Popularity Scholarship
“dam  (A) Francis (F) ~  Kathy (K) .
Bbnnie (B) George (G) Larry /(L)
\Claire (c) Harold =~ (H) Michael (M)
David (D) Ira ~ (I)  Nora (N)
fﬁward (E) Jennifer (J) Oscar ~ (0)

Psychologist 2

Subgroups
Primarily . - Primarily
Interested in Interested in No. Clear
Popularity - Athletics Interests
Adam (A) - George (G) Edward (E)
Bonnie (B) Kathy (K) Harold (H)
Claire (C) " tarry (L) - Ira - (I)
David - (D) Michael (M) Jennifer (J)

Francis_(F) Nora . (N) ° Oscar . (0)
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) .Table 2

r

Generalized RxC Contingency Table Format
for Agreement Problem

Observer 2.

l\\ b'l b2 bj LI ) bc

A My M2 Mg | Me ] Mie

82 [ "2 | P22 | "25 | v |-Pec | Mo+

Obsgrver 1 a; " Ni2 | Mij oo Nie | Mis

_ +(‘w.f ) ‘
Note\.—-*‘.:-?:;-»’:;‘.‘. Using this formatltoT?
/ , . .
a) Rows and/or columns may be permuted with
no loss of information.

b) It is not true that cells on .the main
: . Ciesment o

diagonal represen;;énd cells off the

main diagonal represent disagreement.

t
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Table 3

Definitions of Agreement and Disagreement

Observer 2
. Classification Same Different
- of Any Pair Category Categories
Samé .
Category Agreement Disagreement
Observer 1 o :
Different .
Categories Disagreement Agreement
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Observer 1

Athletics
Popularity

Scholarship

B RN

Table 6

Format to Measure Agreement -

’ Observer 2

. Data from Table 1 Reformulated in a Contingency Table

Popularity ﬁthletics' None

'A,B,C,D / E g
(4) (0) (1)

F G Hy1,J 5
(1) (1) (3)

© Ky L,M,N 0 . .

() (4) m |5

5 5 5. 15
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