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MEASURING AND CALCULATING QUEUE LENGTH DISTRIBUTIONS 

J. P. Buzen and P. J. Denning 

Abstract: Queue length distributions can be described in three ways: 

as scon by an arriving job, by a completing job, and by an outside 

observer. We show: the arriver's distribution and the completer's 

distribution are the same if flow is balanced; the arriver's distribution 

is a renormalization of the outside observer's distribution if the 

arrival rate is independent of queue length (homogeneous); when 

arrivals are not exactly homogeneous, the error introduced by assuming 

it is can be quantified. The generalized "birth-death recursion" can 

be used to calculate an arbitrary queue's length distribution and a 

"prime queue recursion" can be used if the queue is part of a closed 

network. These results lead to mean value analysis, a simple method 

for computing mean response times and queue lengths in closed queueing 

networks. The basis for the entire discussion is operational analysis, 

whose simple assumptions help e)q)lain why queueing models are robust. 

INTRODUCTION 

Queueing network theory is the mathematical foundation for most 

analytic models of computer systems and communications networks. In 

the early 1970's, performance analysts began employing the equations 

of classical stochastic queueing network theory to calculate throughputs, 

queue lengths, and mean response times for real systems. Numerous 

experimental studies have shown that these models consistently estimate 

the real throughputs to within 5% and the real mean response times to 

within 25%. Queueing network models are robust. 
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The startling success of queueing network models caused a good 

deal of puzzlement among performance analysts. The derivations of the 

main results of stochastic queueing theory assume that the queueing 

network has time-invariant parameters, is in steady state, and has 

exponential distributions of service time at all FIFO (first in first out) 

devices. These assumptions are often seriously violated in practicc. 

Yet, the models work. 

The equations to stochastic queueing theory are relations among 

abstract quantities that cannot be observed directly. To simplify 

and solve the equations,.the assumptions of time-invariant parameters, 

steady state, and exponential service distributions are introduced. 

To apply to solutions, the analyst substitutes measured or estimated 

values for the abstract parameters; he then compares the calculated 

results with other measured values. Hie important point is that the 

analyst replaces the abstract interpretation by an operational one 

whenever applying queueing equations. 

This realization led to a new hypothesis for explaining the success 

of stochastic queueing theory: stochastic equations, when interpreted 

as relations among operational (measurable) quantities, have alternate 

derivations that depend on assumptions commonly satisfied in practice. 

This hypothesis is correct. In 1976 operational analysis was introduced 

as a framework for studying queueing systems during given periods [1,2]. 

The systems may be real or hypothetical, and the time periods may be 

past, present or future. 

Operational variables represent quantities that can be measured 

by observing a system during any given interval, called the observation 

period. Operational analysis derives relations among operational 



3 

quantities and studies their consequences. Some relations, called 

1aws, hold in every observation period [2,3]; others depend on assumptions 

that may be expressed in terms of more primitive operational quantities. 

The underlying principle is that all variables stand for observable values 

and all assumptions are experimentally verifiable. (It is not necessary, 

however, to actually observe the values or run the experiments for an 

operational analysis to make sense.) 

Many of the informal, intuitive arguments used to motivate 

stochastic theorems become rigorous proofs in the formal context 

of operational analysis. Besides simplifying derivations, operational 

analysis extends stochastic theorems by demonstrating their validity 

in cases where the conventional stochastic assumptions do not appear 

justified. Operational analysis has led to new results about sensitivity 

factors and error bounds; these results are particularly valuable for 

prediction because the validity of operational (or stochastic) assumptions 

in future periods is uncertain. 

In 19 78 we published a tutorial on operational analysis of queuei-ig 

network models [3]. We present here new topics not covered in that 

paper. Wc will study the three basic queueing distributions that can 

be measured at a device in the system: the queue length seen by an 

arriving job, by a completing job, and by an outside observer. We will 

study the relations among these distributions. For closed queueing 

network models, we will study the property that a job arriving at a 

given device sees the same queueing distribution as the outside observer 

would see with one less job (the arriver) in the system. This result is 

the basis of "mean value analysis", a new method introduced in 1978 by 

Reiser and Lavenberg [4] for numerically evaluating queueing network models. 
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THE THREE DISTRIBUTIONS AT A QUEUE 

A single-resource queueing system comprises an input port, an 

output port, a queue, and a service facility. All arriving jobs 

(customers) enter by the input port and all completing jobs exit by 

the output port. The queue contains all jobs waiting for or receiving 

service. The service facility consists of one or more processing 

units. 

Suppose that a single-resource queueing system is observed for 

an interval [0, T ] . The state of the queue at time t, denoted n(t), 

is the number of jobs present. It varies from a minimum of 0 to 

a maximum of N during [0, T]. (A nonzero minimum on observed queue 

length changes the boundary condition but not the nature of the results.) 

A record of n(t) fox 0<t<T is called a behavior sequence of the system. 

Figure 1(a) illustrates the behavior sequence of a queue for a 

10-second observation (T = 10). There are 3 arrivals (marked by "a") 

and 4 completions (marked by "c"). 

The behavior sequence of Figure 1(a) satisfies the one-step 

assumption. This means that n(t) can change only in steps of plus or 

minus one, and that no arrival coincides with a completion. Each state 

transition from n to n+1 corresponds to an arrival; each state transition 

from n+1 to n corresponds to a completion. All behavior sequences in 

this paper are of this type. 

There are three.basic operational quantities for a given one-step 

behavior sequence: 

A(n) - Tlie number of arrivers who find n(t) = n 

(i.e., who cause a state transition from n to n+1). 



-H h 
I 1 » 1 1 h 1 1 — ~ t 1 — —1 ! 

3 4 5 6 7 8 9 

a a a c c 

n p ( n > P A ( n ) P c(n) 

0 1/10 1/3 1/1 

1 4/10 1/3 2/4 

7 3/10 1/3 1/4 

3 2/10 - -

1 1. Example showing that the three 
distributions may be different. 

-3(f)-
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C(n) - The number of completions who leave when n(t) = n 

(i.e., who cause a state transition from n to n-1). 

T(n) - The total time during which n(t) = n. 

Note that A(n) counts entries at the input port, C(n) counts exits at 

the output port, and T(n) measures the holding times of states. Note 

that A(N) = 0 and C(0) = 0 since no arrival can occur while the queue 

is full, and no completion can occur while the queue is empty. Grand 

totals are defined as follows: 

A = A(0) + A(l) + ... + A(N-l) 

C = C(l) + ... + C(N-l) + C(N) 

T = T(0) + T(l) + ... + T(N-l) + T(N) 

Box 1 lists various operational quantities that can be derived 

from these three basic quantities. These are the definitions from our 

1978 paper [3]. The quantity S(n), which gives the mean time between 

completions for queue length n , is called the service function• The 

quantity Y(n), which gives the rate of arrivals for queue length n, is 

called the arrival function. The functions S(n) and Y(n) should not be 

confused with distributions of service times and arrival times, respectively; 

service and arrival distributions are not needed for the analysis of 

interest here. We distinguish the restricted arrival rate (Y) from the 

overall rate (Y Q). The restricted rate gives the arrival rate over just . 

those intervals when arrivals are possible; arrivals are impossible 

when the queue is full (n(t) = N). Some of our results are exact only 

when expressed in terms of the restricted arrival rate. 

Given the three basic quantities, we can define the three queueing 

distributions measurable at any single-resourcc queueing system: 
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p(n) = Overall Distribution, the proportion of 

time n jobs are in the system 

= T(n)/T for n = 0 J • • 

p^(n) = Arriver's Distribution, the fraction of arrivers 

who find n other jobs in the system, 

= A(n)/A for n = 0,...,N-1 

p r ( n ) = Completer's Distribution, the fraction of completions 
L 

who leave behind n other jobs in the system 

= C(n+1)/C for n = 0,...,N-1 

Note that C(n+1), which counts state transitions from n+1 to n , also 

counts the number of completions who left behind n other jobs. Cooper 

refers to p(n) as the outside observer's distribution, to a s 

the arriving customer's distribution, and to P^C") a s the departing 

customer's distribution [5]. Figure 1(b), which illustrates these 

distributions for the behavior sequence of Figure 1(a), shows that, in 

general, the three distributions are different. 

The overall distribution, p ( n ) , is used primarily for calculating 

queueing statistics such as mean and variance of queue length. The 

arriver's distribution, p (n), is used to calculate mean response times, A 

which depend on the queue length experienced by the arriver. (Calculating 

response time distributions, however, is much harder [10].) The 

completer's distribution, p^(n), is seldum used because it is almost 

always identical to the arriver's distribution (this will be demonstrated 

below). 

It is sometimes easier to derive one of the distributions and convert 

it to another. For example, the analysis of a Poisson-arrival, general-
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service queue easily yields the distribution p^fn), while the analysis 

of the general-arrival, exponential-service queue easily yields P A (
n ) • 

(See [5] or [6].) The subsequent sections study important relations 

among the distributions. 

Box 2 is a summary of operational laws for these queueing quantities 

Each law can be verified by substituting from the preceding definitions 

and reducing to an identity. These relations are called "laws" because 

they are valid for every possible behavior sequence [2,3]; logically, 

they are tautologies. Relations (6J and (7) of Box 2 have special 

importance. The utilization law, U = XS, states that the proportion 

of time a singlc-resource queueing system is busy (U) is the product 

of the mean time between completions and the output rate. Little's Law, 

R - Q/X, states that the mean response time per visit of a job to the 

queueing system is the ratio of the mean queue length to the output rate 

Because it allows calculating response time from previously calculatcd 

values of mean queue and output rate, Little's law plays a central role 

in mean-value analysis, which is discussed later. 
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Flow Balanced Behavior Sequences 

Flow Balance means that the overall arrival rate Y Q is equal to 

the output rate X. It is equivalent to the condition that the total 

number of arrivals A is equal to the total numbers of completions Cj and 

also to the condition that the initial state n(0) is equal to the final 

state n(T). 

If the behavior sequence is flow-balanced and one-step, the number 

of transitions from state n to state n+1 must equal the number of transitions 

from state n+1 to state n: 

A(n) = C(n+1) n = 0,...,N-1. 

But this implies that 

P A ( n ) = P c ( n ) n = 0,...,N-1. 

Thus, flow balance and one-step behavior imply that the arriver's and 

completer's distributions are identical. In stochastic queueing theory, 

the steady-state arriving customer's distribution is identical to the 

steady-state departing customer's distribution; but the proof, which 

involves limits for infinite time, is more complex [6, pp 176 and 232]. 

If the given behavior sequence is one-step but not flow balanced, 

the difference between A(n) and C(n+1) cannot exceed 1. For this reason, 

the arriver's and completer's distributions seldom differ by much in 

practice. We will ignore the completers distribution hereafter. 

Two important recursions hold in flow-balanced behavior sequences 

for the overall distribution and the arrivers distribution, respectively; [1,7] 

p(n) = SCn) Y(n-l) p(n-l) n = 1,...,N 

P A ( n ) = SCn) Y(n) p A ( n - l ) n = 1,...,N-1 
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These are called operational birth-death recursions. They are easily 

proved by substituting the definitions of Box 1 and applying the flow 

balance condition A(n) = C(n+1). The birth-death recursions can be 

used to claculate values of a distribution from measurements or estimates 

of the service function and arrival rates. To calculate the overall 

distribution, for example, start with a positive value of p(0), say 

p(0)=l; iteratively compute p(l), p(2),..., p(N) from the birth-death 

recursion; and then normalize by dividing each p(n) by the sum 

p(0)+p(U + ...p(N). 

The operational birth-death recursions produce the same formal 

distribution as the steady-state balance equations for a "birth-death 

queue" with state-dependent Poisson arrivals and state-dependent exponential 

service [5,6]. Note, however, that no Poisson or exponential assumptions 

were required to prove the operational-birth-death equations. These 

equations are valid for any one-step, flow-balanced behavior sequence, 

whether generated by a stochastic process or not. In other words, the 

birth-death recursions apply in cases where the conventional stochastic 

assumptions cannot be justified. This helps explain the robustness of 

these results. 
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The servicc function S(n) need not be related in an obvious way 

to the distribution of service requests at the queue; it can bo different 

from the mean of the sei-vice requests even at a single-server queue 

[3,7,8,'J,10] - An algorithm developed by Marie can be used in many cases 

to calculate the service function S(n) from the parameters of the 

distribution of service requests [8, p45].* 

*Marie gives two algorithms. One calculates 1/S(n) for an 

M/G/l queue with state-dependent arrival rate and service distribution of 

stage type [8, p45], Tins algorithm is exact. It is valid also for a queue 

with operationally homogeneous arrivals and stage-type service. The second 

algorithm uses the first as a subroutine to calculate an approximate 

solution to an arbitrary queueing network [9]. Validation studies have 

shown that this algorithm does better than other known approximations in 

nonMarkovian networks with high coefficients of variation at the service 

stations [19]. 



11 

Homogeneous Behavior Sequences 

To apply the birth-death equations to an arbitrary system, one 

must measure or estimate the arrival function Y(n) for n = 0,...,N-1 

and service function S(n) for n = 1,...,N, a total of 2N values. Now, 

the number of independent variables can be reduced significantly by 

making one or both of these assumptions: 

Y(0) = Y(l) = ... = Y(N-l) = constant 

SCI) = S(2) = ... = S(N) = constant 

Equations (2) and (3) of Box 2 imply that the arrival constant must by Y , 

the restricted arrival rate. Likewise, Equation (4) of Box 2 implies 

that the service constant must be S , the overall mean time between completions. 

The assumption that all Y(n) = Y is called homogeneous arrivals; 

it asserts that the arrival rate is independent of the queue size n. 

The assumption that all SCn) = S is called homogeneous services; it 

asserts that the mean time between completions is independent of n . 

These assumptions are examples of the general operational technique of 

simplifying problems by replacing a set of conditional values with a 

single, unconditional value corresponding to the average over the set. 

A further discussion of these assumptions may be found in our tutorial [3]. 

Homogeneity assumptions reduce the number of independent variables 

and thereby simplify both the algebraic form and the interpretation of the resulting 

equations. The simplified equations are of interest only when there is 

reason to believe that they will acceptably characterize actual performance. 

Long behavior sequences of real systems often do approximately satisfy 

these assumptions. 

Since the aggregated ("macro") values of arrival rate (Y) and 
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mean time between completions (S) are usually easier to measure or 

estimate than the individual ("micro") values Y(n) and S(n), the 

homogeneity assumptions have another benefit: they enable the analyst 

to use independent variables that can be measured or estimated with high 

confidence. Even if the homogeneity assumptions are not satisfied 

precisely, it is often better to proceed as if they were, because 

approximate solutions based on a small set of stable variables are often 

more robust than exact solutions based on a large set of unstable variables. 

Box 3 summarizes the consequences of homogeneous arrivals and 

services. (The proofs, which are straightforward applications of the 

laws in Box 2 and the birth-death equations, are elaborated in [11].) 

The main consequence of homogeneous arrivals is that the arriver's 

distribution is a renormalization of the overall distribution; the 

renormalization takes account of the arriver's distribution's being 

zero for a full queue (n(t) = N). This result does not require 

flow balance; to emphasize this point, Figure 2 presents a flow imbalanced 

behavior sequence with T = 5, K = 5 , p(ti) *= 0, and p ^ = p . 

The main consequence of homogeneous services is the equation for 

mean response time, R = S(Q +1). This equation says that the mean 

response time R is the same as the time that the set of Q A
+ 1 jobs in 

the queue just after an arrival would take to complete if each required 

exactly S seconds of service. This interpretation is valid even though 

the mean residual time of the job in progress at an arrival instant is 

not necessarily equal to S. 

The main consequences of both types of homogeneity are the 

formulae for mean queue length and response time, which can be applied 
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l-'KilJKK 2* A flow imhal.mcfid behavior 
sequence for which p = p . 
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when just the values Cor utilization (U), the mean time between completions 

(S), and the proportion of time the queue is full (p(h)) are given. 

The equations in Box 3 are operational counterparts of well-known 

stochastic results. They have the same form but different interpretations. 

For example, the result p ^ = p is familiar to those who have studied 

the unbounded Poisson-arrival, general-service queue in steady-state. 

Saaty [12, p 186] outlines a lengthy proof given by Khintchin [13], but 

Kleinrock's proof is shorter [6, p 118] . Cooper derives Equation. (8) 

for the steady-state arriving customer's and outside observer's distri-

butions for a Poisson-arrival, exponential-service queue with bounded 

waiting room of capacity N [5]. Equation C H ) is the response-time 

formula usually encountered for queues with exponential service distri-

butions [5,6]. Equation (12) is the mean queue usually derived for a 

Poisson-arrival, exponential-service queue with bounded waiting room 

of capacity N , and Equation (13) arises for the same queue with unbounded 

waiting room [5,6]. 

Because the equations in Box 3 have the same mathematical form 

as well-known stochastic results, it is legitimate to inquire whether 

the operational concepts of flow balance and homogeneity are equivalent 

to their stochastic counterparts, steady-state and Markovian assumptions. 

(Markovian assumptions include Poisson arrivals and exponential services.) 

They are not. The operational concepts are measurable properties of 

all behavior sequences whereas their stochastic counterparts are 

precisely observable only for infinite behavior sequences. Figures 

3 and 4 are behaviors of a one-step, flow balanced system with homogeneous 
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arrivals and services. In both cases the mean service time (m) is 

the same as the mean time between completions (S); the coefficient of 

variation of service time, which is the ratio of the standard deviation 

Co) to the mean (m), differs significantly from 1, the value for an 

exponential distribution. These service times are not well modelled by 

exponential distributions. A similar statement holds for interarrival 

times. 

We can extend either sequence by repeating the given pattern 

indefinitely. The resulting behavior sequence, being periodic, has no 

steady-state limit; and, being deterministic, it will fail any statistical 

test for goodness-of-fit to exponential service times (or Poisson arrivals) 

at any given level of confidence. In other words, the extended replication 

of Figures 3 and 4 are non-steady-state, nonMarkovian behavior sequences 

that satisfy the operational conditions of flow balance and homogeneity. 

Whereas a homogeneous behavior sequence need not be Markovian, a 

sufficiently long Markovian behavior sequence will be homogeneous. 

The extended replications of the examples of Figures 3 and 4 are 

contrived to make the point that the operational assumptions of flow 

balance and homogeneity are weaker than their stochastic counterparts. 

It is easy to imagine a deterministic system with the prescribed behavior; 

given the knowledge that the system is deterministic, a reasonable observer 

could not explain the extended replications by postulating a Markovian 

stochastic process. Nevertheless, the formulae originating in Markovian queueing 

theory are valid in this case because they can be derived under operational 

assumptions that are satisfied. This fact helps explain the robustness 

of classical queueing formulae. 
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Analysis of Sensitivity to Assumptions 

In operational analysis it is possible to study the error introduced 

by simplifying assumptions such as homogeneity. Box 4 illustrates two 

analyses of the error in estimates of the arriver's distribution caused 

by an assumption oE homogeneous arrivals. The relative error in an esti-

mate of a value is the same as the relative error in the homogeneity 

assumption, and the weighted relative error in the whole distribution .is 

proportional to the weighted relative error in the homogeneous arrival 

assumption. Similar analyses are possible for errors caused by flow 

balance or by homogeneous services. 

Sensitivity analyses of this type measure the error introduced by 

the assumptions of an analysis. Such analyses have no stochastic counter-

parts. Some stochastic analyses do use the Ergodic Theorem and the Law 

of Large Numbers to study the error between an estimate of a stochastic para, 

meter and the postulated true value, or between a steady-state probabilit; 

and n corresponding proportion of time. But these analyses focus only on 

the error caused by observing a stochastic process during a finite inter/al, 

not on the error caused by possible violations of Markovian assumptions. 

In contrast, operational analysis deals explicitly with finite intervals; 

it is a tool for studying the errors caused by possible violations of 

flow balance or homogeneity. 
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QUEUEING NETWORKS 

The preceding discussion deals with single-resource queueing systems. 

Many real systems are networks of such queues. Models of closed 

queueing networks are the basis of almost all successful analyses of 

computer systems. Closed queueing networks can be applied when the 

"system" includes both the computing devices and the users who submit 

jobs [3]; they can be applied to a subsystem of fixed capacity operating 

under a backlog [3]; and they can be applied to communications networks 

with a fixed number of packets circulating between a given pair of 

communicants [15]. Although they require exponential service distributions 

at FIFO queues, closed network models deal with multiple job classes 

and general service distributions at processor sharing servers, delay 

servers, and LIFO (last in first out) servers [3,14,15,18]. 

The discussion of previous sections applies to any queue, whether 

it is part of a network or not. When a queue belongs to a network, its 

arrival function is determined jointly by the output (service) functions 

of the other queues that feed it. For this reason it is helpful to 

derive additional results that relate queueing distributions to a 1] the 

service functions throughout a network. 

The main parameters of a closed queueing network are the service 

functions, S^(n), defined as in Box 1, and the visit ratios V^ [3]. A 

visit ratio is the average number of times a job visits device i 

during its sojourn in the system. A system has an input port and an 

output port; in a "closed network," a new job is admitted (from an 

external backlog) as soon as a job leaves the system. We let X^(N) 

denote the system throughput for network load N, that is, the job flow 

from the output port to the input port. The throughput at device i is 
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given by the forced flow law [3]: 

X.(N) = V. X Q(N) 

The overall mean response time can be calculated from the mean response 

times per visit to the devices, according to the response time law [3]: 

R Q ( N ) = V ^ f N ) + V k R k ( N ) 

(K is the number of devices in the system.) 

Box 5 summarizes the principal results for the queueing distributions 

in closed queueing networks. The Prime Queue Recursion relates the 

overall distribution at the next smaller load, using the product of the 

device's throughput and service function as the scale factor. It is 

similar to the birth-death recursion in its iteration over queue length, 

but different in its iteration over network load. The Prime Queue 

Recursion holds for any flow-balanced behavior sequence that satisfies 

network-homogeneity. Network homogeneity means that the job flow rate 

between any pair of devices depends only on the queue length at the 

source of the flow [3,16]. Like arrival and service homogeneity for a 

single queue, network-homogeneity is not a Markovian assumption; Sevcik 

and Klawe have presented examples of network-homogeneous behavior 

sequences that do not satisfy Markovian assumptions [17]. Sufficiently 

long Markovian behavior sequences are network-homogeneous. Network-

homogeneity does not imply homogeneous arrivals or homogeneous services 

at any device. 

Box 5 suggests that the Prime Queue Recursion can be used to 

calculate a queue distribution. There is, however, some question about 

the numerical stability of this algorithm. The original algorithms, 
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based on computing normalizing constants, appear to be more robust [20,25]. 

Box 5 also points out the important relation between the arriver's 

distribution and overall distribution at a device in a flow balanced, 

network-homogeneous behavior sequence of a closed queueing network. 

Each arriver sees the same distribution as the outside observer with 

one job (the arriver) removed. In other words, each arriver acts as an 

outside observer of the device when it arrives. This result is the 

basis of mean value analysis, a technique for calculating queueing 

network statistics. 
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Mean Value Analysis 

Mean value analysis is a new technique fox computing mean response 

times, throughputs, and queue lengths at deviccs in closed queueing 

networks [4, 15, 23, 24]. We will present the method in its simplest 

form -- for networks with a single class of jobs and with homogeneous 

services. 

Mean value analysis uses Little's Law, the Forced Flow Law, and 

the arriver's-distribution theorem (Equation 16 of Box 5) to calculate 

iteratively mean values of response time, throughput, and queue length 

for successively larger values of the network load N . The iteration 

stops when the desired load is reached. Three basic equations are used 

at each stage of the iteration. Under the assumption of homogeneous 

services, Equation 11 of Box 3 tells us that the mean response time per 

visit to device i must be, for network load N , R.(N) = S.(Q,.(N) + 1). 
X 1 HI 

Now, the arriver's-distribution theorem (Equation 16 of Box 5) tells us 

that the mean queue length seen by an arriver is the same as the overall 

mean queue length for one less job in the network: = Q^(N-l). 

Thus we have 

(A) R.(N) = S.(Q.(N-1) + 1). 

This is the first basic equation of mean value analysis. 

The response time law tells us that the mean response time across 

the input/output ports of the system, R^v(N)j is the sum, over the 

devices, of the product of the mean response time per visit and the mean 

number of visits. When applied to the entire system, Little's Law tells 

us that-the mean response time, RQ(N), is the product of the number in the 

system, Q q ( N ) , and the throughput of the system, XQ(N). Solving for the 

system throughput, we have X_(N) = Q ^ C ^ / R ^ O O • But because the system 
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is closed Q q ( N ) = N . Thus 

K 

(B) X Q ( N ) = N / I V. R^(N). 

i=l 

This is the second basic equation of mean value analysis. 

The forced flow law states that the throughput at device i , 

X^(N), is V ^ X Q ( N ) . Little's law tells us that the mean queue length 

at device i, Q ^ ( N ) , i 5 the product of the throughput, X^(N), and the 

mean response time p e r visit, R^(N). Thus 

(C) Q.(N) = V . X Q ( N ) R.CN). 

Hiis is the third basic equation of mean value analysis. 

Box 6 illustrates a calculation for a simple three-device network-

The iteration begins with load N = 0 and all mean queue lengths zero. 

It then applies Equations (A)-(C) until N reaches the desired load. 

The values of R^(N), X Q ( N ) , and Q i ( N ) could also be computed by an 

algorithm based on normalizing constants [25]. Mien R^(N) and Q^(N) 

must be computed for every server in the network, the normalizing-

constant method and mean-value method require approximately the same 

number o f arithmetic operations and the same amount o f storage. There 

are, however, many applications in which the throughput (N) is the 

only quantity sought; in this case, the normalizing-constant method 

requires approximately half as much storage as the mean-value method. 

It remains an open question which of the two methods is numerically 

the more robust for calculating queue-length distributions. Bccausc 
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menu-value analysis is new, it is too early to present a comprehensive 

analysis of its strengths and weaknesses relative to normalizing-constant analysis. 

Box 6 also illustrates a simple, but accurate, approximation 

siiHIH'SUid by I'. Sell we i I w r, V. Hard, ami •>. Zalior jan. The appnix i ma ti on 

finds the mean response times, queue lengths, and system throughput 

without enumerating these values for smaller loads, but it does involve 

other types o f iterations. It is ba:sed on the assumption that changing 

tiie load from N-l to N scales up the mean queue lengths by a factor of 

N/(N-1) . 

Mean value analysis can be extended in several ways. Equation (A), 

the formula for mean response time, is valid at a device with FIFO, 

L U ; 0 , or processor-sharing scheduling [4,18,19,20,23]. If device i is 

a "delay server", which has at least as many internal processors as 

there are jobs in the network, each job will experience the same delay 

S^ (its own service time) irrespective of the queue length; in this case 

we replace Equation (A) by 

R (N) = S.. (all N ) . 

In general, we can substitute a response time formula for each particular 

type of device [24]. 

Another extension removes the homogeneous-scrvice assumption. The 

response time per visit to a general, load-dependent device i is, from 

Little's Law, 

N 

R.(N) = Q . ( N ) / X . ( N ) = I n p.(n,N)/X.(N) . 
x l i i=l

 1 1 
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Applying the prime queue recursion (Box 5), this reduces to 

N 
(A 1) R (N) = Z n S (n) p (n-1, N-l) . 

1 i=l 1 1 

For the general server, we use Equation A ' to compute mean response time 

(instead of Equation A). To do this, however, we must compute the 

entire queue distribution for each network load, which implies that 

Equation C must be replaced with the evaluation of the overall queueing 

distribution (see Box 5). Because the computations are considerably 

more complex for a load-dependent device, most implementations are hybrid 

they require the user to specify whether each device is load-dependent, 

then they apply the more complex algorithm only at those devices where 

it is needed [18,19,20,25]. 

Another extension is for multiclass systems. Each workload 

consists of a fixed number of jobs having common visit ratios and 

service functions. The visit ratio for this case, V . . , is the mean 
ij 

number of visits a type j job makes to device i, and the service 

function, is the mean time between completions of type j 

jobs at device i, given that n „ jobs of type j are present. The 

algorithms then calculate the quantities R ^ (N), (N) , and X ^ (N) 

for each job class j at each network load N . The details of these 

algorithms are given by Reiser and Lavenberg [4, 15, 23] and by Bruell 

and Balbo [18, 19, 20]. 

Mean value analysis can also be extended to approximate solutions 

for closed queueing networks that are not network-homogeneous. For 

example, Bard suggests extensions to handle priority scheduling in 

multiclass networks [24J. Such extensions may ultimately prove to be 
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the most practical contribution of mean value analysis. Even when the 

system is network-homogeneous, mean value analysis suggests approximations 

that work well (especially for heavy loads) without calculating all the 

intermediate results. Box 6 shows an example. Bard [24] and Reiser 

[15] present others. 
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CONCLUSIONS 

The derivations of this paper illustrate the power of operational 

analysis. Although most results were already known as stochastic 

theorems, the operational proofs are significantly simpler. These 

proofs also demonstrate that the theorems are valid in many practical 

cases where stochastic assumptions cannot be justified. This helps 

explain the robustness of queueing network results in practice. 

Operational analysis both extends and simplifies stochastic analysis. 

This paper has also initiated study of operational bounds on the 

errors that can arise if homogeneity is only satisfied approximately. 

Such bounds are important for prediction, because the future validity 

of all assumptions is uncertain. Since it is difficult to 

quantify the concept of "approximate validity" for stochastic assumptions 

such as ergodicity or Poisson arrivals, operational analysis has an 

advantage over stochastic modeling in this regard. 

The discussions of the prime queue recursion, mean value analysis, 

and approximation methods illustrate that important new results 

continue to be discovered in the theory of queueing networks. Becausc 

of its simplicity and intuitive appeal, mean value analysis is a particularly 

promising tool for investigating approximate solutions of queueing 

network models. 
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Box 1 - Operational Quantities 

S(n) = mean time between completions when n(t) = n 

= T(n)/C(n) (defined only if C(n )>0) 

B = total busy time 

= T(l) + T(2) + ... T(N) 

S = overall mean time between completions 

= B/C 

U = utilization 

= B/T 

X = output rate 

= C/T 

W = job-seconds of accumulated waiting time 

N 
£ n T(n) 

n=l 

Q = mean queue length 

= W/T 

R = mean response time per completed job 

= W/C 

Y = arrival rate when n(t) = n 

= A(n)/T(n) (defined only if T(n)>0) 

YQ = overall arrival rate 

= A/T 

Y = restricted arrival rate 

= A/(T-T(N)) (defined only if T(N)<T) 



Box 2 - Operational Laws 

CD P A ( n ) = p(n)(Y(n)/Y Q) (if Y(n) defined) 

(2) Y/Y„ - l/(l-p(N)) (if T(N)<T) 

(3) 

N-l 
£ p(n) Y(n) 

n=0 

(for defined Y(n)) 

(4) 

N 
I p c(n-l) S(n) 

n=l 

(for defined S(n)) 

(5) 

N 
S p(n)/S(n) 

n=l 

(for defined S(n)) 

(6) = SX = l-p(O) [Utilization Law] 

(7) =» Q/X [Little's Law] 



Box 5 — Consequences of Homogeneity and Flow Balance [11] 

Arrivals to a single-server queue are homogeneous if Che arrival rune I ion 

is a constant equal to the rustrictcd arrival r;ite, that is, if Y(n) = Y 

for n = 0,...,N-1. Services are homogeneous if the service function is 

a constant equal to the overall mean time between completions; that is, 

if S(rt) = S for n = 1,...,N. 

If arrivals are homogeneous, the arrivers distribution is directly pro-

portional to the overall distribution: 

(8) P A ( n ) = l ]_ }y ( N ) , n = 0 N-l, 

where p(N) is the proportion of time the queue is at its maximum value. 

This implies that the mean queue length seen by an arriver (Q A) is 

related to the overall mean queue length (Q) by 

( 9 ) Q = q - Npcn) 
A 1 - p(N) • 

If p(N) is small, Q. is approximately Q. 

If services are homogeneous, the mean queue length seen by an arriver 

is related to the overall mean queue length and the utilization by 

(10) Q A = Q/U - 1. 



Box b, continued (2) 

and the mean response time is 

(11) R = S(Q a+1). 

If arrivals and services are both homogeneous, the overall mean 

queue length is 

(12) Q = z _ p ( N ) (1 - (N+l)p(N) ). 

The mean response time is calculated from this by applying Little's Law 

(BOX 2), R = Q/X. If p(N) is small, the overall mean queue length is 

approximately 

In many real applications, however, Equation (12) gives better results 

if an estimate or measurement of p(N) is available. 



Box 4 — Example of an Operational Sensitivity Analysis 

Suppose that arrivals are approximately homogeneous. The deviation from 

exact homogeneity can be expressed so: 

Y
Y ^ J ( n ) I < e for n = 0,...,N-1 

Let denote the estimate of the arrival distribution obtained by using 

the homogeneous arrival assumption. The relative error caused by the 

homogeneous arrival assumption is 

e A ( n ) = I 
P A(n) " P ACn) 

" A P A ( n ) 

By Equation (1) of Box 2 , each term p,(n) is equal to p(n)Y(n)/Y . If 
ft u 

arrivals are assumed to be homogeneous, then p (n) is equal to p(n)Y/Y . 
n U 

Substituting, 

r ^ iY-YCn) , „ 
e A = ' Y(n) 

In words, the relative error in the approximation to P A (
n ) the same 

as the relative error in the approximation to Y(n). 

Relative errors can be deceptive: large errors can sometimes bo tolerated 

if they are infrequent. It is sometimes useful to employ another measure 

of the deviation from exact homogeneity: 

V l Y - Y(n) | p(n) . 

n = 0 '
 Y

 ' ^ 



Box 4, continued 

The weighted relative error caused t>y the homogeneous arrival assumption 

is then 

N-l 

®A = 2 P A ( n ) e A ( n ) ' 
n=0 

Substituting | (Y-Y(n))/Y(n) j for e (n) and p(n)Y(n)/Y for p [n), 

„ _ V p(n)YCn) , Y - Y(n) 
A ~ Y ' Yfnl A n=0 "o L J 

Cancelling Y(n), multiplying and dividing by Y, and setting Y/Y Q 

= H(1-p(N)) [Equation (2) of Box 2], this reduces to 



Box 5 -- The Prime Queue Recursion 

Consider a closed queueing network containing N jobs and K devices. For 

a given behavior sequence, the overall distribution p^(n,N) at device i 

denotes the proportion of time that n jobs are enqueued at devicc 

i (n = 0,...N). If the behavior sequence is flow balanced and network-

homogeneous (see text), the overall distribution satisfies 

C14) P i ( n , N ) = X . ( N ) S . ( n ) p . ( n - 1 , N - 1 ) 

where is the throughput at device i (for network load N) and 

S^(n) is the service function for device i. We call this the prime 

queue recursion because it can be used to derive formulae for many other 

performance quantities of queueing networks [18, 19, 20]. It was first 

proved by Reiser and Lavenberg [14]. 

The prime queue recursion suggests an algorithm for computing a queue 

distribution given throughputs for various network loads N . Begin with 

p iC0,0) = 1. Having calculated p ^ n - 1 , N-l) for n « 1,...N, apply 

Equation (14) to calculate p^(n,N); then choose P i(0,N) by subtracting 

the utilization ^ ( N ) = p (l JN)+...+p i(N,N) from 1.0. This is repeated 

for successive N until the desired load is reached. If this algorithm 

is applied at a bottleneck in the system; it will eventually get to a 

load N at which LK(N) is approximately 1.0 whereupon the subtraction 

to calculate p^(0,N) may generate a round-off error that propagates to 

larger values of N . To help control the error, we check that p^fO.Ni^O 

after the subtraction l.O-U.(N); if the subtraction yields a negative 



Box b, continued (2) 

result, set p^O,!*!) = 0. Even with this fix, however, the algorithm 

seems to generate significant errors for larger N; the normalizing-

constant algorithms [20,25] appear to be more numerically stable. 

For a given behavior sequence, let p ^ ( n , N ) denote the arrivers distribut-

ion at device i; that is P A^(n,N) is the fraction of arrivers who find n 

in the queue at devicc i (given network load N). If the behavior sequence 

is.flow balanced, 

P A i ( n , * 0 = X . W s.Cn+1) ' 

this can be proved-by substituting the definitions of overall distribution, 

throughput, and service function and using the flow balance condition to 

reduce the right side to the left [11] - On applying the prime queue 

recursion to p^fn+ljN), this equation reduces to 

(16) P A i(n,N) » p.(n, N-l) . 

Equation (16) was noted informally by Reiser and Lavenberg [4] and 

later proved by them [21]; it is a special case of a stochastic theorem 

proved by Sevcik and Mitrani [22]. The details leading to Equation 

(16) show that is is true operationally [11]. Its interpretation is 

that the arrivers see the same distribution as the outside observer 

with one. job (the arriver) removed form the network. 



Box 6 -- Examples of Mean Value Calculations 

Consider a system with K = 3 and these visit ratios and mean service 

times: 

= 1 V 2 = 2 V 3 = 3 

Sj = 2 $ 2 = 1 S 3 = 1 (seconds) 

The results of the mean-value calculation up through N = 4 are shown 

i table 

N R ^ N ) R 2 ( N ) R 3 ( N ) X 0 ( N ) Q x CN) Q 2 C N ) Q 3 ( N ) 

0 - - - - 0.000 0.000 0.000 

1 2.000 1.000 1.000 .143 .286 .286 .429 

2 2.571 1.286 1.429 .212 .545 .545 .909 

3 3.091 1.545 1.909 .252 .779 .779 1.443 

4 3.557 1.779 2.443 .277 .985 .985 2.030 

We will illustrate the calculation of the mean queue length Q 3 ( 4 ) . We 

first calculate mean response times Rj(4), I ^ ^ 5 a n c* 

Equation A . For example, 

R 2 ( 4 ) = S 2 ( Q 2 ( 3 ) + 1) 

= (1)(.779 + 1) 

= 1.779 seconds 

Then we calculate the overall mean response time: 



Box b, continued (2) 

R 0 ( 4 ) = V ^ W + V 2 R 2 ( 4 ) + V 3 R 3 ( 4 ) 

«= (1)(3.557) + (2) (1.779) + (3) (2.443) 

- 14.444 seconds. 

Equation B gives the system throughput: 

X (4) = 4/R Q(4) = 4/14.444 = .277 jobs/sec. 

Finally, Equation C gives the mean queue at device 3: 

Q 3 C 4 ) = V 3 X 0 ( 4 ) R 3 ( 4 ) 

= (.277)(3)(2.443) 

= 2.030 jobs. 

If wc are willing to sacrifice some accuracy in the solution, we can 

obtain the values R^, Q^, and X^ for a given value of N without 

enumerating all these quantities for loads smaller than N . A reasonable 

approximation is that Q (N-l) is (N-l)/N as large as Q i ( N ) . (This 

approximation was suggested to us by J . Zahorjan, P. Schweitzer and Y . Bard.) 

The refore, we seek values of , Q^, and X Q satisfying 

R. = S. (Q.^rr- + 1 ) i = 1,... ,K 
l 1 1 N ' 

X n = N/EV.R. 
0 1 1 

Q. = V. X . R. i = 1,..., K 
l 0 i 



Box 6, continued (3) 

We can obtain a solution iteratively: start with a guess of all the mean 

queue lengths Q^ (summing to N), and then compute a new guess by evaluating 

these equations; repeat this until successive guesses for the Q^ do not 

differ by much., (Termination in guaranteed [24].) This iteration is 

asymptotically correct for large N [24]. The table below presents the 

values obtained by applying this approximation for N = 4; the errors 

between the approximate and the true values (from the previous table) 

are quite good. 

Rj(N) R 2 ( N ) R 3 ( N ) X q(N) Q 1 ( N ) Q 2 ( N ) Q 3 ( N ) 1 

Hxac t 
(N=4) 

3.557 1.779 2.443 .277 .985 .985 2.030 

Approx 
(N=4) 3 . 39 3 1.6 9 7 2.606 .274 .929 .929 2.141 

% Error -4.6 -4.6 +6.7 -1.1 -5.7 -5.7 +5.5 
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