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Hybrid quantum-classical optimization algo-
rithms represent one of the most promising
application for near-term quantum computers.
In these algorithms the goal is to optimize
an observable quantity with respect to some
classical parameters, using feedback from mea-
surements performed on the quantum device.
Here we study the problem of estimating the
gradient of the function to be optimized di-
rectly from quantum measurements, generaliz-
ing and simplifying some approaches present in
the literature, such as the so-called parameter-
shift rule. We derive a mathematically exact
formula that provides a stochastic algorithm
for estimating the gradient of any multi-qubit
parametric quantum evolution, without the in-
troduction of ancillary qubits or the use of
Hamiltonian simulation techniques. The gra-
dient measurement is possible when the un-
derlying device can realize all Pauli rotations
in the expansion of the Hamiltonian whose co-
efficients depend on the parameter. Our algo-
rithm continues to work, although with some
approximations, even when all the available
quantum gates are noisy, for instance due to
the coupling between the quantum device and
an unknown environment.

1 Introduction

In the near-term [33] quantum computers will be too
noisy and the number of operations, or depth of the
circuit, will still be too low to reliably implement con-
ventional quantum algorithms that require full quan-
tum error correction [30]. Therefore, alternative al-
gorithms, better suited for exploiting these devices
have been proposed, such as the variational quantum
eigensolver [18, 32], the quantum approximate opti-
mization algorithm [14], quantum autoencoders [35],
quantum simulation [24], and quantum classifiers for
machine learning [3, 13, 29, 37, 39]. Because of these
applications, several companies involved in the devel-
opment of quantum computers have released software
for the manipulation of parametric quantum states

[1, 4, 6, 12, 40].

Hybrid quantum-classical optimization algorithms,
such as the ones mentioned above, try to overcome the
limitations of current quantum computers by pairing
them with a classical device. In these hybrid strate-
gies, the “hard” part of the algorithm, which typi-
cally involves the manipulation of objects living in a
high-dimensional Hilbert space, is done by a quan-
tum computer, which is reset after each measure-
ment. The classical routine then iteratively repro-
grams the quantum computer in such a way that ei-
ther the output of quantum measurements or the pre-
pared quantum state have the desired property. These
iterative schemes allow the use of shorter-depth cir-
cuits that can be implemented within the decoherence
time of the device. Typically, the manipulation of the
quantum state is performed with parametric quantum
gates and the role of the classical routine is to update
those parameters either via gradient descent or gra-
dient ascent. Evaluating the gradient of a quantum
circuit is as hard as the evaluation of the circuit itself,
and therefore it is important to use the quantum com-
puter for estimating it. Several algorithms have been
proposed for such purpose, either based on a general-
ization of the Hadamard test [16, 26, 28, 46] or on the
so-called parameter shift rule [11, 23, 29, 38|, which
have a similar complexity. Nonetheless, both algo-
rithms can only be applied when the parametric gates
can be written as e’%*X¢_ for parameters 6;, and where
the operators X, have certain special properties. In
the general case one has to resort to Hamiltonian sim-
ulation techniques [9] that increase the complexity of
the algorithm.

Here we show that the parameter-shift rule can
be generalized to any multi-qubit quantum evolution,
without the need to introduce any ancillary system
or Hamiltonian simulation techniques. Our general-
ization is based on a stochastic strategy that is ex-
act in the limit of many repetitions of the quantum
measurement. We analyse the number of repetitions
needed to achieve a certain precision by studying the
variance of our estimation procedure, and numerically
observe that it is comparable to that of the standard
parameter shift rule. In near-term computers, uni-
tary gates are an approximation to a more complex,
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noisy evolution that couples the qubit registers to an
unknown environment. We show that our estimation
procedure can be applied even when the coupling be-
tween system and environment cannot be completely
suppressed, and when the gates depend on the param-
eters in a complex way.

Our paper is organized as follows: in Sec. 2 we set
up the problem and the notation; in Sec. 3 we dis-
cuss the main ideas and introduce analytical formulae
and algorithms for estimating the gradient in the gen-
eral case; in Sec. 4 we study applications in quantum
control and for optimizing noisy gates; conclusions
are drawn in Sec. 5. An alternative deterministic ap-
proach based on the Hadamard test is studied in Ap-
pendix A. Explicit pseudo-codes for our algorithms
are given in Appendix B. The stochastic variance of
our algorithms is studied in Appendix C.

2 Background and notation

We focus on parametric quantum states [(6)) that
depend parametrically on P classical real parameters
{0,} with p=1,..., P. These states are obtained by
applying a unitary U (@) onto a B-independent refer-
ence state |1g)

[4(8)) = U (8) lto) - (1)

We study the optimization (either maximization or
minimization) of the expected value of an observable
C, taken with respect to [¢(0))

C(8) = (ol U(0)'CT(8) [vo) - (2)

Several problems can be mapped to the above op-
timization, such as variational diagonalization and
quantum simulation [14, 32, 46], where C is the
Hamiltonian of a many-body system and the task is to
variationally approximate its ground state; and quan-
tum state synthesis, where C' = [Yiargot) (Yrargot|, OF
some machine-learning classifiers [26, 39]. Even quan-
tum control problems [19] or the simulation of gates
with time-independent Hamiltonians [2, 17] can be
written in the form (2). Indeed, consider the task
of finding a good approximation of a certain tar-
get unitary gate G with a parametric unitary U (8).
We may define [¢(8)) = 1 ® U(8) |®), where |®) =
Zle |i,i) /v/d and d is the dimension of the Hilbert
space, and similarly [);arget) = 1 © G |®). Then, from

(2) with é = |¢target><wtarget|a we find

r AT ) ?
0(0) (TGJW) | ‘)

which is the function normally maximized in quantum
control problems [2, 19].

Any unitary operator can be expressed as a matrix
exponential U(0) = e'X () where X (8) is a Hermitian

operator. When the unitary U (0) is a composition of
T simpler gates U;(0), then we write

T
u(e) =[Juv.o) U,(6) = X®@ | (4

where the products are ordered as Hthl U, :=
UT-'-Ul. The products of Pauli matrices 6, =
6., ® - ® b, form a basis for the space of N-qubit
Hermitian operators [31], where v = (v1,...,vy) is
a multi index, v; is either {0,z,y,2} and &y = 1,
Gz, Oy, 0, are the Pauli matrices. As such, we may
expand the operators X;(0) onto this basis and write

Xt(e) - th,u(a) a—u ) (5)

with coeflicients x;,(6) = Tr[f(t(a)&u} /2N, Tt is
common to restrict attention to gates that only have
a single element in the expansion (5), i.e. x;,(0) =
016,,,(1), Where v(t) specifies the kind of parametric
gate applied at time ¢, or, more generally, to gates
with x ,,(0) = 0:x ,, for which

A~

simple i0, H 2 N
Ut P = et ) Ht = E TtvOp , (6)
v

where the operator H, is independent on the param-
eters 8. Moreover, most often we consider gates that
act on either one- or two-qubit, so at most two Pauli
matrices in the product 6,, ® --- ® 6, are differ-
ent from the identity. Gates as in Eq. (6) are quite
common, as they physically correspond to solutions
of a Schrédinger equation with Hamiltonian H, and
time parameter 6;. Yet, they do not model the most
general physical evolution, e.g. where the parameters
are different from a “time”, which is discussed in this
paper.

When the parametrization is such that all gates can
be expressed as a sequence (4) of elementary gates
as in in Eq. (6), then the derivative of each gate
with respect to its parameter is straightforward, as
8Ut /00, = zf[tUt. By exploiting the above identity
into (2), different approaches have been proposed to
evaluate the gradient of C'(0) via a carefully designed
quantum circuit and classical post-processing, for in-
stance using the Hadamard test [16, 46] or the param-
eter shift rule [29, 38]. The parameter-shift rule can
only be applied when H, has two distinct eigenvalues,
for instance when there is only one non-zero element
in the Pauli expansion (6), whereas the Hadamard
test is more general but requires controlled operations
and ancillary qubits. Nonetheless, recently a general-
ization of the Hadamard test without the use of con-
trolled operations has also been proposed [28]. More-
over, in Ref. [11] the parameter shift rule was also
generalized to some particular cases where there are
more than one term in the expansion (6). However,
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finding the gradient in the general case for possibly
many-body gates was still an open question. In the
next section we show that by mixing standard opera-
tor derivative techniques [45] with Monte Carlo strate-
gies, we can define a procedure to measure gradients
of any C(6), as in Eq. (2), with near-term quantum
hardware. While we are unaware of any published
work showing that the Hadamard test can be used be-
yond the class of simple circuits (6), in Appendix A
we remark that an alternative deterministic scheme
involving the Hadamard test is possible whenever the
parametric gate acts on few qubits.

In this paper we study a method to find gradients
of general quantum evolution, not restricted to gates
as in Eq. (6). For instance, our methods allow the
computation of gradients with gates ¢’ UXi40:V0) | even
when [Ht, ‘/t] = 0, for which neither the standard pa-
rameter shift rule, nor the Hadamard test can be ap-
plied. Such evolutions may arise for instance when
some terms in the Hamiltonian may not be completely
switched off, e.g. in a noisy setting.

We consider the general parametrization (4) with
the expansion (5). Via the Leibniz rule, we may write
the derivative of the expectation value (2) as

80(0) _ % axt,u(e) (7)
aﬁp o .y Tt,v aﬁp '

Thanks to the Leibniz rule (7), we may fix ¢ and v,
and study the derivative of C' with respect to x¢,. By
repeating the analysis for each possible values of ¢t and
v, from Eq. (7) we may obtain the derivatives with
respect to the parameters 6, and hence the gradient.
Therefore, we fix t and v and, to simplify the notation,
we drop the dependence on ¢t and v to write

V= ou, H:= Z Tepubp - (8)

nF#Y

T =Ty,

With a similar spirit, we also define

A A~

t—1
> = H Us |1/}0> ) A= J+0Ut+ ) (9)
s=1

where U,y = Hit 41 U,. Thanks to the above sim-
plified notation, we may write the function C' in (2)
as a function of x =z, for fired t and v

C(x) = (@D A0 lg) - (10)

all the other terms in (10) do not explicitly depend
on = x;,. In other words, Eq. (10) is equivalent
to Eq. (2), where we have separated the terms that
depend on x = z;, for fixed ¢t and v from the others.

3 Stochastic Parameter Shift Rule

Without loss of generality, we fix ¢t and v as described
in the previous section, and study the derivative of

C(z) defined in (10). The derivative with respect to
the parameters 6, can be obtained from (7) by repeat-
ing the analysis for all ¢ and v. We remark that in
Eq. (10) the state |¢) and the operators H, A, V ex-
plicitly depend on ¢, v, and on the other values /.-
with either ¢’ # ¢ or v’ # v, but we omit this depen-
dence to simplify the notation. Full algorithms are
shown in Appendix B.

The main tool behind our analysis is the following
operator identity [45]

e ! 0Z
- = d sZY~ (1-s)Z 11
Oz /0 P ’ (11)

which is valid for any bounded operator Z. We may
rewrite Eq. (10) as
O(z) = Tr(ﬁez[m) , (12)
for p = [¢)(¢| and for a superoperator Z[p| :=
[i(H 4+ V), p], where [A,B] = AB — BA. Eq. (12)
then follows from Baker-Campbell-Hausdorff identity
X1y = XVeX [27]. We also introduce the super-
operator
Vi=— =4V, 13
5y = V] (13)
Now we focus on the exponential ¢*V with V defined
n (13). From series expansion, since V' is a tensor
product of Pauli matrices (8) and, as such, V2 = 1,
it is simple to show that

eV [p] = psin*(\)(VV —p)+ ismm)[V pl, (14)

from which we get by explicit computation

ae)\V

(A7 /4)V
oy l=¢

velV[p = — eV )

(15)
When H =0, it is Z = zV and we may use the above
equation with A = z to take derivatives in (12). As
a result, we get 0,C(x) = C(x + w/4) — C(x — 7/4),
which is the so-called parameter shift rule, described
in Fig. 1, often used for training quantum circuits
[29, 38, 43]. Note that, with the formalism of the
previous section, H=0 corresponds to the use of
the simpler parametric unitaries of Eq. (6). A more
general version of the parameter shift rule can be ob-
tained when the operator V has only two distinct
eigenvalues [29, 38]. Indeed, we note that the only
property we used in (15) is V2 = 1, which is true
for any product of Pauli matrices. If V has only
two possible eigenvalues ¢ + u, then we may write
V = uV’ + ¢l where V"2 = 1 and the dependence
on ¢ disappears in (13). Therefore, it is straight-
forward to generalize the above derivation and find
0,C(x) =u[C(t+ %) —C(t— 7)]. The resulting
algorithm is described in Fig. 1. Although the param-
eter shift rule can be made slightly more general, for
instance by replacing the operator &, in (6) with

(]

Accepted in (Yuantum 2020-12-18, click title to verify. Published under CC-BY 4.0. 3



Algorithm 1 Parameter Shift Rule

Algorithm 2 Stochastic Parameter Shift Rule

1: initialize the computer in the state |¢), following
the preparation routine (9);

2: apply the gate ei(”ﬁ)v;A

3: measure the observable A from (9) and call the

result 7.
4: Repeat steps 1 to 3, but on point 2 apply
¢'(*=72)V rather than ei(=+ 4u)V,

5. measure A and call the result r_.
6: the sample ¢;,, = u(ry — r_) is such that
0C [0z = Elgr o]

1¢)

9) -

Figure 1: Parameter Shift Rule [29, 38, 43], only applica-

ble to parametric gates as in Eq. (6) or, more generally, to

u(ry —r-)

parametrizations e where V' has two distinct eigenval-
ues tu. When V is a product of Pauli matrices as in (6),
u = 1. In the algorithm we consider the derivative 9,C(z)

of Eq. (10), when H = 0.

another operator that has, like 6, (), only two pos-
sibly degenerate eigenvalues, it cannot be applied in
the general case where H # 0. Nonetheless, we show
that the parameter shift rule can be generalized by
combining Eq. (15) with Eq. (11). Indeed, evaluating
(15) for A = 0 we get

OZp -

o _ Z[V7ﬁ] — 6iTrV/4ﬁ€7iV7r/4 _ 67iﬂv/4ﬁ€i‘/ﬂ/4 )
(16)
From the above equation, calling
Ci(w,5) = (| Us(w,9)" AUL(w,5)[¢) . (17)
Ui(x,s) — eis(f{Jer)G:tiﬁVei(lfs)(FI+xV) , (18)
we get from (11) and (16)
1
0.C/(x) = / (Co(2,5) — C_(z,9)]ds . (19)
0

Eqs.(17)-(19) represent the central result of this pa-
per. Thanks to those formulae, we introduce the
Stochastic Parameter Shift Rule, shown in Fig 2. We
now give some more details on how the Stochastic
Parameter Shift Rule directly follows from Eq. (19).
Indeed, let A = > m @m |m) (m| be the eigenvalue de-
composition of A. Then, because of the Born rule, the
outcomes r4 are one of the possible values a,, with
probability

px(mls) = [ (m| Us(z,s) [¢) |* . (20)

Taking the expectation value with respect to
the measurement outcomes and with respect to

1: Sample s from the uniform distribution in [0,1];

2: initialize the computer in the state |¢), following
the preparation routine (9);

3. apply the gate e/1=)(H+2V) "namely where pa-
rameters x; ,, for fixed ¢ and all possible values of
p have been rescaled by a factor (1 — s);

4: apply the gate ei”V{4 = eimov /4,

5. apply the gate e*(7+2V)  where parameters Tt
for fixed t and all possible values of v have been
rescaled by a factor s;

6: measure the observable A from (9) and call the
result .

7: Repeat steps 2 to 5, but on point 4 apply e
rather than e~ #79v/4.

8: measure A and call the result r_.

9: the sample ¢;,, = rqy —r_ is such that 0C/0z,, =

E[Qt,u]'

o, /4

N

I [
) 4 1= (H+xV) H oV IA H oisH+x)

(ry =r2)

s
I [
|}y 4 £l 1=5)(A+xV) H e—inV/4H oI H+xV) r

Figure 2: Stochastic Parameter Shift Rule, valid for any op-
erator H. In the picture, the values of the classical parameter
s are the same.

the uniform probability over s, since 9,C(z) =
> am [, [p4(ml|s)—p_(m]|s)]ds, we get from Eq. (19)
)

E[ry —r_] =0,C(z) . (21
For a single measurement, both the Parameter Shift
Rule of Fig. 1 and the Stochastic Parameter Shift
Rule of Fig. 2 provide a random difference between
two eigenvalues of A. Only in the limit over many
repetitions of those algorithms does the average over
the outcomes converge to the exact value of the gra-
dient.

We now study how many repetitions are needed to
estimate the gradient with a given accuracy. Due to
the Chebyshev inequality, the number of repetitions
to achieve a certain precision depends on the vari-
ance of the random outcomes. Since the outcomes
r+ are independent, the variance of the estimator is
Var(r+ —r_) = Var(ry) + Var(r_) with Var(ri) =
Jo S a2pe(m]s)ds — Elrs]? < max,, a2, = ||C|%.
In particular, if C' = >, Cubu, then we can bound the
variance as Var(r; —r_) < 2" c2. The same bound
can be obtained for the standard parameter shift rule
S0, in spite of the further sampling over s, the stochas-
tic parameter shift rule has the same worst case per-
formance of the standard parameter shift rule. More-
over, according to [44], the variance obtainable with
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the Hadamard test is bounded by n;Y", cZ, where
ng is the number of non-zero Pauli operators in the
expansion (6), so it is slightly lower for n; = 1.

For any generic parametrization, the variance of the
derivative can then be estimated from the Leibniz rule
(7): for instance, if ¢, = O(1) and dz4, /90, = O(1),
then assuming independent measurements, the vari-
ance of the estimator can be bounded as O(2n,n.)
where n,, is the number of non-zero 9z, /06, and n.
is the number of non-zero ¢,. The above considera-
tions apply for upper bounds on the variance. On the
other hand, in Appendix C we numerically study the
variance of the gradient estimator obtained with the
Stochastic Parameter Shift Rule and show that it is
comparable with that of the standard Parameter Shift
Rule.

3.1 Stochastic optimization

In the previous section we have introduced an algo-
rithm (Fig. 2) to use a quantum computer to sample
from a random variable whose average is equal to the
gradient of a certain circuit. We say that the out-
put of the Stochastic Parameter Shift Rule provides
an unbiased estimator of the gradient, in the sense of
Eq. (21).

We now focus on the original problem, namely a
parametric unitary (4) with many parameters as in
(5). We can use the algorithm of Fig. 2 to sample g ,,
with the property 0C/0z;, = E[g;,]. By repeating
the procedure many times and with all possible values
of t and v, due the linearity of the Leibniz rule (7),
we may write

)—E[th,u 59“89“’)] o @

where the expectation value E has the same mean-
ing as in Eq. (21). The full algorithm is shown in
Appendix B, algorithm 4. The problem with this ap-
proach is that we have to repeat algorithm 2 many
times, each time resetting the quantum machine, to
get a single sample.

We now introduce a simpler unbiased estimator of
the gradient that requires significantly fewer opera-
tions to get a single sample. A similar technique has
been developed in [16, 43] for parametrizations as in
Eq. (6), which was dubbed doubly stochastic gradient
descend. Here we generalize that approach to gen-
eral quantum evolution, as in Eq. (4). We start by
defining a probability distribution from the “weights”
Opy,(0), where 9, = ag , as

ap(t,v) = qutu_l (23)

83715 u
N

with N = 3, 10,200(0)].

Setting np+, =

Nsign (0,24 ,,(0)) we may then write Eq. (22) as

ac(8)
00,

= E(t,u)wqp [np,t,u E (gt,u)] P (24)

where E; )., means that, at each iteration, ¢, and
v are sampled from the distribution (23). When the
functional dependence on the parameters is known,
all quantities g,(t,v) and n,4, can be easily com-
puted at each iteration without having to deal with
exponentially large spaces. The above equation (24)
allows us to define a simple “doubly stochastic” gra-
dient estimator via the following rule

1: sample ¢ and v from the distribution (23);

2: use Algorithm 2 to get an estimate g; ,;

3: the sample 7,4, = GgipNpr is such that

0C/00, = E[rp..].

The full algorithm is shown in Appendix B, algo-
rithm 5. Based on the above equation, in Appendix B
we also define an algorithm that can provide an unbi-
ased sample with a single initialization of the quantum
device, algorithm 6.

To summarize the results of this section, we can use
either (22) or (24) to estimate the gradient of an ex-
pectation value (2) with a quantum computer. Once
we have an estimate of the gradient, we can optimize
C(0) using stochastic gradient descent (or ascent) al-
gorithms [7], such as Adam [21]. These algorithms are
classical, in the sense that, given certain parameters
0 and an estimate of the gradient g, the parameters
are updated as @ — 0 = ng for a suitably small learn-
ing rate 1. Therefore, we can use a hybrid quantum-
classical approach to optimize C(6) where the hard
calculations, namely the estimation of the gradients,
are delegated to a quantum computer, while the up-
date of the parameters is performed classically.

3.2 Quantum gates with unavoidable drift

Depending on the hardware, the application of the
gates e=™V/4 in Algorithm 2 might be problematic.
Let us consider a quantum computer that can only
apply the parametric gates

U(t,b) _ pit(Ho+bHy) , (25)

where Hj is some drift Hamiltonian that cannot be
completely switched off, aside from the trivial case
t = 0. Such “simple” device is still capable of universal
quantum computation, provided that the operators
Hy and H, are multi- qubit operators that generate
the full Lie algebra [25]. Here though, for simplicity,
we consider the case where both HO and H 1 are tensor
products of Pauli operators, as introduced in Sec. 2.

The parameters in the above gate are @ = (¢,b). Using
the notation of Eq. (5) we may write
U (t,b) = eilwototon i) (26)
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Algorithm 3 Approximate Stochastic Parameter
Shift Rule

1: Sample s from the uniform distribution in [0,1];

2: for m = {+,-} do

3: initialize the computer in the state |¢);

4: apply the gate ei(1=s)(H+aV),

5 apply the gate eiclAEm/(4e)V]
depends on m;

where the sign

is(H+aV)

@

apply the gate e
7 measure the observable A and call

the result r,,.
8: end for
9: An estimate g, of 0C/0x,, is given by g;, =
’I"+ —Tr_.

)

Figure 3: Approximate Stochastic Parameter Shift Rule. A
compact notation has been used, as this algorithm is identical
to the one in Fig. 2, except for the use of the imperfect gates

ie[HEn/(4e)V] iw/4\7_

e in lieu of e

where zg =t and x; = bt. Employing the above gate
in Eq. (2), from (7) we get
oCc  oC oC

- 4 = = —t. 2
AC=g t5-b,  0C=ot (27)

An estimator of % for j = 0,1 can be obtained with
J

Algorithm 2, where 1% is, respectively, either Hy or H,.
Step 3 in the algorithm corresponds to U((1 — s)t, b)
and Step 5 corresponds to U(st7 b), so both operations
can be easily implemented directly in the device. Step
4 corresponds to the gate U(n/4,0) when estimating
gTC;’ which is again easy to implement. However, Step
4 for estimating %ﬁ corresponds to the gate e!™H1/4
that does not belong to the set of gates (25) and,
with our assumptions, cannot be implemented by the
device. However, we may substitute that gate with

an approximation

™

U (e z) = e/(efoEFi) — HEM 4 o(p1), (28)
€

where b = J-. The error coming from the drift term
can be small O(e) if it is possible to set b to a high
value O(e~1). With the above gate, in Fig. 3 we de-
fine the approximate Stochastic Parameter Shift Rule.
The approximate gate introduces a bias in the gradi-
ent estimator, but since such bias can be made small,
convergence can still be expected [41].

As arelevant example, we study the cross-resonance
gate [11, 3§]

UCR(t, b,c) = exp [it (6w®fl — 06,06, + cﬂ@&m)] ,

(20)
a natural gate for certain microwave-controlled trans-
mon superconducting qubit architectures [10]. The
results are shown in Fig. 4 for different values of t,

LExacl gale

Approx. gae

T dillevemics:

bh—0.5

ZRe
=

L
0.00 0.25 Q.50 0.7% 1.00

W

o t=0.5

Fxact gane

1 Appros. gade

f—2 — Tinite dillerenes
! ! ! T
(.04} (120 RN {175 .00

Figure 4: Gradient of Eq. (2) when using the cross-resonance
gate (29). In (a) we study 9,C for ¢ = 0 and fixed values of
b={0.5,1,2} with C = 6, ® 1. In (b) we study 9,C for
¢ = /2 and fixed values of t = {0.5,1,2} with C' = 6, ® 6.
We compare the finite difference approximation, with the
estimations from Algorithm 2 (Exact gate) or 3 (Approx.
gate). Approximated gates are with ¢ = 1072. Data for
the stochastic algorithms are obtained from (22) with 1000
samples. Coloured regions represent the area m =+ o where m
is the estimated mean and o the standard error of the mean.

¢ and b, where we show that Algorithms 2 and 3 are
basically indistinguishable from each other, and very
close to the approximated value obtained numerically,
without any randomness, using a finite difference
approximation. All numerical results are obtained
by analytically computing the probabilities (20) and
then simulating the quantum measurement via Monte
Carlo sampling. The finite difference approximation
is obtained as 9,C(r) ~ (2¢) " }C(z +¢) — C(x —¢)].
Note that, although this approximation works fine for
numerical approximations using a classical computer,
it is not useful for calculating gradients on quantum
hardware. Indeed, if we use a quantum device for es-
timating C(x £ €), then the estimator of 9C, has a
variance ~ £~ 2 which is very high when ¢ is small.

4 Applications

4.1 Quantum control with drift

The control of a quantum system is obtained by mod-
ulating the interactions via time-dependent pulses.
Calling A;(t) the external pulses and V; the associated

Accepted in (Yuantum 2020-12-18, click title to verify. Published under CC-BY 4.0. 6



|¢,0’1 > []51mple(91 )

D oy | v [
B U;1mple ( 92) e
o3) — — U™ @6, F

o.1) &1(61)
' &E3(0
s ST
2 U2

|¢’0,3> ] 4{ 84(94) F
loE1)
loE3) ?

, Stmple . |

o o) < U™(0)) U )

|‘r//0,2> ] USimple 0 1 [~
oy o 2 & — U™ (6, |
loE) :
loE4)

Figure 5: a) An example parametric quantum circuit with
parametric gates as in Eq. (6). b) A noisy version of a),
where unitary gates are replaced by non-unitary channels. c)
A representation (32) of the noisy gates in b), where each
noisy operation is represented as a unitary gate between the
qubits and an independent environment (in red).

operators, the evolution is described by the following
time-dependent Hamiltonian

M
H(t)=Ho+ Y _ X0V, (30)

where M is the number of pulses and Hy is the drift
Hamiltonian that describes the time-evolution of the
system when no pulses are applied. Here we consider
M =1 as the generalization is straightforward, and
set Ay = Nand Vi = V. By discretizing the control
time 7" into Np = T'/AT steps of width At we get

Nt
U(T) ~ H o~ AT (Ho+A(pAT)V) (31)
p=1

with error ~ NpAT?. Pulse design corresponds to
the optimization of the parameters 6, := A(pAT)
to achieve a desired target evolution [19], for which
we can apply the procedure of the section 3. An al-
ternative is to expand the pulse in the Fourier basis
A(t) =3, am cos(wit + ¢p) for some frequencies wy,
and tunable amplitudes a,, and phases ¢y, [8]. There-
fore, we may use (7) together with the procedure of
Sec. 3 to estimate the gradient with respect to the
parameters {6,} = {am, dm}.

4.2 Parametric circuits with noisy quantum
gates

One of the main strengths of our Algorithm 3, and its
generalizations in Appendix B, is its ability to work,

under reasonable assumptions, even when parametric
gates are not perfectly implemented by the device.
This is the case in currently available and near-term
quantum computers [33].

As a relevant example, consider the quantum cir-
cuit of Fig. 5, built from simple parametric gates as in
Eq. (6). When the quantum computer can apply the
exact gates, then the standard parameter shift rule
can be employed. However, quantum devices are al-
ways in contact with their surrounding environment,
so an exact application of the gate is impossible (with-
out full quantum error correction). More precisely,
due to the action of the environment the gate is not
unitary but, under some reasonable approximations,
can be described by a completely positive map [5, 34].
A completely positive map can always be written as
a unitary evolution on the register and its environ-
ment. For simplicity let us consider a perfect gate as
in (6) with fixed ¢. Physically, the perfect gate (6)
means that a control Hamiltonian ]:It(R) = =0y I8
switched on for a time 6;, where the index (R) re-
minds us that the Hamiltonian acts on the registers
R only. In realistic implementations the register is
coupled with its own environment. If we call Ht(RE)
the coupling Hamiltonian between register (R) and
environment (E), then we may write the non-unitary
gate (see also Fig. 5¢) as

. (RE)

EO)p] = Tag [e7 M0 o

: (
PR & O'EGZTH“’ s (32)

where o is the state of the environment, 7 is the con-
trol time, Ht(lgE) = Ht(RE) + GHt(R) and 0 is the rel-

ative strength between Ht(R) and Ht(RE). In Eq. (32)
there are three main approximations: i) we neglect
any initial quantum correlation between register and
environment, so that the non-unitary evolution can be
modeled as a completely positive map [34], which in
turn implies (32); ii) we assume that the (unknown)
initial state of the environment does not depend on 6
and 7; iii) we assume that it is possible to tune both
7 and, to some extent, the relative strength 6. Un-
der these three conditions, it is possible to use Algo-
rithm 3 and its generalizations of Appendix B to com-
pute the gradient with respect to 6. Indeed, without
loss of generality, we may consider Ht(R) as a product
of Pauli matrices acting on the register R. When this
is not the case we may employ the Leibniz rule (7). All
operations in Algorithm 3 are possible, with the sub-
stitution Hy = ﬁt(RE) and V = fIt(R). The rescaled
gates correspond to reducing the control time 7 by ei-
ther a factor (1 —s) or s, while the application of the
approximate gate (28) can be obtained by making 6
large. Note that in a good quantum computer, the fac-
tor 6 should always be large, as the coupling between
register and environment should be small. Therefore,
derivatives with respect to 6 can be obtained using
the same operations available in the device.

On the other hand, derivatives with respect to 7
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are, in general, not possible. We may always expand
the coupling Hamiltonian in the Pauli basis via (5)
and use the Leibniz rule (7), but in order to obtain
the derivative with our Algorithm (3), we have to
approximate a highly tuned gate of type e'™/4¢ (RE),
which couples the system and environment. We be-
lieve that for reasonable models of environment, this

is not generally possible.

In summary, when the noisy evolution can be writ-
ten as in Eq. (32), under the approximations defined
above, derivatives with respect to # can be obtained
with the same operations available in the machine,
while the further parameter 7 should only be used to
implement the rescaling and not as an optimization
parameter.

4.3  Quantum Natural Gradient

The quantum natural gradient has been proposed in
[22, 42] as a way to exploit the geometry of para-
metric quantum states during optimization, enabling
faster convergence towards local optima. With the
quantum natural gradient the update rule becomes
0 — 0 + nE—'g, where g is the gradient and F
the metric tensor. The role of the metric tensor for
noisy parametric quantum evolution has been stud-
ied first in [15], where it was shown that it pro-
vides a method to investigate the convergence time
of standard stochastic gradient descend. When using
the simple parametric gates of (6), the elements of
this tensor can be measured efficiently for pure states
[42, 46]. Moreover, recently the quantum natural gra-
dient has been extended to arbitrary noisy quantum
states [22]. In particular, for slightly mixed states it
is

. 0p 0p
Fop = kEFpp,  Fpp=Tr {39 a0 J ;o (33)
p OUp

where k = 1 for pure states and p is the state after the
parametric unitaries that, for either noiseless or noisy
gates, we can write as p(@) = Ep(0) o --- 0 E1(0)[po]
with po = [0){(¢o]. We focus on F), , as the param-
eter k can be absorbed into the learning rate. The
approximation in (33) is valid when the state has a
high purity [22], as it is expected in good NISQ com-
puters. We may measure the matrix in Eq. (33) us-
ing a combination of the Stochastic Parameter Shift
Rule and the SWAP test. The latter is based on
the simple observation that, for any X and Y, it is
Tr[f(f/} = Tr{g(f( ® Y)},
ator [46]. Using the SWAP test and Eq. (7) we get

where S is the swap oper-

(90 o 9 \] 0w Orvw
F ., = T ) -
p,p Z ! |:S (axt’y ® a-’L’t/,u/ ):| 86}7 80;

t,t',v,v’

(34)

Then, thanks to our analysis from section 3, we may
write

AT

F(t,u),(t/7u/) =Tr [S (axt B ® Dy U/>:| = (35)
— aa/ds/ dSTr ptusa®pt’usa)]
a=+,0'/=%

where Py, s+ is the state in which the gate Ut
has been substituted by the gate Uy(zt,,s) from
Eq. (18), or its noisy implementation as in Sec. 4.2.
Therefore, an estimator of the matrix elements of the
Fisher information matrix can be obtained by sam-
pling two real numbers s and s’ from the uniform
distribution, and then measuring the overlaps of all
quantum states p; . o and py s o o via the swap
test. Note that for noiseless gates the overlaps in (35)
can be simplified in some cases. For instance, when
t'" = t all the gates in the product (4) with larger ¢
disappears from the overlap. It was found in [42] that
a good approximation to the natural gradient can be
obtained by using only the diagonal elements of F'.
Motivated by this, we study what happens when we
fix t and v and call z = z;, as in Sec. 3. With the
notation of Eqgs. (9) and (10), using (11) we may write

Flow) ) =Tr [gjj gg] Tr(gmgm) =
/ ds/ ds’ Tr V(s), ﬁo]i[V(s’),ﬁo]) =
=2(F, — R ), (36)
cis(H+aV) 7 gi(l—s)(H+aV)

where po = |9){(¢], ‘7(5) =

and we have defined
= / ds / s BV V()G . 67)
F— / ds (8] V(3) |6) - (38)

0

Since V is a product of Pauli matrices V(s) is a uni-
tary operator, so both F, and Fj can be measured by
first sampling s and s’ from the uniform distribution,
and then measuring the expectation value using the
Hadamard test [28].

5 Conclusions

We have studied the optimization of a cost function
defined by taking a quantum measurement on a para-
metric quantum state, obtained by applying on a fixed
reference state a controlled evolution with tunable
classical parameters. We have found explicit analyt-
ical formulae for the derivatives of the cost function
with respect to those classical parameters. Our for-
mulae can be applied to any multi-qubit evolution and
generalize the so-called parameter shift rule [29, 38] to
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the general case, without any restriction on the spec-
trum of the operator, and without the use of ancillary
qubits or Hamiltonian simulation techniques [9].

Based on those exact formulae, we have devised
both exact and approximate algorithms for estimat-
ing the derivatives of the cost via carefully designed
quantum circuits. The exact algorithm works when
exact applications of the gates are possible, whereas
the approximate algorithm is designed to tackle spu-
rious interactions in the system that cannot be com-
pletely removed. As such, our algorithm can also be
applied, though with some approximations, when the
gates implemented by the quantum device are noisy,
as it is the case in near-term quantum devices [33].

The main application of our study is to optimize
parametric quantum evolution for quantum optimiza-
tion [32] and machine-learning problems [37].
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A Hadamard test

We discuss how the Hadamard test [16, 26, 28, 46|
can be formally written for general gates. While it
is possible to formally write the gradient in the gen-
eral case, we show that its efficient estimation via the
Hadamard test may be limited to gates acting on few
qubits. Without loss of generality, we consider the
cost (10) and focus on U(z) = !#+V) Thanks to
the identity (11) we can write

5 =iV (@)0(), (39)
where
Y(z)= /O 1 gis(H+aV) [ro—is(A+aV) go (40)
and from Eq. (10)
%?ZWW@MYMWMW (41)

Since Y (x) is a Hermitian operator, it can be ex-
panded in the Pauli basis as

V(@)=Y yu(@)on. (42)

Inserting the above expansion in (41), we see that
the Hadamard test can be extended to the general
case, provided that the expansion coefficients y,,(x)
are efficiently computable and the number of non-zero
terms in the sum (42) is sufficiently small. This is the
case when the operators H and V act non-trivially
on a few qubits but, in general, the formal solution of
Eq. (40), or other methods with comparable complex-
ity, is too difficult for generic many-body operators H
and V. Moreover, for generic many-body operators,
the number of non-zero terms in (42) is expected to
grow exponentially with the number of qubits.

B Explicit algorithms

In this appendix we discuss more explicitly all the
steps to define unbiased estimators of 9C/96, that
can be measured with the Stochastic Parameter Shift
Rule. The full version of Algorithms 2 and 3 is the
following:

Algorithm 4 Stochastic Parameter Shift Rule,
Eq. (22)

1: Sample s from the uniform distribution in [0, 1];
2: set g, = 0;

3: fort=1,...,7 do

4: for all v such that 9y, 2, (0) # 0 do

5: for m={+,—-} do

6: initialize the computer in the state |¢g);

7: sequentially apply the gates Uy for
t' =0...,t—1 to prepare the state |¢)
in Eq. (9);

8: apply the gate [A]tlfs = ¢(1=9)X(8) by
rescaling all parameters;

9: if gates e*?%%t are available then

10: apply the gate e™ 7%t ;

11: else

12: apply the best approximation of

e™T%w for instance using (28);

13: end if R

14: apply the gate U = esX(9),

15: sequentially apply the gates Uy for
t'=t+1,...,T;

16: measure the observable C' and call
the result 7, ¢

17: end for

18: set tw =T+t —T—tv;

19: update g, — gp + 9,00, 7t (0)

20: end for

21: end for

22: the sample g, is such that 90C/96, = E[g,].

By repeating the analysis of Sec. 3.1 we find that
0C/08, = Elg,], so by repeating Algorithm 4 many
times we may estimate the derivative 0C/06, with
the desired precision. A simple counting argument
shows that the number of operations to obtain a single
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outcome is O(2T'N,) where N, is the number of non-
zero Og, ¢, (60). Note that Step 1: in Algorithm 4
can be moved to any other point point before Step 8.
By linearity, the average is always the same, although
each iteration might have a different value of s. We
can reduce the number of operations to get a single
estimate with the following algorithm:

Algorithm 5 Doubly Stochastic Parameter Shift
Rule, Eq. (24)

1: Sample s from the uniform distribution in [0, 1];
2: calculate the probability distribution g,(t,v) de-
fined in Eq. (23) and set n,., as described in
Sec. 3.1;
sample (¢,v) from gp;
for m ={+,—-} do
initialize the computer in the state |1g);
sequentially apply the gates Uy for
t'=0...,t —1 to prepare the state |¢)
in Eq. (9);
7: apply the gate [A]tlfs = !(1=9)%(0) by
rescaling all parameters;

8: if gates e*?%%%» are available then

9: apply the gate e™* 3%t ;

10: else

11: apply the best approximation of e™* 3%t

for instance using (28);
12: end if
13: apply the gate U'f =e
14: sequentially apply the gates Uy for
t'=t+1,...,T;

isX:(0).
)

15: measure the observable C' and call the result
T'm,t,v;
16: end for

17: the sample g, = (74t —7— ¢ )Np,t0 is such that
0C/09, = Elg,).

In Algorithm (5) the quantum computer is still re-
set twice to have a single estimate. Below we define
an algorithm where the computer is initialized only
once

Algorithm 6 Single-measurement sample of 9C/96,

1: Sample s from the uniform distribution in [0, 1];

2: calculate the probability distribution ¢,(t,v) de-
fined in Eq. (23) and set n,,, as described in
Sec. 3.1;

3: sample (¢, v) from gp;

4: initialize the computer in the state |¢);

5: sequentially apply the gates Uy fort' =0... ,t—1
to prepare the state |¢) in Eq. (9);

6: apply the gate U!™* = ¢i(1=9)X:(0) by rescaling
all parameters;

7: sample m € {41, —1} by tossing a fair coin;

8: if gates eT?i%» are available then

9: apply the gate e 3%tw;

10: else

11: apply the best approximation of e™* %t
e.g. using (28);

12: end if

13: apply the gate ﬁf = et Xe(9)
14: sequentially apply the gates Uy for ¢/ = t+
1,...,T;
15: measure the observable C' and call the result ]
16: the sample g, = 2mrn,, ;, is such that 0C/06, =

E[gp)-

)

The above algorithm corresponds to rewriting
Eq. (19) as

1
0.C(z) = > mpm /0 2C (2, 5)ds . (43)
m==

with probabilities p+ = % Putting explicitly the de-
pendence on ¢t and v we get from (24) and from the
notation (8), (9)

ac(0)

k
a0,

= > mnytuPmdp(t,v)x (44)

t,v,m

1
X / 2 <7/}t,u,s,m| C |'l/)t,u,s,m> dS,
0

where m =+, t=1,...,T, and

T t—1
)= T1 Ou0E=rers=/0407 T] O}
t'=t+1 t'=1

(45)
It is worth noting that, depending on structure of the
observable C’, the number of measurements may be
reduced by optimally distributing the number of shots
[36, 44| or employing variance reduction techniques
[15].

C Variance of gradient estimators

By comparing the standard Parameter Shift Rule
(Fig. 1) and Stochastic Parameter Shift Rule (Fig. 2)
we see that the latter has an extra source of random-
ness due to the sampling over the classical parameter
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STD(,C)

Figure 6: Empirical standard deviation of the gradient esti-
mator of 9;C(t,b), with the same notation of Fig. 4(b), for
¢ = 0 and different values of b. The Standard Parameter
Shift Rule corresponds to Algorithm 1. For each point, the
STD is estimated using 10* samples.

s. The stochastic outcomes of these two algorithms
have the same mean, namely the gradient of the cost
function, so in the limit of infinitely-many repetitions
of the experiment these algorithms provide the same
result. However, the variance of the estimators ob-
tained with the two algorithms might be different. As-
suming independent identically distributed samples,
the variance quantifies the expected error when a fi-
nite number of measurements is performed, so it is
important to study whether the extra stochasticity
of the Stochastic Parameter Shift Rule increases the
variance of the gradient estimators.

We first study the gradient of C(t,b) obtained with
C = 6, ® 6, and the cross-resonance gate (29), as
in Fig. 4, but with ¢ = 0. When ¢ = 0 the op-
erator in the exponential has two possible eigenval-
ues u = £+/1+ b2, so for computing the derivative
0;C we can also apply the standard parameter shift
rule, and compare the variance of the resulting esti-
mator with that obtained from the Stochastic Param-
eter Shift Rule. Note that, unlike our Algorithm 2,
the simpler parameter shift rule cannot be applied to
estimate 9,C.

In Fig. 6 we compare the standard deviation of
Algorithms 1, 2, 3. We note that, although Algo-
rithms 2, 3 have extra sampling steps, the resulting
variance is comparable with that of Algorithm 1.

We now study how the standard deviation might
scale as a function of the number of qubits. In
Fig. 7(a) we focus on the Stochastic Parameter Shift
Rule, with the following choice of states and operators

7)

STD(8,.C

7)

STD(8,C

Figure 7: (a) Empirical standard deviation (STD) of the es-
timator from Algorithm 2, using o= Ifla and V = Va from
Eqgs. (46), for different numbers of qubits N. (b) STD of
the gradient estimator obtained via the (standard) Parame-
ter Shift Rule, for a related problem with H = 0, shown in
Eq. (47). In both (a) and (b) the plots are shown for differ-
ent values of the parameter z, as in Eq. (10), while the STD
is estimated via 1000 samples.

o

.4

(.00 (.25 (LAD (.75 Lon
&

Figure 8: Finite difference approximation (solid lines), versus
estimated gradient via Algorithm 2, with error bars as in
Fig. 4. We focus on C(z) with the definitions (10) and
model (46), for different numbers of qubits V.
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R N o PACURPNC)
H, = Z &;])OA-;J—FD + % % ; Vo= 0_21) 3
Jj=1
(46a)
N .
Ao=) o0, [6a) = 10)°™
j=1
(46b)
where (’}g(gj ) means that the operator &, is applied to

the jthe qubit and sNHY = D1y Eqgs. (46) we

have chosen for H, a many-body Hamiltonian with
complex entangling dynamics [20]. The empirical
mean is shown in Fig. 8 for N = 2,3, 4. Larger values
of N are not shown, as they are similar to the case
N = 4. Since H, = 0 we cannot apply the standard
parameter shift rule of Fig. 1. Therefore, to compare
the algorithms 1 and 2 we need to introduce another
model with H = 0, namely where all gates depend on
the parameters as in Eq. 6. We build such a model
using the same operators introduced in Egs. (46) and
define

A A~

m,=0, Vi=0l),  (47a)
N A A A

Aa _ ZeiHa/Q&gj)eiHa/2 : |¢b> — eifla/2 |0>®N_
j=1

(47b)

By comparing Fig. 7(a) with Fig. 7(b), we note that
the standard deviations of both estimators have the
same order of magnitude, that does not seem to in-
crease too much with the number of qubits N, at least
for our choice of Hamiltonians. In Fig. 7(a) we observe
a slight non-monotonic increase, while in Fig. 7(b)
the results are basically independent on N. We be-
lieve that this difference is mostly due to the partic-
ular choice of the models, Eqgs. (46) and (47), that
although related are not identical. Therefore, in our
numerical studies the stochastic parameter shift rule
is basically as efficient as the standard parameter shift
rule, but it is more general.
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