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Abstract Attentional dwell time (AD) defines our inability
to perceive spatially separate events when they occur in
rapid succession. In the standard AD paradigm, subjects
should identify two target stimuli presented briefly at differ-
ent peripheral locations with a varied stimulus onset asyn-
chrony (SOA). The AD effect is seen as a long-lasting
impediment in reporting the second target, culminating at
SOAs of 200–500 ms. Here, we present the first quantitative
computational model of the effect—a theory of temporal
visual attention. The model is based on the neural theory
of visual attention (Bundesen, Habekost, & Kyllingsbæk,
Psychological Review, 112, 291–328 2005) and introduces
the novel assumption that a stimulus retained in visual short-
term memory takes up visual processing-resources used to
encode stimuli into memory. Resources are thus locked and
cannot process subsequent stimuli until the stimulus in
memory has been recoded, which explains the long-lasting
AD effect. The model is used to explain results from two
experiments providing detailed individual data from both a
standard AD paradigm and an extension with varied expo-
sure duration of the target stimuli. Finally, we discuss new
predictions by the model.
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Our ability to allocate processing resources at different
spatial locations across time is one of the core topics in
visual attention research. Several different paradigms have
been used to probe the nature of spatial shifts of visual

attention. In classic cuing paradigms, Posner and colleagues
observed attentional shifts and called upon a metaphor that
explains visual attention in terms of a spotlight highlighting
a particular location in space (e.g., Müller & Rabbitt, 1989;
Posner, 1980). Likewise, visual search paradigms have been
used to probe the time course of spatial shifts in search for a
target among distractors. Here, a main issue has been the
extent to which attention operates in parallel versus serially
across the visual field (e.g., Bundesen, 1990; Kyllingsbæk,
Schneider, & Bundesen, 2001; Shiffrin & Gardner, 1972;
Shiffrin & Schneider, 1977; Treisman & Gelade, 1980;
Wolfe, 1994). However, in many of these paradigms, the
detailed time course of individual shifts of attention has
been elusive. In visual search paradigms, for example, the
measured reaction times may include several shifts of atten-
tion between stimuli or groups of stimuli, obscuring the time
course of individual shifts of attention. Thus, to study indi-
vidual shifts of attention, a simpler paradigm is needed.

Duncan, Ward, and Shapiro (1994; see also Ward,
Duncan, & Shapiro, 1996) proposed the attentional dwell
time (AD) paradigm as a simpler alternative when the time
course of visual attention is investigated. In the standard AD
paradigm, two target stimuli (T1 and T2) are presented at
peripheral locations around a central fixation cross (see
Fig. 1). Presentations are brief—typically, around 50 ms—
and the target stimuli are followed by pattern masks to
prevent further processing after their offset. The stimulus
onset asynchrony (SOA) is varied systematically from 0 to
around 1,000 ms, and subjects are instructed to make an
unspeeded report of the identity of the targets. The AD
effect is seen as an impediment in reports of T2 culminating
at onset-to-onset times of 200–500 ms. Furthermore, the
effect is surprisingly long-lasting; thus, report of T2 is
independent of presentation of T1 only after 1 s has passed
(see Fig. 2).
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Ward, Duncan, and Shapiro (1997) related findings from
the AD paradigm to a simplified version of the attentional
blink (AB) paradigm where T1 and T2 have to be identified
in a centrally presented stream of distractors (rapid visual
serial presentation [RSVP]; e.g., Broadbent & Broadbent,

1987; Chun & Potter, 1995; Potter & Levy 1969; Raymond,
Shapiro, & Arnell, 1992). In their simplified version, T1 and
T2 were backward masked and presented on the same
spatial location, but without the stream of distractors. The
time course of effects seen in this simplified version of the
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Fig. 1 Experimental setups. A
short fixed delay preceded the
presentations of T1, while the
SOA between T1 and T2 was
varied. The exposure durations
of T1 and T2 were fixed in
Experiment 1 but varied in
Experiment 2
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Fig. 2 Results of Experiment
1: The probabilities of correctly
reporting T1 (pT1, squares) and
T2 (pT2, circles) as functions of
SOA for each of the 3 subjects
in Experiment 1 and for the
group average reported in
Duncan et al. (1994). The
exposure duration of both
targets was τ 0 60 ms for
subjects 1 and 3 and τ 0 50 ms
for subject 2. In Duncan et al.,
the average exposure duration
was taverage ¼ 57 ms. The
plotted standard deviations are
calculated assuming that the
responses from the subjects
were approximately binomially
distributed. Furthermore, the
probability of making an eye
movement (peye, bars) is
displayed as a function of SOA
for each of the 3 subjects in
Experiment 1. Finally, the least
squares fits of the TTVA model
to each of the four data sets are
plotted for T1 (dashed line) and
T2 (solid line)
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AB paradigm was similar to the time course observed in the
AD paradigm, and thus Ward et al. (1997) argued for a
common underlying mechanism. In this article, we have
chosen to focus on the AD paradigm by Duncan, Ward,
and Shapiro (1994). This decision was made because we
wanted the simplest possible setup to measure and model
the temporal dynamics of attention. Using the AD paradigm,
we do not have to deal with distractors as presented in the
AB paradigm or the undesired premasking of T2 by T1 that
occurs in the paradigm by Ward et al. (1997) when T2 is
presented in close temporal proximity to T1.

Although results from the initial studies using the AD
paradigm attracted much attention, only a few subsequent
studies using the paradigm have been reported. In two such
studies, the effect of the masks following T1 and T2 was
investigated: Moore, Egeth, Berglan, and Luck (1996) found
that the duration of the AD effect was reduced significantly to
about 200 ms when presentation of the mask for T1 was
postponed until the offset of T2. Brehaut, Enns, and Di
Lollo (1999) extended these results by investigating the effect
of using an integration mask versus an interruption mask. The
AD effect was found only when T2 was masked by interrup-
tion. Recently, Petersen and Kyllingsbæk (in press) presented
an extensive study of the effect of eye movements and practice
in the AD paradigm. In the previous studies, each subject ran
fewer than 1,000 trials, andWard et al. (1996) reported little or
no effect of practice across the 2 days the subjects were tested.
In contrast, Petersen and Kyllingsbæk found a strong reduc-
tion in the AD effect following 6 days of intensive practice
corresponding to a total of 4,680 trials. For some of the
subjects, the AD effect was virtually absent on the final day
of testing. It was found that controlling for eye movements
and using masks that varied from trial to trial, rather than a
fixed mask as used in the classical AD experiments, counter-
acted the effect of practice and led to a stable AD effect across
the six test sessions.

In this article, we present results from two experiments
providing detailed individual data from both a traditional
AD paradigm and an extension where we varied the expo-
sure duration of the two target stimuli. To explain the results
of the experiments, we propose the first computational mod-
el of the AD effect. The model is based on the neural theory
of visual attention (NTVA) by Bundesen, Habekost, and
Kyllingsbæk (2005; see also Bundesen, 1990) and introdu-
ces the novel assumption that retention of a stimulus (e.g.,
T1) to be remembered in visual short-term memory (VSTM)
takes up visual-processing resources used to identify the
stimulus. Until the stimulus is recoded into a nonvisual
(e.g., auditory, motoric, or amodal) format, the resources
are locked and cannot be used to encode subsequent stimuli
(e.g., T2) into VSTM. This mechanism creates a temporary
encoding bottleneck that explains the time course of the AD.
Other computational models of temporal attention have

primarily focused on the AB, but none of these models have
accounted for data from the AD paradigm.

Experiment 1

In Experiment 1, accurate measures of the time course of the
AD in individual subjects were made, requiring subjects to be
tested for a considerable number of trials to minimize noise.
Such accurate measures were necessary in order to thoroughly
test the proposed model. We incorporated the improvements
suggested by Petersen and Kyllingsbæk (in press) into the
experiment. Thus, we analyzed only trials without eye move-
ments and varied the mask from trial to trial. This enabled us
to map the time course of the AD with great precision.

Method

Subjects Three psychology students (all female; mean age 0
27 years) from the University of Copenhagen were paid a
standard fee by the hour for participating in the experiment.
All had normal or corrected-to-normal vision.

Targets The targets were all 26 uppercase letters of the
English alphabet constructed from 27 unique line segments.
The letters were white, with a width and height of 1.10° and
1.65°, respectively.

Masks The masks varied from trial to trial in order to ensure
that subjects did not habituate to the pattern of any particular
mask. The masks were constructed from the same 27 unique
line segments that were used for constructing the stimulus
letters (see Fig. 1). Each mask was made by randomly
choosing 14 of the 27 unique line segments and shifting
the 14 segments independently of each other 0.55° to the left
(probability .2), 0.55° to the right (probability .2), 0.55° up
(probability .2), 0.55° down (probability .2), or not at all
(probability .2). This procedure made the size of the masks
slightly larger than the size of the letters.

Procedure Stimuli were presented on a 19'-in. CRT mon-
itor at 100 Hz, using in-house custom-made software
written in C++. A white fixation cross (0.55° × 0.55°)
was displayed on a black background together with four
white boxes serving as place holders (1.65° × 2.20°).
The boxes were placed at the corners of an imaginary
square 5.5° from fixation (see Fig. 1). Subjects initiated
every trial themselves by pressing the space bar on the
keyboard. After a delay of 200 ms, the first target letter
(T1) appeared in one of the boxes, followed by a mask
that stayed on the screen until the end of the trial. After
an SOA of 0, 30, 50, 80, 100, 150, 200, 300, 600, or
900 ms, a second target (T2) was presented in one of the
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three remaining boxes, followed by a second mask for
240 ms. The subjects responded by typing the letters on
a keyboard in any order preferred. A forced choice
procedure was applied; that is, subjects should respond
to each of the targets even if they had to guess.

Subjects were instructed to maintain central fixation during
trials but were allowed to move their eyes between trials. Eye
movements were measured using a head-mounted eye tracker
(EyeLink II). A trial was categorized as a trial with eye move-
ments if the gaze deviated more than 2.75° from the fixation
cross (i.e., half the distance from the fixation cross to the target
locations) at any time during the trial before the onset of the
second mask. We did not measure eye movements after the
onset of the second mask, assuming that they would not
influence the identification of T2. If no eye movements were
registered outside the 2.75° boundary, the trial was catego-
rized as a trial without eye movements.

All subjects did six sessions on 6 different days. Each
session comprised 50 practice trials and two blocks of experi-
mental trials. Before the first block of the first session, subjects
performed a calibration procedure to avoid floor or ceiling
effects. The calibration used an adaptive psychophysical pro-
cedure (accelerated stochastic approximation; Kesten, 1958)
that adjusted the exposure duration of the letters such that, on
average, one of the two letters (i.e., about 50% of the presented
letters) were correctly reported in the condition in which the
two letters were presented simultaneously (i.e., SOA 0 0) . The
procedure comprised 50 trials on which the exposure duration
on the current trial was adjusted on the basis of the exposure
duration and the number of correctly reported targets on the
previous trial. Each subject performed three calibrations. The
first calibration was initiated using an exposure duration of
80 ms, and the following two calibrations used the outcome
of the previous calibration as the starting point. The calibration
resulted in 60-ms exposure duration for subjects 1 and 3 and
50-ms exposure duration for subject 2.

Design Letters were chosen randomly without replacement so
that each letter was used once and only once as the first and
second targets for each SOA, to avoid variation caused by
different salience of the letters. Furthermore, letters were cho-
sen so that within a trial, the two target letters were always
different. With 10 SOAs and 26 letters, one block of the
experiment consisted of 260 trials. Thus, the entire experiment
comprised 3,120 experimental trials. Target locations were
pseudorandomized such that within one block of the experi-
ment, T1 and T2 were presented equally often in all four boxes.

Results and discussion

Figure 2 shows the mean probability of correctly reporting
T1 (pT1) and T2 (pT2) as a function of SOA for each of the 3

subjects. For the condition in which both targets were pre-
sented simultaneously (i.e., SOA 0 0 ms), the average of pT1
and pT2 is plotted.

Only trials without eye movements were included in the
above calculations. Although subjects were instructed to
maintain central fixation, they nevertheless made eye move-
ments. According to Petersen and Kyllingsbæk (2012), trials
with eye movements should be excluded from the data
analysis because they confound the AD effect. The bars in
Fig. 2 show the proportion of trials with eye movements
(peye) as a function of SOA for each subject.

Finally, Fig. 2 shows the standard deviations of pT1 and
pT2. The standard deviations were calculated assuming that
responses from the subjects were binomially distributed;
that is, we assumed stochastic independence of the trials
and a constant probability p of correctly reporting a target.
The standard deviation for a probability p is then given by

SD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ=Np

, where N is the number of trials in the
condition.

Letter identification All 3 subjects showed a fast gradual
decrease in pT2 as the SOA increased from 0 to 100–200 ms,
followed by a slow improvement as the SOA increased
beyond 200 ms. Duncan et al. (1994) found a similar time
course of pT2 (cf. Fig. 2) and reported that pT1 was higher
when T1 was presented alone (i.e., SOA > τ), as compared
with when it was presented together with T2 (i.e., SOA 0 0).
All 3 subjects showed a corresponding increase in pT1.
Furthermore, our data suggest that the increase occurred
gradually.

The data also suggest some individual variation in letter
identification. The most noticeable difference was observed
in the magnitude of the impairment of pT2, with subject 2
producing a notably larger impairment than did subjects 1
and 3.

Eye movements Individual variation was also found in the
proportion of trials with eye movements. Subject 1 made very
few eye movements, whereas a higher proportion of trials with
eye movements was recorded for subjects 2 and 3—in partic-
ular, at the longer SOAs. Eye movements were measured until
the onset of the second mask, which suggests that the recorded
eye movements were prompted by the presentation of T1. This
may explain why more eye movements were recorded at long
SOAs, as compared with short SOAs: If T2 was presented in
close temporal proximity to T1, programming of an eye move-
ment toward T1 was interrupted by the onset of T2. Thus, the
longer the SOA, the smaller the likelihood that the onset of T2
interrupted the execution of an eye movement toward T1.

In summary, Experiment 1 replicated the AD effect at the
level of the individual subjects. The measurements of the
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time course of the AD turned out to be very accurate and
revealed individual differences especially in the magnitude
of the AD.

Experiment 2

In Experiment 2, we investigated performance in the AD
paradigm by varying both the SOA between T1 and T2 and
the exposure duration of the letters. This added an additional
unexplored dimension to the data and provided new impor-
tant information about the AD effect.

Investigating attentional effects by altering the exposure
duration of stimuli is not a new idea. Sperling (1967) sys-
tematically varied the exposure duration of the targets in his
whole-report paradigm and found an increase in the number
of reported letters as the exposure duration increased.
Sperling argued that this was evidence not only of limited
storage capacity of VSTM, but also of a limitation in how
fast letters can be encoded into VSTM. Systematic variation
of exposure duration was also used in the partial-report
paradigm by Shibuya and Bundesen (1988), with results
suggesting that the process of encoding the targets and
distractors had a fixed capacity limitation. This finding
among others later led to the development of Bundesen's
(1990) theory of visual attention (TVA).

However, when it comes to investigations of dual
tasks like the AB paradigm, only a few studies have
systematically altered the exposure duration of targets
(Jolicoeur & Dell’Acqua, 1999, 2000; McLaughlin,
Shore, & Klein, 2001). To our knowledge, this is the
first time that exposure duration of targets has been
varied in the AD paradigm. From a modeling perspec-
tive, we find this to be a crucial manipulation if one
wants to understand the mechanisms behind the AD
effect. In the special case in which T1 and T2 are
presented simultaneously (i.e., whole report), TVA has
already provided a detailed mathematical description of
how an increase in exposure duration leads to more
correctly reported targets. Experiment 2 should show us
if essentially the same description can be used when T1
and T2 are presented with a temporal gap.

Method

Subjects Three psychology students (all female; mean age 0
21.7 years) from the University of Copenhagen participated
in the experiment and were paid a standard fee by the hour.
All had normal or corrected-to-normal vision.

Targets The targets were all 26 uppercase letters presented
in Elektra font (available on a free license from http://
www.dafont.com). The letters in the Elektra font are made

up of small black boxes placed on a grid containing a total
of five boxes in the horizontal direction and seven boxes in
the vertical direction. Our letters had a width and a height of
0.65° and 0.98°, respectively.

Masks Masks were constructed by randomly placing black
boxes in half of the locations in a grid containing seven
boxes in the horizontal direction and nine boxes in the
vertical direction. Thus, the masks were slightly bigger than
the letters, with a width of 0.90° and a height of 1.23°. In
total, 26 masks were constructed using this procedure.
However, if a mask was constructed with a very uneven
distribution of black boxes, it was replaced by a new mask
in an effort to ensure that all masks would be equally
efficient.

Procedure Stimuli were presented on a 19'-in. CRT monitor
at 100 Hz using E-Prime 2.0 software. A black fixation
cross (0.41° × 0.41°) was displayed on a gray background.
Subjects initiated a trial by pressing the space bar, and after
a delay of 100 ms, the first target letter (T1) appeared at one
of four possible locations. Similar to Experiment 1, target
locations were at the corners of an imaginary square 3.5°
from the fixation cross, but in contrast to Experiment 1, the
locations were not marked by place holders. T1 was pre-
sented for τ1 ms, followed by a mask that was presented
until the end of the trial. Afterward, the second target (T2)
was presented at one of the three remaining locations for a
duration of τ2 and then masked for 240 ms. The SOA
between the onsets of T1 and T2 was 200, 500, or 900 ms
(see Fig. 1). As in Experiment 1, subjects responded by
typing the letters on a keyboard in any order preferred and
were required to always report two letters (i.e., a forced
choice procedure).

In contrast to Experiment 1, exposure durations were varied
systematically in this experiment. Thus, no initial calibration
of exposure duration was done. Subjects performed only a
short practice block of 25 trials before starting each exper-
imental block. Subjects ran four blocks of the experiment on
4 different days.

Identical to the procedure of Experiment 1, subjects were
required to maintain central fixation during trials but were
allowed to move their eyes between trials. A table-mounted
eye tracker (Eyelink 1000) was used to ensure that no eye
movements were made during trials. Similar to Experiment
1, a trial was categorized as a trial with eye movements if the
gaze moved more than 1.75° away from the fixation cross
(i.e., half the distance from the fixation cross to the target
locations). In contrast to Experiment 1, trials with eye move-
ments were reinserted and rerun at the end of a block,
ensuring a full data set regardless of the frequency of eye
movements.
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Design The experiment comprised four conditions. In con-
dition 1, the exposure duration of T1 (τ1) was varied while
the exposure duration of T2 was kept constant (τ2 0 80ms). In
conditions 2–4, the exposure duration of T2 (τ2) was varied
while the exposure duration of T1 was constant (τ1 0 80 ms).
The SOA in condition 1 was 900 ms, whereas the SOA in
conditions 2, 3, and 4 was 200, 500, and 900 ms, respectively
(see Table 1). In each condition, nine different exposure
durations were used: 10, 20, 30, 40, 50, 60, 80, 110, and
140 ms. As in Experiment 1, stimulus letters were chosen
randomly without replacement, such that each letter was used
once and only once as the first and second targets in every
combination of condition type and exposure duration.
Furthermore, the two letters within a trial had to be different.
We used a factorial design where condition type, exposure
duration, and letter type were randomly intermixed. Thus, one
block of the experiment comprised 936 trials (4 conditions × 9
exposure durations × 26 letter types), and the entire experi-
ment comprised 3,744 experimental trials, excluding trials
with eye movements. In contrast to Experiment 1, target
locations were selected at random without any constraints
(i.e., without any balancing).

Results and discussion

Figures 3 and 4 show the results of Experiment 2. Figure 3
shows (a) the proportion pT2 of correct reports of T2 as a
function of exposure duration τ1 of T1 when τ1 was varied
(i.e., in condition 1) and (b) the proportions pT1 of correct
reports of T1 as functions of exposure duration τ2 of T2
when τ2 was varied (i.e., in conditions 2–4). The flat lines
are the model predictions. Figure 4 shows (a) the proportion
pT1 of correct reports of T1 as a function of its exposure
duration in condition 1 and (b) the proportions pT2 of correct
reports of T2 as functions of its exposure duration in con-
ditions 2–4. The sigmoid lines are the model predictions. In
all conditions, the probability of correctly reporting a letter
with an exposure duration of 10 ms was at the level of blind
guessing (1/26). As the exposure was increased from 10 to
140 ms, the probability of correctly reporting the letter
increased as a sigmoid function of the exposure duration.
The highest rates of increase were found in conditions 1 and
4, in which the longest SOA (900 ms) was used. In these
conditions, the processing of T2 seemed unaffected by the
presentation of T1, and vice versa. By contrast, if T1 and T2
were presented in close temporal proximity (SOA 0 200 ms,
condition 2), the presentation of T1 strongly reduced the rate
of increase in the probability of correctly reporting T2 as a
function of its exposure duration (see the lowest curve in
each of the three panels in Fig. 4). This reduction was
gradually attenuated as the SOA was increased to 500 ms
(condition 3) and further increased to 900 ms (condition 4).
Thus, similar to Experiment 1, a transient impairment in

correctly reporting T2 was found in Experiment 2. In sum-
mary, both Experiments 1 and 2 yielded highly systematic
dwell time data for individual subjects. In the remaining part
of this article, we will focus on the development of a
mathematical model to account for these data.

A theory of visual attention

The theoretical basis of the model is the TVA (Bundesen,
1990). TVA is a computational model, which makes it
possible to make quantitative predictions of results from
experiments on visual attention. This section gives a short
introduction to TVA and a neural interpretation of TVA
(NTVA), whereas the following section describes the prin-
ciples behind a temporal extension of TVA accounting for
the AD data.

TVA has accounted for a wide range of experimental
findings, including effects of object integrality (Duncan,
1984), varying numbers of targets in studies of divided
attention (Sperling, 1960, 1967), varying numbers of targets
and distractors in partial report (Bundesen, Pedersen, &
Larsen, 1984; Bundesen, Shibuya, & Larsen, 1985;
Shibuya & Bundesen, 1988), selection criterion and set size
in visual search (Treisman & Gelade, 1980), and practice in
visual search (Schneider & Fisk, 1982). TVA proposes that
visual recognition and attentional selection of elements in
the visual field consist in making perceptual categorizations.
A perceptual categorization has the form "object x belongs
to category i" (or equivalently "object x has feature i"),
where x is an object in the visual field and i is a perceptual
category (e.g., a certain color, shape, movement, or spatial
position). An object x is said to be encoded into VSTM if a
categorization of the object is encoded into VSTM. The
categorizations are assumed to be processed mutually inde-
pendently and in parallel. The “speed” at which a particular
categorization is encoded into VSTM is determined by the
hazard function, v(x,i)—that is, the density function of the
conditional probability that a categorization will occur at
time t, given that the categorization has not occurred before
time t. Parameter v(x,i) is also referred to as the processing
rate of categorizing object x as having feature i and is
calculated using the rate equation of TVA,

v x; ið Þ ¼ η x; ið Þbi
wxP
z2S wz

ð1Þ

where η(x,i) ∈ ℝ+ ∪{0} is the strength of the sensory evidence
that object x belongs to category i, βi ∈ [0,1] is the perceptual
bias associated with category i, and wx ∈ ℝ+ ∪{0} is the
attentional weight of object x which is divided by the sum of
attentional weights across all objects in the visual field, S.

In many applications of TVA, it is convenient to define
the total processing rate of an object, vx, as the sum of the
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processing rates of all categorizations of object x—that is,

vx ¼
X
i2R

v x; ið Þ ¼
X
i2R

η x; ið Þbi
wxP
z2S wz

¼ sx
wxP
z2S wz

; ð2Þ

where R is the set of all perceptual categories and sx ¼
P

i2R
η x; ið Þbi is referred to as the sensory effectiveness of object x.
Furthermore, it is convenient to define the total processing
capacity, C, as the sum of processing rates across all perceptual
categories, R, and all elements in the visual field, S—that is,

C ¼
X
x2S

X
i2R

v x; ið Þ ¼
X
x2S

vx ð3Þ

Thus, if all objects presented in a display have the same
sensory effectiveness s (homogeneous display), then by
inserting Eq. 2 into Eq. 3, we find that

C ¼
X
x2S

s
wxP
z2S wz

¼ s ð4Þ

We may postulate that the sensory effectiveness is the
same for all letters in a paradigm if we make the following
assumptions: Assume that the bias values for all letter types,
bA; bB; . . . ; bZ equal a positive constant β but, for any other
perceptual categories (e.g., color, size, etc.) the bias param-
eters equal zero. Then the sensory effectiveness can be
simplified to sx ¼

P
i2 A;B;...;Zf g η x; ið Þb. Furthermore, assume

that for any letter x different from letter type i, η x; ið Þ ¼ 0
(i.e., perceptual confusion errors are neglected) but, for any
letter x of letter type i, η x; ið Þ equals a positive constant η for
all i 2 A;B; :::; Zf g. Then, the sensory effectiveness reduces
to s 0 ηβ and is the same for all letters.

In this special case of TVA, Eq. 4 can be inserted into
Eq. 2, and the processing rate of a letter x can be calculated
by the simplified equation,

vx ¼ C
wxP
z2S wz

ð5Þ

where C is now the total processing capacity for letters. This
simplification leads to a fixed-capacity independent race
model (Shibuya & Bundesen, 1988) in which the visual
system is assumed to have a limited processing capacity
and objects in the visual field compete for these limited
processing resources. The competition is represented by
the attribution of attentional weights. Objects with high
weights will get more processing resources than will objects
with low weights. Objects will then race against each other
to access VSTM. The more processing resources allocated
to an object, the higher is the probability that the object will
be encoded into VSTM. Only objects encoded into VSTM
can be reported correctly without guessing. In TVA, VSTM
is assumed to have a limitation as to how many object it can
hold at any given time. For normal subjects, the capacity of
VSTM (K) is around three to four objects.

If the number of presented objects does not exceed K and
stimulus processing is interrupted by a mask presented at
stimulus offset, the probability of encoding an object into
VSTM has traditionally in TVA been given by

p ¼ 1� e�vx t�t0ð Þ for t > t0 ð6Þ
where vx is the processing rate of object x, τ is the exposure
duration of object x, and t0 is the longest ineffective exposure
duration (a.k.a. the threshold for visual perception). That is, if
the exposure duration of an object is shorter than t0, the
probability of encoding the object into VSTM will be zero.
However, if the exposure duration of an object is longer than
t0, the processing time of the object is assumed to be expo-
nentially distributed, resulting in an exponential increase in
the probability of encoding the object into VSTM as a func-
tion of exposure duration.

Recently, Dyrholm, Kyllingsbæk, Espeseth, and
Bundesen (2011) have provided evidence suggesting that
some variation in t0 across trials must be incorporated into
TVA. This may be achieved by assuming that t0 is approx-
imately normally distributed with mean μ0 and standard
deviation σ0. When limitations of the storage capacity of
VSTM can be neglected, the probability of encoding an
object into VSTM is then approximated by

p ¼
Z t

�1

1

σ0
f

t0 � μ0

σ0

� �
1� e�vx t�t0ð Þ

� �
dt0

¼ Φ
t � μ0

σ0

� �
� e�vx t�μ0�1

2σ
2
0vxð ÞΦ t � μ0 � σ2

0vx
σ0

� �
ð7Þ

where 1
σ0
f t0�μ0

σ0

� �
is the probability density function of t0 if

t0 is normally distributed with mean μ0 and standard devi-
ation σ0. ϕ(x) and Φ(x) are the probability density function
and the cumulative distribution function of the standard
normal distribution, respectively. In other words, the time
it takes for an object to be encoded into VSTM is modeled
as coming from an ex-Gaussian distribution (i.e., a convo-
lution of a normal distribution and an exponential distribu-
tion; Luce, 1986).

The neural interpretation of TVA

The neural interpretation of TVA (NTVA; Bundesen et al.,
2005) is a further development of TVA. Whereas TVA is a
formal computational theory, NTVA is a neurophysiological
model using biologically plausible neural networks to im-
plement the equations of TVA at the level of individual
neurons. In NTVA, the number of cortical neurons repre-
senting an object x is proportional to the relative attentional
weight of the object,wx=

P
z2S wz, and the level of activity in

the neurons representing object x corresponds to the
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multiplicative scaling of the relative attentional weight by sx
(or C if the display is homogeneous). Each neuron is
regarded as representing the properties of only one object
at a time, which is supported by evidence from single-cell
studies (Moran & Desimone, 1985). In this way, cortical
neurons are distributed among the objects in the visual field
so that each object will race toward VSTM with an individ-
ual processing rate vx ¼ sxwx=

P
z2S wz.

The implementation of VSTM in NTVA builds on the
Hebbian notion that short-term memory is based on retaining
information in feedback loops that sustain activity in the neu-
rons representing the information (Hebb, 1949). In NTVA, a
categorization of an object x becomes encoded in VSTM by
becoming embedded in a positive feedback loop—a feedback
loop, which is closed when, and only when, a unit representing
object x in a topographic map of objects (the VSTM map) is
activated. Thus, impulses routed to a unit that represents an
object at a certain location in the topographic VSTM map of
objects are fed back to the feature units from which they
originated, provided that the VSTM unit is activated. If the
VSTM unit is inactive, impulses to the unit are not fed back.
Thus, for each feature-i neuron representing object x, activation
of the neuron is sustained by feedback when the unit represent-
ing object x in the topographic VSTM map of objects is
activated.

The storage limitation ofK objects in VSTM is implemented
as a K-winners-take-all-network in which all nodes have inhib-
itory connections to all other nodes in the network and excit-
atory connections (feedback loops) to themselves. When fewer
than K objects are encoded, the inhibitory activation within the
network is low enough to allow activation of additional nodes
(encoding of more objects). However, if K objects have been
encoded, the inhibitory activation within the network is so high
that activation of additional nodes will not be possible.

A theory of temporal visual attention

TVA has been applied to a wide range of behavioral para-
digms. However, most of these paradigms have used simul-
taneous presentation of stimuli (e.g., whole report and
partial report). The AD paradigm introduces a temporal
dimension that has not previously been accounted for by
TVA or NTVA. In this section, we will introduce a theory of
temporal visual attention (TTVA), which aims to explain
how states of attention change over time. The model is a
generalization of TVA and reduces to TVA in the special
case in which stimuli are presented simultaneously.

Multiple races for encoding

When TVA is applied to paradigms with simultaneous pre-
sentation of letters, it is assumed that only one calculation of

attentional weights is performed, followed by a single race
among the letters to become encoded into VSTM.
Following Shibuya and Bundesen (1988), let t1 be the time
from the stimulus display is presented until the race toward
VSTM is initiated, let t2 be the time from the postmask is
presented until the race is interrupted by the mask, and let t0
be the difference between t1 and t2—that is, t0 0 t1-t2. Then
the race lasts for a time equal to the stimulus duration
τ minus t0, provided τ > t0. If τ ≤ t0, no race is run.
Thus, parameter t0 is the longest ineffective stimulus
duration.

The probability that the stimulus becomes encoded is a
function of τ - t0 (cf. Eq. 6), but independent of t1 and t2 as
long as the difference between the two times, t0, is kept
constant. Thus, our model predictions would be the same if
t1 equaled t0, while t2 was 0. For ease of exposition, we shall
suppose that calculation of attentional weights begins when
the letters are presented (time 0) and finishes such that the
race based on the weights can begin at time t0. The race is
interrupted as soon as the mask is presented, at time τ,
yielding a race duration of τ - t0.

In temporal paradigms such as the AD paradigm, an
extended way of thinking about the calculation of attention-
al weights and the following race is required because letters
are no longer presented simultaneously (except at SOA 0 0).
The simplest extension is to introduce multiple calculations
of attentional weights such that attentional weights are
redistributed and a new race is initiated every time a letter
is presented. Thus, when two letters are presented with a
temporal gap, two calculations of attentional weights will be
initiated—one when T1 is presented and one when T2 is
presented. This implies that the calculations will finish at
separate time points, resulting in two redistributions of the
attentional resources—one at t01 (i.e., t0 for T1) and one at
t02 (i.e., t0 for T2). Following each redistribution, a new race
toward VSTM will be initiated. For both T1 and T2, the race
lasts until the masks destroy their representations—that is,
until time τ1 for T1 and until time SOA + τ2 for T2.

Locking of resources

As previously described, NTVA introduces a feedback
mechanism from the VSTM map of objects back to the
visual-processing neurons representing the encoded fea-
tures of the objects. This sustains activity in the neurons
and, thus, the representation of an encoded object in
VSTM—a feedback loop. In paradigms such as whole
and partial report, a feedback loop can sustain either the
representation of an encoded letter or some representation
of the subsequent mask—the latter if the letter was not
encoded before the mask destroyed its representation. In
this case, subjects may categorize part of the mask as a
letter and sustain this representation in a feedback loop.
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In a scenario with multiple races, a similar feedback
mechanism may exist if we assume that neurons already
engaged in a feedback loop are prevented from being real-
located to process other objects in a later race without first
being disengaged from the loop. We say that neurons are
locked in a feedback loop to retain a representation of the
encoded object in VSTM. In TTVA, the time it takes to lock
a neuron in a feedback loop is assumed to be exponentially
distributed with a rate parameter ll and is referred to as the
lock-time. The exponential distribution may also be de-
scribed by its mean μl ¼ 1=ll which we will refer to as
the mean lock-time.

Release of resources

Inspired by the attentional dwell-time hypothesis (Ward et al.,
1996), we propose that after a neuron has been locked to retain
a representation of an encoded object in VSTM, it will dwell
on the object such that the representation can be recoded into a
more permanent storage for later report. We refer to this as the
dwell-time of the locked neurons. As for the lock-time, we
assume that the dwell-time is exponentially distributed with a
rate parameter ld and refer to the mean of the distribution as
the mean dwell-time (μd ¼ 1=ld ). After the dwell-time has
passed, a neuron is released (i.e., the feedback loop is broken)
and can be redistributed to process other objects. However,
one may assume that even though the loop is broken, feedback
from VSTM is still active and guides the neuron such that it is
not redistributed to process the same object. This seems a
plausible assumption, since a similar guiding mechanism has
been reported in studies of inhibition of return (Posner &
Cohen, 1984; Klein, 2000). These studies have found that
after attention is removed from a previously attended periph-
eral location, there is a delay in responding to subsequent
stimuli displayed at the same location.

Modeling the attentional dwell time effect

The locking and releasing of visual-processing neurons can be
combined to account for the attentional dwell time effect
observed in Experiments 1 and 2. When T1 and T2 are
presented simultaneously (i.e., SOA 0 0), t01 and t02 follow
the same normal distribution with a mean μ0 and a standard
deviation σ0. This reduces TTVA to the traditional TVAmodel
with only one race initiated at time t0. In this special case,
neurons will be distributed equally among the two letters,
since the relative attentional weight for either letter equals 1

2 .

This implies that the processing rate of either letter is 1
2C, and

we predict equal probabilities of encoding T1 and T2.
If, however, T1 has a head start (i.e., SOA > 0), t01 and t02

will no longer follow the same normal distribution: t01 will be

normally distributed with mean μ0 and standard deviation σ0
whereas t02 will be normally distributed with mean SOA + μ0
and standard deviation σ0. Thus, when T1 has a head start, it is
most likely that t01 ≤ t02. In the interval between t01 and t02,
only the attentional weight of T1 will be available. In this
interval, T1 will have an advantage over T2, since all neurons
will be allocated to process T1 such that the processing rate of
T1 is C. The head start of T1 results in a further advantage as
neurons processing T1 (or the mask for T1) in the interval
between t01 and t02 may be locked to retain the representation
of T1 in VSTM. Consequently, T2 will lack processing
resources when it is presented approximately 100–200 ms
after T1 (see Fig. 2).

However, T1 loses this advantage as the interval between
t01 and t02 increases, because more neurons will be released
from T1 and become available for the processing of T2.
Thus, when the interval between t01 and t02 is long, all
neurons will have been locked to and released from T1
and are now exclusively available for the processing of
T2. Thus, when T2 is presented approximately 900 ms after
T1, both letters will have a processing rate of C.

The model sketched above explains the temporal impair-
ment in correctly reporting T2 observed in the AD paradigm.
The model also explains the improvement in correctly report-
ing T1 when T1 is presented alone (i.e., SOA > τ1) and the
equal probability of correctly reporting T1 and T2 when the
two letters are presented simultaneously (i.e., SOA 0 0). For a
more formal description of the model, see the Appendix.

Fits

The presented model has five free parameters: μl (mean lock-
time), μd (mean dwell-time), C (total processing capacity), μ0
(mean of the longest ineffective exposure duration, t0), and σ0
(standard deviation of t0). A least-squares method was used to
fit the model to the behavioral data in Experiments 1 and 2.
Furthermore, to show that the model can also be used to
explain existing AD data, it was fitted to the data from
Duncan et al. (1994). In all three experiments, the subjects
were forced to respond—if necessary, by guessing. To account
for the guessing, we used a high-threshold guessing model,
which assumes that a subject reports the identity of a target
correctly if the target becomes encoded into VSTM1but, if the
target fails to become encoded into VSTM, the subject
guesses at random among the N alternatives. Formally, the

1 The assumption implies that a target that becomes encoded into
VSTM is retained or recoded so well that the identity of the target
can be reported even if a second target with the same attentional weight
as the first target competes with the first one for processing resources.
This simplification seems plausible in view of our presumption that up
to K independent items can be retained in VSTM without noticeable
interference between them.
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adjusted probability of correctly reporting a target T using this
guessing model can be defined as

padjT SOAð Þ ¼ pT SOAð Þ þ 1� pT SOAð Þð Þ 1
N

ð8Þ

In the experiment by Duncan et al. (1994), only two letter
types for T1 and two digit types for T2 were used.
Therefore, we used N 0 2 when the model was fitted to
these data. In Experiments 1 and 2, 26 different letter types
were used for both T1 and T2. Thus, we used N 0 26 when
the model was fitted to the data in Experiments 1 and 2.

Figure 2 shows the model fit to the data from Duncan et
al. (1994) and the model fits to the data from the 3 subjects
in Experiment 1. Figures 3 and 4 show the model fits to the
data from the 3 subjects in Experiment 2. The estimated
parameters for all fits are listed in Table 2, together with
measures of goodness of fit (root mean squared deviations
[RMSD]).

The model was fitted with encouraging precision to the
data in Experiment 1, and the model also made good pre-
dictions of the data in Experiment 2 and Duncan et al.
(1994). The largest RMSD values were found for the fits
to the data in Experiment 2. This is not surprising, since the
data in Experiment 2 were substantially more complex than
the data in Experiment 1. In Experiment 1, only the SOA
was varied, whereas in Experiment 2, both the SOA and the
exposure duration of the targets were varied. On the other
hand, the data in Experiment 2 constrained the model better
than did the data in Experiment 1.

On the whole, the estimates for the parameters seem
plausible. The estimated values of the total processing ca-
pacity, C ¼ 14:4� 92:8 Hz, are in the same range as previ-
ously estimated values (C ¼ 45 Hz, Shibuya & Bundesen,
1988; C ¼ 23� 26 Hz, Finke et al., 2005; C ¼ 70 Hz,
Vangkilde, Bundesen, & Coull, 2011). The estimated values
of the mean of t0, μ0 ¼ 8:7� 29:5 ms, are also consistent
with previous findings (t0 ¼ 18 ms, Shibuya & Bundesen,
1988; t0 ¼ 16� 36 ms, Finke et al., 2005; t0 ¼ 15 ms,
Vangkilde et al., 2011). The remaining parameters in the
model have not previously been explored, but the estimates
seem realistic. For all subjects, the mean lock-time, μl, was
estimated to be much shorter than the mean dwell-time, μd,
so the subjects seemed much faster at locking neurons than at
releasing them.

Another interesting observation is that the standard devi-
ation of t0, σ0, is estimated to be larger for the subjects in
Experiment 1, as compared with the subjects in Experiment
2 and the experiment by Duncan et al. (1994). This may
relate to the masking of the letters. In Experiment 1, the
masks were randomly generated, whereas in Experiment 2,
26 different masks were used. In Duncan et al., only one
fixed mask was used. As touched upon earlier, the race
toward VSTM is initiated t1ms after the onset of a letter

and lasts until the mask destroys the representation of the
letter t2ms after the onset of the mask. Parameter t0 is
defined as the difference between t1 and t2, t1 � t2 . This
means that t0 is modulated by the effectiveness of the masks.
That is, t0 will be longer if the mask is effective, so that it
quickly destroys the representation of the letter. On the other
hand, if the mask is less effective, t0 will decrease and may
become negative. When only a single mask is used, the
effectiveness of the mask will be the same on all trials,
resulting in only a small variation in t0 and a low estimate
of σ0. However, when different masks are used, some will
be more effective than others, and the variation in t0
becomes larger and, thus, the estimate of σ0 increases. In
Experiment 2, the 26 different masks seemed nearly equally
effective. By contrast, the random generation of masks in
Experiment 1 resulted in a large variation in the effective-
ness of the masks. This is probably the reason why the
estimate of σ0 is larger for the subjects in Experiment 1, as
compared with the subjects in Experiment 2.

With as many as five free parameters, a natural question
to ask is whether a model with fewer parameters might fit
the data with the same precision. Two alternative models are
interesting in this regard: A model in which σ0 ¼ 0 and a
model in which μl ¼ μd. Figure 5 (top left) shows the fits of
these two alternative models to the data from subject 1 in
Experiment 1. From visual inspection of the fits, the two
models seem to perform worse than the TTVA model (with
five free parameters). However, such a comparison must
take the number of free parameters (i.e., the flexibility of
the model) into account alongside the goodness of fit. For
this reason, we employed the second-order Akaike and
Bayesian information criteria (AICc, Sugiura, 1978, and
Hurvich & Tsai, 1989; BIC, Schwarz, 1978), which penalize
a model for additional free parameters. We computed AICc
and BIC from least-squares statistics. That is,

AICc ¼ n ln

Pb"2
n

� �
þ 2nk

n� k � 1
ð9Þ

and

BIC ¼ n ln

Pb"2
n

� �
þ k lnðnÞ ð10Þ

where
Pb"2 is the residual sums of squares, n is the sample

size, and k is the number of free parameters. Table 3 shows
AICc and BIC values for the three models fitted to the data
from the 3 subjects in Experiment 1 and the 3 subjects in
Experiment 2. In 5 out of the 6 subjects, AICc and BIC were
lower for the TTVA model, as compared with the model in
which σ0 ¼ 0 and the model in which μl ¼ μd . This
indicates that the TTVA model should be preferred over
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the two alternative models. F-tests comparing TTVA with
the two nested models supported this conclusion. The F-
tests revealed that TTVA fitted significantly better than the
model in which σ0 ¼ 0, F(6, 246) 0 19.89, p < .001, and the
model in which μl ¼ μd, F(6, 246) 0 28.31, p < .001.

In contrast, a competing model with the same number of
parameters or even more parameters might exist. Here, an
assumption of unlimited capacity is interesting in opposition
to the capacity-limited assumption made in TTVA. TTVA
can be made into an unlimited-capacity model by assuming
that the pool of neurons is never exhausted but that the same
number of neurons are available at all times. Figure 5a
shows the best possible fit of such an unlimited capacity

model. Clearly, this model is not attractive, since the prob-
ability of correctly reporting T1 and T2 are the same at all
SOAs. However, a mixture between a capacity-limited and a
capacity-unlimited model might perform better. If p is the
probability that on a given trial, the capacity is unlimited,
the average processing rate will become pC þ 1� pð Þn,
where C is the processing rate in the capacity-unlimited
model and v is the processing rate in the capacity-limited
model. We fitted this mixture model to the data from our two
experiments and found that, on average, p had a value of
.042 (SD 0 .036). That is, the mixture model provided
almost the same fits as the capacity-limited model. Thus,
TTVA with limited capacity should be preferred.
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Fig. 3 Results of Experiment 2. The probability of correctly reporting
T2 (pT2, circles) as a function of exposure duration τ1 of T1 in
condition 1 (i.e., when τ1 was varied), and the probabilities of correctly

reporting T1 (pT1, squares) as functions of exposure duration τ2 of T2
in conditions 2–4 (i.e., when τ2 was varied). The flat lines are the
model predictions
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Fig. 4 Further results of Experiment 2: The probability of correctly
reporting T1 (pT1, squares) as a function of its exposure duration in
condition 1, and the probabilities of correctly reporting T2 (pT2,

circles) as functions of its exposure duration in conditions 2–4. The
sigmoid lines are the model predictions.
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General discussion

We investigated the AD effect in two experiments in which
we varied the SOA between two targets systematically be-
tween 0 and 900 ms (Duncan et al., 1994). In both experi-
ments, we ran many trials across several experimental
sessions to get reliable individual estimates of the probabil-
ities of reporting either one of the two targets correctly.
Trials with eye movements were discarded (cf. Petersen &
Kyllingsbæk, 2012). In Experiment 1, we replicated and
extended the findings of Duncan et al. (1994), keeping the
exposure durations of the two targets (T1 and T2) constant
at about 50 ms. Here, we found a fast decrease in the
probability of correct report of T2 as SOA was increased
from 0 to about 200 ms, followed by a gradual increase such
that report of T2 was effectively equal to performance on T1
at the longest SOA of 900 ms. In Experiment 2, we ran a
new version of the AD paradigm by varying not only SOA,
but also the exposure durations of T1 and T2 systematically
between 10 and 140 ms. We found strong effects of both
exposure duration and SOA. T2 performance was again
lowest at an SOA of 200 ms, and performance on T2 was
similar to performance on T1 at the longest SOA of 900 ms.

A theory of temporal visual attention

We proposed a quantitative model to account for the results of
the two experiments—a theory of temporal visual attention
(TTVA). The model was based on the NTVA by Bundesen et
al. (2005). As in NTVA, visual processing resources are dis-
tributed among objects such that the number of visual neurons
representing an object is directly proportional to the attentional
weight of the object. When the categorization "object x has
feature i″ enters VSTM, a node representing object x is activat-
ed in the topographic VSTM map of objects. To be retained in
VSTM, some of the visual-processing neurons representing
feature i of object x must become embedded in a positive
feedback loop between these neurons and the node representing
object x in the VSTM map. Thus, the perceptual machinery
used to categorize stimuli in the visual field (neurons represent-
ing features of object x) is also utilized when information is
retained in VSTM. The process of establishing the feedback

loops of VSTM takes time. We model this time by a new rate
parameter μl. When visual-processing neurons are locked for
items encoded in VSTM, they cannot be used to process other
stimuli in the visual field. This explains the attentional dwell
time phenomenon. We conjecture that visual processing neu-
rons are released from VSTM when the information has been
recoded to a nonvisual (e.g., auditory, motoric, or amodal)
format. The recoding process also takes time, and we modeled
the rate of the recoding process by parameter μd. Thus, we
modeled the AD phenomenon using two well-motivated
parameters in addition to the parameters already given in
NTVA. The model fitted the data of the two experiments with
great precision.

Related work

Computational models of spatial shifts of visual attention Reeves
and Sperling (1986; see also Sperling & Reeves, 1980)
proposed an attention gating model (AGM) to account for
the time course of spatial shifts of attention. Using the
AGM, they modeled data from a paradigm using RSVP.
Two visual streams containing letters and digits, respective-
ly, were presented to the left and right of fixation. The rate of
presentation was varied between 4.6 and 13.5 Hz. The task
of the subject was to detect a predesignated target letter in
the left stream and then shift attention to the right stream as
quickly as possible to report the digits presented simulta-
neously with and following the target. In the AGM, an
attentional gating function is modeled using a delayed gam-
ma distribution comprising a convolution of two identical
exponential distributions. Reeves and Sperling (1986) fitted
the distribution to their data from 3 subjects and found rates
of 7.52 Hz (μ 0 133 ms), 6.21 Hz (μ 0 161 ms), and 5.46 Hz

Table 2 Estimates of parameters by least-squares fits of TTVA to
individual data from the 3 subjects in Experiment 1, group data
reported by Duncan et al. (1994), and individual data from the 3
subjects in Experiment 2

μl μd μ0 σ0 C RMSD
(ms) (ms) (ms) (ms) (Hz)

Exp 1, Sub 1 80.8 507.8 29.5 32.5 92.8 0.018

Exp 1, Sub 2 32.0 610.8 8.8 37.6 50.1 0.034

Exp 1, Sub 3 38.9 260.4 8.7 19.3 14.4 0.023

Duncan et al. 84.3 404.2 12.7 7.9 24.2 0.019

Exp 2, Sub 1 144.1 234.3 27.2 11.8 35.0 0.036

Exp 2, Sub 2 52.8 470.8 29.2 13.2 50.2 0.035

Exp 2, Sub 3 95.0 336.7 27.2 11.8 36.8 0.040

Note. Parameter μl is the mean lock-time, μd is the mean dwell-time, μ0

is the mean of t0 (the longest ineffective exposure duration), σ0 is the
standard deviation of t0, C is the total processing capacity, and RMSD
is the square root of the mean squared deviation between observed and
theoretical probabilities of correctly reporting T1 and T2.

Table 1 Overview of the four different conditions in Experiment 2

Condition τ1 (ms) τ2 (ms) SOA (ms)

1 10−140 80 900

2 80 10−140 200

3 80 10−140 500

4 80 10−140 900

Note. τ1 and τ2 indicate the exposure durations of T1 and T2, respec-
tively, and SOA is the stimulus onset asynchrony between T1 and T2.
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(μ 0 183 ms), respectively. Comparing these values with the
estimates of μl and μd derived from our model, our estimate
of μl was somewhat lower, whereas our estimate of μd was
higher, but the estimates were similar in order of magnitude.

Sperling and Weichselgartner (1995; see also Weichselgartner
& Sperling, 1987) extended the AGM of Reeves and Sperling

(1986) into an episodic theory of the dynamics of spatial
attention (ETDSA), which describes the time course of visual
attention as a sequence of discrete attentional episodes. The
smooth transition between attentional episodes is described by
a temporal transition function that is identical to the attentional
(gamma) gating function of the AGM. In ETDSA, attention is
analogous to a spotlight that illuminates only a single location

Table 3 AICc and BIC values for the three models (i.e., the TTVA model, the model in which σ0 ¼ 0, and the model in which μl ¼ μd) fitted to the
data from the 3 subjects in Experiment 1 and the 3 subjects in Experiment 2

AICc BIC

TTVA σ0 ¼ 0 μl ¼ μd TTVA σ0 ¼ 0 μl ¼ μd

Exp 1, Sub 1 −145.45 −104.70 −133.92 −144.75 −103.38 −132.60

Exp 1, Sub 2 −120.99 −115.40 −103.76 −120.29 −114.09 −102.45

Exp 1, Sub 3 −136.57 −136.26 −127.99 −135.87 −134.94 −126.68

Exp 2, Sub 1 −469.51 −455.99 −470.18 −459.03 −447.48 −461.67

Exp 2, Sub 2 −470.30 −442.86 −404.42 −459.83 −434.36 −395.91

Exp 2, Sub 3 −451.49 −440.22 −437.08 −441.02 −431.71 −428.57

Note. Highlighted numbers indicate the lowest AIC and BIC values for each subject.
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Fig. 5 Alternative models andmodel predictions. In all four panels, model
predictions of pT1 and pT2 as functions of SOA are given by dashed and
solid lines, respectively. a Fits of three alternative models (i.e., the model in
which σ0 ¼ 0, thick lines; the model in which μl ¼ μd, thin lines; and the
unlimited capacity model, dotted lines) to the data from subject 1 in
Experiment 1. b Model predictions of pT1 and pT2 as a function of lag
between the two targets in anAB paradigmwith a rate of 100ms per item. c
Model predictions of pT1 and pT2 as functions of SOAwhen the exposure

duration of T1 is long (50 ms, thick line), medium (30 ms, medium thick
line), or short (10 ms, thin line). The exposure duration of T2 was long
(50 ms) in all three conditions. d Model predictions of pT1 and pT2 as
functions of SOAwhen the contrast of T1 is high (1.0 × all η-values, thick
line), medium (0.5 × all η-values, medium thick line), or low (0.25 × all η-
values, thin line). The contrast of T2 was high (1.0 × all η-values) in all
three conditions. In both panels c and d, estimated parameters from the fit to
the data from subject 2 in Experiment 1 were used
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at any given time (except in the period when attention is
moved from one location to the next, decreasing at the old
location and increasing at the new location). By contrast, TVA
assumes that attention can be engaged simultaneously at sev-
eral spatially separated locations.

Computational models of the attentional blink The AD ef-
fect bears resemblance to the AB effect, which has been
studied extensively (e.g., Broadbent & Broadbent, 1987;
Chun & Potter, 1995; Raymond et al., 1992). To investigate
the AB, two targets (e.g., letters) are embedded in a RSVP
stream of distractors (e.g., digits). Typically, a presentation
rate of about 10 items per second is used (i.e., 100 ms per
item). A strong impediment in report of T2 (i.e., the AB) is
observed when T2 is presented about 200 ms after the
presentation of T1. The time course of the AD and AB are
very similar. Ward et al. (1997) noted this and presented
experimental evidence in a skeletal version of the AB par-
adigm where only T1 and T2 were presented in the RSVP
stream, each followed by a pattern mask similar to the one
used in the AD paradigm. There is, however, an additional
phenomenon that seems to appear more clearly in the AB
paradigm than in the AD paradigm. This phenomenon is
called the lag 1 sparing effect and occurs when T2 is
presented immediately after T1, resulting in a preserved
high performance on T2 as if the onset of the AB is delayed.

Figure 5b shows that TTVA can produce a standard AB
with reasonable parameters (i.e.,μl0 100ms,μd0 500ms,μ00
10 ms, σ0 0 10 ms, and C 0 20 Hz). But at this stage, TTVA is
not able to produce lag 1 sparing; at lag 1, the performance on
T2 is forced to be lower than the performance on T1, except
when the AB is very short. TTVA does, however, explain why a
higher performance on T2 is found at lag 1 (i.e., at an SOA 0

100ms) in the AB, as compared with the similar performance in
the AD paradigm: In the AB paradigm, T1 and T2 are presented
at the same location. Consequently, all neurons that have not
been locked to T1, when T2 is presented, will be exclusively
available for the processing of T2. In contrast, these neurons will
be distributed equally among the mask for T1 and T2 in the AD
paradigm, because the mask for T1 and T2 are presented at
different spatial locations in this paradigm.

Several other computational models of the AB have been
proposed. For example, Shih (2008) presented an attention-
al cascade model of the AB (see also Shih & Sperling,
2002), which was based on cognitive theories of the AB
(e.g., Chun & Potter, 1995; Giesbrecht & Di Lollo, 1998;
Jolicoeur & Dell’Acqua, 1999; Shapiro, Raymond & Arnell
1994). The model of Shih is somewhat similar to TTVA by
ascribing the AB to limitations in encoding/consolidation
processes. However, in contrast to TTVA, the model does
not make any predictions regarding the neural processes
involved in the AB.

Furthermore, Bowman and Wyble (2007) presented a
simultaneous type, serial token (ST2) model inspired by
the two-stage theory of Chun and Potter (1995). In
stage 1, a parallel visual processing of the stimuli is
performed to the level of semantic categorization (type
representation). For a stimulus to enter VSTM, it must
be bound to a token in VSTM that provides episodic
information about where the stimulus was located in the
RSVP stream. The binding happens in stage 2 by acti-
vation of a blaster (similar to the activation of a tran-
sient attentional enhancement; Nakayama & Mackeben,
1989). According to the ST2 model, the AB occurs
because the blaster is temporally suppressed until T1
is bound to a token and consolidated into VSTM, leav-
ing T2 susceptible to decay and interruption by distrac-
tors. In TTVA, however, a stimulus is encoded in
VSTM if and when any categorization of the stimulus
is encoded in VSTM. That is, TTVA has only one stage
of encoding to VSTM, and consequently, the capacity
limitation is located in this stage when feedback loops
from VSTM lock neurons to represent already encoded
stimuli.

A transient attentional enhancement, or boost, is also a
central mechanism in the boost and bounce model of Olivers
and Meeter (2008). When a target is presented in the RSVP
stream, a transient excitatory feedback will boost the encod-
ing of the target and the following items in the stream into
VSTM. The boost will be strongest for the item following
immediately after the target. Thus, if T2 is presented at lag
1, it will be spared due to the boost initiated by T1.
However, if the following item is a distractor, the boost will
trigger a strong transient inhibitory feedback (the bounce),
preventing the distractor and the following items in the
stream to be encoded into VSTM. Thus, if T2 is presented
at lag 2, an AB will be observed. In contrast to the atten-
tional cascade model, the ST2 model, and TTVA, the boost
and bounce model assumes no central capacity limitations
or bottlenecks to explain the AB. However, similar to
TTVA, it gives essential explanatory powers to feedback
loops from VSTM back to the mechanism responsible for
the encoding of stimuli into VSTM.

Although the attentional cascade model and the ST2

model are computational models and somewhat similar
to TTVA by ascribing the AB to central capacity limi-
tations, they are much more complex than TTVA.
Presumably, the difference in the complexity of the
theories reflects difference in the complexity of the
phenomena they describe. To account for the AD data
presented in this article, no special mechanism explain-
ing lag 1 sparing had to be incorporated into TTVA.
However, such a mechanism may have to be included
if, at some point, TTVA is extended to explain lag 1
sparing as it occurs in the AB paradigm.
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Predictions

A number of studies have examined how manipulation of
T1 processing difficulty modulates the performance on T2.
McLaughlin et al. (2001) manipulated T1 processing diffi-
culty by reducing the exposure duration of T1 while keeping
constant the duration of the target–mask complex. They
found that this did not have any effect on the performance
on T2, but only on how well T1 was reported. Figure 5c
shows that this result is predicted by TTVA—the reason
being that TTVA assumes that masks lock neurons in the
same way as targets. Thus, reducing the exposure duration
of T1 will make it more likely that the mask for T1 and not
T1 will lock neurons; however, this does not affect the
number of neurons available for processing of T2.

Chua (2005) used a different approach to manipulate T1
processing difficulty. By decreasing the luminance contrast of
T1, Chua showed an attenuation of the impairment of correct-
ly reporting T2. In TTVA, we may assume that all sensory
evidence values (η-values) for features of an object decrease
with the contrast of the object. Thus, it follows from the rate
equation of TVA (see Eq. 1) that a decrease in contrast will
result in a lower processing rate of the object. Moreover, the
weight equation of TVA states that attentional weights are
themselves derived from η-values (i.e., wx ¼

P
j2R η x; jð Þpj

where R is the set of all visual categories, η(x,j) is the strength
of the sensory evidence that object x belongs to category j, and
πj is the pertinence of category j). Consequently, the attention-
al weight of an object will decrease with the contrast of the
object. Figure 5d shows the predictions made by TTVAwhen
contrast is varied. In line with Chua, TTVA predicts that
lowering the contrast of T1 results in an attenuation of the
impairment in correctly reporting T2.

Finally, as was mentioned in the introduction, Moore et
al. (1996) found that removing the mask for T1 reduced the
duration of the AD effect. TTVA predicts this finding: As
has previously been mentioned, TTVA assumes that masks
compete for and lock neurons in the same way as targets.

Thus, removing the mask for T1 will leave T2 without
competition after the offset and decay of T1 resulting in
faster recovery of T2.

Conclusion

We have proposed a quantitative model accounting for the AD
phenomenon based on highly accurate measures of its time
course. The core assumption in the model is that retention of a
stimulus in VSTM takes up visual-processing resources used
to encode the stimulus into VSTM. Thus, retention of the first
target in the AD paradigm leads to a temporary lack of
available processing resources, which explains the observed
impairment in correctly reporting the second target.

Author Note Anders Petersen, Søren Kyllingsbæk, and Claus Bun-
desen, Center for Visual Cognition, Department of Psychology, Uni-
versity of Copenhagen, Copenhagen, Denmark.

We thank Simon Nielsen for collecting and analyzing part of the
data in this article.

Correspondence concerning this article should be addressed to
Anders Petersen, Center for Visual Cognition, Department of Psychol-
ogy, University of Copenhagen, Øster Farimagsgade 2A, DK-1353
Copenhagen K, Denmark. E-mail: anders.petersen@psy.ku.dk.

The research was supported by the Danish Council for Independent
Research, the Danish Council for Strategic Research, and the Univer-
sity of Copenhagen.

Appendix

When two letters, T1 and T2, are presented with a
temporal gap (SOA), we assume that two redistributions
of the attentional resources (neurons) will occur—one at
t01 (i.e., t0 for T1) and one at t02 (i.e., t0 for T2).
Furthermore, we assume that t01 and t02 are approxi-
mately normally distributed with means μ0 and SOA +
μ0, respectively, and standard deviation σ0. If t01 � t02,
the processing rate of T2 is given by

nT2j t01 � t02ð Þ ¼ C
wT2

wT1 þ wT2
� pf reej t01 � t02ð Þ þ 0� plockedj t01 � t02ð Þ þ 1� preleasedj t01 � t02ð Þ

� �

¼ C
1

2
pf ree t01 � t02ð Þ þ preleasedj j t01 � t02ð Þ

� �
; ð11Þ

where we have made the plausible assumption thatwT1 ¼ wT2.
Here, C is the total processing capacity, pfree is the proportion
of neurons that become distributed according to the attentional
weights, plocked is the proportion of neurons that remain locked
to T1, and preleased is the proportion of neurons that have been
released from T1 and are exclusively available for T2.

However, pfree, plocked, and preleased also represent the
probabilities with which a single neuron is found in the
three stages. Thus, the proportions above can be derived
by defining the behavior of a single neuron. The times
it takes to lock and release a single neuron are assumed
to be exponentially distributed with rate parameters
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ll and ld, respectively. If we furthermore assume that
the locking process starts immediately after an object
has been encoded into VSTM and the subsequent re-

lease process starts directly after a neuron has been
locked in a feedback loop, the three proportions (prob-
abilities) are given by

pf reej t01 � t02ð Þ ¼ 1�
Z t02

t01

Ce�C t�t01ð Þ
Z t02

t
lle

�llðt0�tÞdt0
� �

dt ¼ eC t01�t02ð Þ þ C

ll � C
eC t01�t02ð Þ � ell t01�t02ð Þ

� �
ð12Þ

plockedj t01 � t02ð Þ ¼
Z t02

t01

Ce�C t�t01ð Þ
Z t02

t
lle

�ll t0�tð Þ 1�
Z t02

t0
lde

�ld t0 0�t0ð Þdt00
� �

dt0
� �

dt

¼ ll
ld � ll

C

ll � C
eC t01�t02ð Þ � ell t01�t02ð Þ

� �
� C

ld � C
eC t01�t02ð Þ � eld t01�t02ð Þ

� �� �
ð13Þ

preleasedj t01 � t02ð Þ ¼
Z t02

t01

Ce�C t�t01ð Þ
Z t02

t
lle

�ll t0�tð Þ
Z t02

t0
lde

�ld t0 0�t0ð Þdt00
� �

dt0
� �

dt

¼ 1� eC t01�t02ð Þ � C

ll � C
eC t01�t02ð Þ � ell t01�t02ð Þ

� �
� ll

ld � ll

C

ll � C
eC t01�t02ð Þ � ell t01�t02ð Þ

� �
� C

ld � C
eC t01�t02ð Þ � eld t01�t02ð Þ

� �� � ð14Þ

where t is the time when the letter identity of T1 (or the
mask for T1) is encoded into VSTM, t′ is the time when a
neuron representing the encoded identity of T1 is locked by
becoming embedded in a positive feedback loop gated by
the unit representing T1 in the VSTM map, and t″ is the
time when the feedback loop is broken such that the
neuron is released. At any given time, a neuron is in just
one of the three states, so pf ree þ plocked þ preleased ¼ 1 .
Figure 6 shows an example of how the above probabilities

change as functions of SOA in the simple case in which the
time from the letter is presented until visual-processing
resources are allocated to the letter is the same for T1 and
T2 (i.e., t02 ¼ SOAþ t01).

The above applies only when t01 � t02. If SOA is short, the
distribution of t02 overlaps the distribution of t01, and it
becomes likely that t01 > t02. In this case, T2 will have a head
start and be assigned a processing rate of C in the interval
between t02 and t01. After t01, the processing rate of T2 will be

nT2j t01 > t02ð Þ ¼ C
wT2

wT1 þ wT2
� pf reej t01 > t02ð Þ þ 1� plockedj t01 > t02ð Þ þ 0� preleasedj t01 > t02ð Þ

� �

¼ C
1

2
pf ree t01 > t02ð Þ þ plockedj j t01 > t02ð Þ

� �
; ð15Þ

where plocked is now the proportion of neurons locked to T2
and preleased is the proportion of neurons released from T2. As
previously stated, pfree is the proportion of neurons distributed
according to the attentional weights. These three proportions
are calculated in the same way as when t01 � t02; with the
only difference that t01 and t02 are interchanged.

Given the calculated processing rates of T2 when
t01 � t02 [i.e., nT2j t01 � t02ð Þ ] and t01 > t02 [i.e., nT2j

t01 > t02ð Þ ], the probability of encoding T2 (pT2) is
found as a sum of three probabilities: p T2& t01 � t02ð Þ½ � ,
p T2½ & t01 > t02ð Þ & t01 � SOAþ t2ð Þ�, a n d p T2&½
t01 > t02ð Þ& t01 > SOAþ t2ð Þ� . In the first two conditions,
the presentation of T1 affects the processing rate of T2.
However, in the last condition, the presentation of T1 does
not affect the processing rate of T2, resulting in a rate ofC from
t02 until SOA + τ2. Thus, the three probabilities are given by
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p T2& t01 � t02ð Þ½ � ¼
Z SOAþt2

�1

1

σ0
f

t01 � μ0

σ0

� �
Z SOAþt2

t01

1

σ0
f

t02 � SOAþ μ0ð Þ
σ0

� �
1� e� nT2j t01�t02ð Þ½ � SOAþt2�t02ð Þ

� �
dt02

� �
dt01

ð16Þ

p T2& t01 > t02ð Þ& t01 � SOAþ t2ð Þ½ �

¼
Z SOAþt2

�1

1

σ0
f

t02 � SOAþ μ0ð Þ
σ0

� �
Z SOAþt2

t02

1

σ0
f

t01 � μ0

σ0

� �
1� e�C t01�t02ð Þ� nT2j t01>t02ð Þ½ � SOAþt2�t01ð Þ

� �
dt01

� �
dt02

ð17Þ

p T2& t01 > t02ð Þ& t01 > SOAþ t2ð Þ½ �

¼ 1� Φ
SOAþ t2 � μ0

σ0

� �� �
Z SOAþt2

�1

1

σ0
f

t02 � SOAþ μ0ð Þ
σ0

� �
1� e�C SOAþt2�t02ð Þ

� �
dt02;

ð18Þ
and the probability of encoding T2 is given by

pT2 ¼ p T2& t01 � t02ð Þ½ �
þ p T2& t01 > t02ð Þ& t01 � SOAþ t2ð Þ½ �
þ p T2& t01 > t02ð Þ& t01 > SOAþ t2ð Þ�:½

ð19Þ

The probability of encoding T1 (pT1) is found by a
similar calculation and given by the following sum:

pT1 ¼ p T1& t02 � t01ð Þ½ �
þ p T1& t02 > t01ð Þ& t02 � t1ð Þ½ �
þ p T1& t02 > t01ð Þ& t02 > t1ð Þ½ �: ð20Þ
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