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Basic to many psychological investigations is the question

of agreement between observers who independently categorize people..

Several recent studies have proposed measures of agreement when a

set of nominal scale categories have been pre-defined and imposed

on both observers. This study, in contrast, develops a measure o'f

agreement for settings where observers independently define their

own categories. Thus, it is possible for observers to delineate

different numbers of categories; with different names. Computa-

tional formulae for the mean and variance -of the proposed agreement

measure are given; further, a statistic with a large-sample normal

distribution is suggested for testing the dull hypothesis of random

agreement. A computer based comparison of the large sample approxi-

matiOn with the exact distribution of the test statistic shows a

generally good, fit, even for moderate sample sizes. Finally, a

worked example involving two psychologists' classifications of

children illustrates the compdtations.
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Many .variations of the problem of measuring agreement between

two or more observer's have been investigated by psychologists and

statisticians. When measurements are taken on a variable with a

continuous metric, agreement is generally expressed as a relia-

bility or generalizability coefficient. As .discussed thoroughly

by Cronbach et. al.' (1972) these coefficients are usually some

version of the well-known intraclass correlation.

Suppose, on the other hand, that two psychologists each inde-

pendently distribute N people among.a set of mutually exclusive

categories. When catego'ries are specified.in advance, Cohen (1960)

suggested a measure of agreement Kappa for twoobservers who each

assign N people among these categories. This measure has been

extended by Cohen (1968),-Everitt (1968), and Fleiss, Cohen, and

Everitt (1969). It was further extended to three or more ob ervers

by Light (1971) and .Fleiss (1971). FIr measuring ..agreement mong

several observers when each person is scored dichotomously, Fleiss

(1965)has suggested procedures that-are basically combinatori 1.

All of the suggestions have led to a useful and impressive se of

procedures. All of these procedures, however, begin with the
5estertif

assumption that,enlicategories, each with a specific name, ha e

been preselected,; and that observers distribute people among hese

categories.
4

The problem we consider here is somewhat different. Suppose

two psychologists are asked to partition a group of people in o

several subgroups, The specific criteria for partitioning is left

:0
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up to each psychologist. Thus-the two psychologists may develop

different numbers of subgroups. Moreover, since no precise set

of subgroups have been labeled in advance, each psychologist may

use different criteria resulting in categories with different

labels. This situation is. illustrated in Table 1, where two

psychologists,after studying a group of children, independently

categorized each of 15 children into one of three subgroups based

on behavior patterns.

Table 1 about here

An important question to be asked of thesetdata is, "Do the

t o Observers' lists agree beyond chance?" In the following sec-

t onse examine this question. We begin by developing a measure

of ikeement that provides a basis for testing the null hypothesis

of random agreement. In order to examine the behavior of this

yeasure, we present comOutational formulae for its mean and

variance which are then.incorporated into a large sample, test

statistic,. Finally, after investigating the appropriateness of

'the test statistic for moderate sample sizes, we apply our procedure

to. the data in Table 1.

Developing a Measure of Agreement

Viewing our data id' the format of a two dimensional contin-

gency table will help to clarify the definition of agreement. The

raw data in Table 1 are an example of data that can always be dis-

played in an R x C table, as illustrated in Table 2. Notice that



the first observer's categoriei are indexed by ai, i = 1,...,R,

while the second observer's categories are b
j'

j = 1,...,C. Note

also that this format differs- from that of Cohen (1960), Light

(1971), and Fleiss (1971) in that here R can be different,from C,

and the row categories are not necessarily the same as the column

categories. In Table 2, nij represents the number of persons

classifiedintocategorya.by observer 1, and into category b by

observer 2. Finally

C R

n
i+

= 1Jn.. ; i = and n+i = En
ij

;j= 1,...,C.
J=1 1=1

Table 2 about here

How can agreement be measured from this table? The strategy

is to study all.possible pairs of children, and classify each pair

as an agreement or disagreement in the following way. Let us

focus on the particular pair of children, Adam and Bonnie. .Let

this, pair constitute an agreement if:

a. Observer 1.classifies Adam and Bonnie into the same cate-

gory, say ai, and Observer 2 classifies Adam and Bonnie

into the same category, say b3, or

b. Observer 1 classifies Adam and Bonnie into different cate-

gories, and Observer 2 classifies Adam and Bonnie into

different categorles.

Any other situation constitutes a disagreement, as summarized in

Table 3.

Table 3 about here
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Given these definitions, the concepts of agreement and dis-

agreement have a relatively simple interpretation in terms of the

cell entries in Table .2. If the two persons in any given pair are

in the same cell, or they are in neither the same row nor'the same

column, then that pair constitutes an "agreement". Using this '

idea, and remembering "that any table will 14ve (2) possible pairs,

the total number of observed agreements in any table will reduce to:

(1) A
CR

1
C 1. r 11 +

n+2
J
-)

1 1 j 1

(N) .E -
2 ==

The Expected Number of Agreements.

For any two observers,we wish to examine the observed number

of agreements from (1), and compare this number to the number

expected from "chance" agreeMent. Thus, we test the null hypothesis:

H
0

A = E(A') against the one-tailed alternative hypothesis

H1: A > E(A'), where A is the population parameter. Let us now

turn to the development of E(A').

The expected number of agreements for any observed set of data

depinds upon the cell entries, of of a table such as Table 2

But the distribution of the nil depends upon whether the marginal

totals of the table are assumed to be fixed (hypergeometric model)

or variable (multinomial model). We will take the marginals to be

fixed, although Kendall and Stuart (1967) point out that for large

samples- both assumptions lead to the same large sample distribution

for cell entries.

r
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Therefore, to find the expected number of agreements in any

given table, we take the expected value of A' from (1). This

becomes:

(2) E(A') = 2(in14. + + + u t1JJ.

In equation (2),

H
Erin Er)

(3) prr] = E[m
ij

(n
ij

-1)...(n
ij

J.I.

-r+1)] I

N
[rj

i.J

where, in general, n[r) = n n-1 n-r+1). (Kendall and Stuart,

1967.)

Finding the Variance of A'

We now develop the exact variance for the agreement statistic.

Although the formulae to follow appear tedious, they are straight-

forward to apply. The variance of A' can be expressed generally as:

R C
(4) Var(A1) =11V

i j

C R. C
2. I Cov(nn

)
, a j

ijkt 11 3 -7Th )

where the subscripts k and t are alternative row and column sub-

scripts respectively. Tofind the first term i (4), we take:

(5) Var(nli) = E(m1j) - [E(qi)]2

where, in terms of the notation introduced in (3),
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(6a) E n..

A
= p

13

and

(6b)
/ [2] .P.[1]

1

+ 6 p-r., + 7 p +
4] .L.sj [2] . [1]

i,J 19

Finding the second term of (4) requires breaking the overall

covariance into three parts. The three parts are:

(7a) n
j

Cov(n, ) E 1 -
l 11 j' it' E(n2j)E(n?t) where j t t ;

(7b)
2Cov(n2

j kj
.,n .) E(n

2

i ij
- E(n2 )E(n 2

.) where i t k ; and
i kj

2 2 2
(7c) Cov(nij,nk2 i) = E(nij,nk2 i), - E(nij)E(n. ) where i t k and j t t,

12,

The factors in the last term in (7a, b, and c) can be found using

the'format given in (6b) above. The computing formulae for the

first terms' in (7a, b, and c) are given in Table 4.

Table 4 about here

An Approximate Test of Significance

The null hypothesis cyf random agreement can be tested using

the statistic Z

(8)
A

A' - E(A')

,Nar(A')
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which for large R, C, and N has a standard normal distribution.

An Empirical Investtqitidn of the Normal Approximation.

In theory, the approximation ZA; given in (8) assumes large

R, C, and N. However, this type of normal approximation is fre-

quently used with very modest sample sizes. We therefore under-

took an empirical investigation to examine the validity of our

approximation for several small tables. Specifically, we chose '

0 -

eight 3 x 3 tables, one each with an N of 15, 30, and 51, and five

with N's of 42. The results ar presented in Table 5.

Table 5 about here

For each of the eight cases in Table 5, we generated by com-

puter the exact probability distribution of the test statistic A'.

Then, using the results of C2) and (4) above, we found the 0.05

and 041 cutoff values for A' in\terms of the normal approximation

proposed in (8). Finally, we found what proportion of the area

under the exact distribution fell in the tail beyond these-cutoff

points. These results are given in Table 5.

To illustrate how Table 5 was constructed, let us focus on

the first row.. Here we have a table where each of the three rows

and each of the three 'columns has a marginal total of 5. The Wext

three columns of Table 5 reference the normal approximation at the

005 level of significance. Since E(A1) = 62.14 and V(Al = 20.41,

and Z
a

= 1.65 at d=0,05, the"esttmated cutoff point. for A' from

a

r-
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the normal approximation is 62''.14 + 1.651/75747 = 69.55. Since

the exact distribution of A' is discrete, we choose the next
- - -----_..

highest value in the exact distribution. This yalue, 71.00, cuts

off the top 0.064 of the exact distribution of A'. Similarly,

for the 0.01 level of significance, the ..normal. approximation cut:-

off value of A' equals 72.6.6, Whiah corresponds to'a value of /5.00

in the exact distribution. The tail area in\the exact distribution

beyond 75.00 is 0.016.

Three canclusionS emerge from Table 5. First; for moderately

small sample sizes, and\for tables of small dimensionality (i.e.

C = 3), the normal approximation to the distribution of A' is

consistently quite good. Second, for tables with constant R = C = 3,

increasing the sample size N has no dramatic effect on the quality

of the normal approximation. This confirms the results expected

from asymptotic normal theory (Wilk's, 1962), which are that in

contingency tables such as ours, the validity of the =normal approxi-

mation is more affected by R and C than by N. Third, we investigated

the effects of asymmetry in the marginal totaes for the 'five tables

with N = 42. These results are given in cases 3 through 7, which

indicate that the quality of the normal apprtmation is essentially

unaffected by different degrees of skewness in the marginals. Over-
/

all, then, for any but the smallest tables, the normal approximation

should provide a reasonable guide for a test of the null hypothi:sis

of random/ agreement.

4



A Worked Example

In this concluding section, we illustrate the computations

for measuring and testing agreement using the raw data from the

ch/ ildrer in Table 1. We begin by placing the raw data into the ,

3-x 3 contingency table givdh in Table 6. Notice that all the

marginal toalap ni and n43 are 5, which follows from the data in

Table 1.

Table 6 about here

Computing A' from (1):

A' = 105 + (16+ 0 + 1 + + 1) - 75-. 75 .

1

Computing E(A') from (2) requires.us to find first and Pr21:
J i,JL J

and

- 5.
P

667
.(1] 155

1

i,j
for all i,j;

5.4.5.4
P.[2] 15. 4 1.905

Now, finding E(A'):

for all i,j

E(A') = 105 - 75 + 9(1.667 + 1.905) = 62.143 .

We now perform the slightly )engther calculation of the.,

variance of A' from (4).. First, we need to find p.r31 and .p.ro.
i.J" J
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and
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' 5.4.3.5.4.3

1

1.319
41.3 [3] 15.14.13 '

5.4.3-2.5;4.3.2 4
0.440_ __forl:[4] 15.14.13- 12 all i,j

for all i,j

Then, finding other needed terms:

E(0.) = 0.440 6(1.319)'+ 7(1.905) + 1.667 = 23.352

0

E(nli) = 1.667 + 1.905) = 3.5171

Var(qi) = 23.352 - 3.571 = 10.597

War(r1.lj ) = 9(10.597) = 95.369
1 j

From the first two computational formulae in Table 4:

E(nli,n11) E(n i2 j

5.4.5.4 5.4.3.5.5.4
1 5. 4 15.14.13.

5.4-3-5.4.5
8..242 ;

15.14.13 .15.14.13.12

and therefore, from formulae (7a) arid (7b):
/

I

2
Cov(n4

j
,n4o) = Cov(nlynti) = 8.242 -(3.571)2 = -4.513

.

' 4

Further, from the third formula. in Table 4:

r



2 5.5.5.5
+

5.5.5.4.5.4
*

5 .4.5.4.5.5E
'
n
kt

)

15.1.4 .15.14.13 15.14.13

5.4.5.4.5.4.5.4
15.186 ;

15-14'.13.12

and from (7c):
t

Cov(n2.,n2
i

) 15.186 - (3.571)2 = 2.431'.
lj

So, summing up all_ the covariance terms,

y 7 Gov(ni2jokt 36(-4.513) + 36(2.431) -74.961 .

"ijki

Finally, we. find from (4) the variance of A':

Var(A') = 95.369.: 74.961 = 20.408

These results permit us to test the null hypothesis of random

agreement for our example. Using the test in (8):

75.000-62.143 2.846 .

1/20 740g

Since the computed value of ZA, far exceeds the critical value of

1.65 for the 0.05 level of significance, we reject the null hypothesis

for the data in Table 6, and conclude that agreement beyond/ chance
4

exists between the two psychologists.
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Generalizability of the Agreement°Statistic

While'the developmeht in%this paper,has focused entirely on

the problem of measuring agreement between two observers who

categorize N people, the statistic A' has substantially broader
pc) ts

o
application. We suggest four such AMeamillofte, here.

First, while our worked example involved placing people (young

children) into categories, the procedure is applicable for any

phenomena that can be nominally scaled. Thus, for example, two
is o

psychologists may have a list o'fN.behaviors to be classified

according to some unspecified set of psychological disorders.

Alternatively, two reading specialists may be asked to classify

a set of N words into subgroups according to common student mis-
,

conceptions in meaning. Notice that in these two examples it was

not people but rather phenomena that were being categorized.

Second, although in our worked example each dimension of the

table represented one observer, there is no reason why the

categorizations and the question of their agreement could not

emerge from two groups working independently.

Third, a,recurring issue in applied research involves_atm-

paring data from different studies (Light and Smith, 1971). /For

example, suppose two states independently arrive at different
\I

classification schemes for the same sct of job titles. If'one is
,

interested in the extent to which these two schemes are consistent,

or "agree", the measure A', and its test .statistic are app icable.
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Fourth, while in our worked example R = C = 3, it will

frequently occur that R # C. Therefore, the formulas for measuring

agreement are. general; and not restricted to square tables.-
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Tgble 1

Data on Two Psychologists' Categorization of 15 Children

Primarily
Interested in
Athletics

Psychologist 1

Subgroups

Primarily
Interested in
Popularity

Primarily
Interested in
Scholarship

\Adam (A)

Onnie (B)

. Claire (C)

David (D)

E'dward (E)

Primarily
Interested in
Popularity

Francis (F)

George (G)

Harold (H)

Ira (I)

Jennifer (J)

Psychologist 2

Subgroups

Primarily
Interested in
Athletics

Kathy (K)

Larry I (L)

Michael (M)

Nora (N)

Oscar (0)

No. Clear
Interests

Adam (A)

Bonnie (B)

Claire (C)

David (D)

Francis (F)

George (G)

Kathy (K)

Larry (1)

Michael (M)

Nora . (N)

Edward (E)

Harold (H)

Ira (I)

Jennifer (J)

Oscar (0)
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.Table 2

Generalized ilcC Contingency Table Format

for Agreement Problem

Observer 1 a.
1

Observer 2

b.
1

b
2 3

b
C

n
1+

R+

n
11

n
12

n
lj

n
1C

n
21

n
22

n2j
2C

nil
ni2 n.i n

iC

nR1 n
R2

nRj nRC

n+ n
+c(

11u.tf-

Notetr.-Z:4:m Using this format'
A

a) Rows and/or columns may be permuted with

no loss of information.

b) It is not true that cells on ,the main

diagonal represent-A and cells off the

main diagonal represent disagreement.

f
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Table 3

Definitions of Agreement and Disagreement

Observer 1

Observer 2

Classification Same Different
of Any Pair Category Categories

Same
Category

Different
Categories

Agreement Disagreement

Disagreement Agreement
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Table 6

Data from Table 1 Reformulated in a Contingency Table

Format to Measure Agreement,

Observer 2

Popularity Athletics None

Athletics .A,B,C,D E

(4) (0) (1)

Observer 1 Popularity. F G H,I,J
5

(1) (1) (3)

K,L,M,N 0 .

Scholarship. (0) (4) (1)
5

5 5 5. 15
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