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The interactions among the elementary components of many complex systems can be qualitatively different.

Such systems are therefore naturally described in terms of multiplex or multilayer networks, i.e., networks where

each layer stands for a different type of interaction between the same set of nodes. There is today a growing

interest in understanding when and why a description in terms of a multiplex network is necessary and more

informative than a single-layer projection. Here we contribute to this debate by presenting a comprehensive study

of correlations in multiplex networks. Correlations in node properties, especially degree-degree correlations,

have been thoroughly studied in single-layer networks. Here we extend this idea to investigate and characterize

correlations between the different layers of a multiplex network. Such correlations are intrinsically multiplex, and

we first study them empirically by constructing and analyzing several multiplex networks from the real world.

In particular, we introduce various measures to characterize correlations in the activity of the nodes and in their

degree at the different layers and between activities and degrees. We show that real-world networks exhibit indeed

nontrivial multiplex correlations. For instance, we find cases where two layers of the same multiplex network are

positively correlated in terms of node degrees, while other two layers are negatively correlated. We then focus on

constructing synthetic multiplex networks, proposing a series of models to reproduce the correlations observed

empirically and/or to assess their relevance.
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I. INTRODUCTION

Since its origins, the new science of complex networks has

been primarily driven by the need to characterize the properties

of real-world systems [1,2]. The introduction of new ideas and

concepts in the field has been very often associated with the

availability of new, more accurate, or larger data sets and with

the discovery of new structural properties of complex systems

from the real world [3–12]. This is the reason why a lot of

interest has been recently devoted to the study of multiplex

networks, i.e., networks in which the same set of nodes can be

connected by means of links of qualitatively different type or

nature.

Several data sets of real-world systems that can be rep-

resented and studied as multiplex networks have appeared

in the recent literature [13–16], and we expect that many

more will arrive in the next few years. The first papers

on the subject have focused on the characterization of the

structure of multiplex networks [16–28] and on modeling

the basic mechanisms of their growth [29–33]. In parallel

to this, some effort has been also devoted to investigating

various kinds of dynamical processes on multiplex topologies,

including diffusion [34–38], epidemic spreading [39–44], co-

operation [45–48], opinion formation [49–52], and percolation

[46,53–56].

There is today a general agreement on the fact that multiplex

networks represent the ideal framework to study a large variety

of complex systems of different nature. There are already some

numerical and analytical results showing that the dynamics of

processes on multiplex networks is far richer than in networks

with a single layer. A comprehensive review of the main

advances in this new vibrant field of research can be found

in a few recent survey papers [57–59].

*v.nicosia@qmul.ac.uk

In this article we focus on an issue that has revealed great

importance in single-layer networks, but has not yet been

investigated thoroughly in multiplex networks, i.e., that of

correlations [31,46,60,61]. In networks with a single layer it

has been found that there are correlations in the properties

of connected nodes. Namely, the degree of a node can be

either positively or negatively correlated with the degree of its

first neighbors. In the first case, the hubs of the networks are

preferentially linked to each other, while in the second case

they are preferentially connected to low-degree nodes [6,11].

In multiplex networks the very same concept of correlations

is far richer than in a network with a single layer. In fact,

on one hand, it is still possible to explore the standard

degree-degree correlations at the level of each layer of the

network, but, on the other hand, it is more interesting to

introduce a truly multiplex definition of correlations, for

instance, by looking at how a certain property of a node at

a given layer is correlated to the same or other properties of

the same node at another layer. We present here a complete

and self-consistent study of correlations of node properties

in multiplex networks. In doing this, we follow the usual

steps of the typical approach to complex networks: (i) we first

explore empirically correlations in real multiplex networks;

(ii) we introduce various measures to characterize and quantify

correlations in multiplex networks; (iii) we propose a series of

models to reproduce the correlations found in real multiplex

systems or to assess their relevance.

We find that multiplexity introduces novel levels of com-

plexity. In particular, in real-world multiplex networks the

patterns of presence and involvement of the nodes at the

different layers are characterized by strong correlations. This

has to be taken into account when it comes to model such

systems.

The article is organized as follows. In Sec. II we focus on

two small real-world networks and we use them as examples

to explain why a description in terms of multiplex networks
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captures more information on a system than a single-layer

projection. In the remaining sections we study the structure

of five real-world multiplex networks (additional information

about the networks is provided in the Appendix), with the main

attention to the concept of correlations. In particular, in Sec. III

we focus on the patterns of node activity and involvement at

the various layers. We say that a node is active at a given layer

if it has at least one link at that layer, and we introduce various

quantities to characterize the distribution and the correlations

of node activities. We also investigate the activity correlations

between pairs of layers. We find that real-world multiplex

networks are quite sparse, with only a few nodes active in

many layers, and are characterized by strong correlations.

Interestingly, the activity of a node in a particular layer is

very often correlated with its activity in some other layer.

In Sec. IV we introduce the first null models to assess

the significance of the observed patterns of node activity. In

Sec. V we investigate correlations between the activity and

the degree of the nodes of a multiplex network, while in

Sec. VI we show how to quantify interlayer degree correlations

(degree correlations between layers). In particular, we focus

our attention on measuring correlation in the node degrees of a

pair of layers, either by using the Spearman’s rank correlation

coefficient of the two degree sequences or by plotting, as a

function of k, the average degree q̄(k) at one layer of nodes

having degree k at the other layer. We find that there exist

significant correlations among the degree of the same node at

different layers, and such correlations can be either positive,

meaning that nodes tend to have similar roles across layers, or

negative, meaning that nodes with a large degree in one layer

tend to have small degrees in another layer.

Finally, in Sec. VII, we propose two algorithms based

on simulated annealing which make it possible to construct

multiplex networks with tunable interlayer degree-degree

correlations, and in Sec. VIII we report our conclusions. The

details on the five multiplex networks constructed from data

sets of biological, technological, and social complex systems,

and analyzed in the paper, are described in the Appendix. The

networks and the software implementations of the algorithms

described in this paper are available for download at [62].

II. WHY A DESCRIPTION IN TERMS OF

A MULTIPLEX NETWORK?

The aim of this work is to identify, measure, and model the

different kinds of correlations among node properties which

can be found in a multiplex network. For such a reason we

constructed several multiplex networks from five data sets of

real-world systems. The systems we consider are the nervous

system of a roundworm at the cellular level (Caenorhabditis

elegans) (see Fig. 1), a system of interactions between proteins

(BIOGRID), the routes of continental airlines (OpenFlight),

the papers published in the journals of the American Physical

Society (APS), and the movies in the Internet Movie Database

(IMDb). These data sets are representative of the major

classes of complex systems—namely social, technological,

and biological—and their sizes range from hundreds of nodes

and just two kinds of interactions in the case of C. elegans up to

millions of nodes and dozens of layers in IMDb. In this way, we

provide the reader with some multiplex data sets in addition to

FIG. 1. (Color online) In a multiplex representation, different

types of relationships correspond to the distinct layers of a multilayer

network. For instance, in the case of the neural system of C. elegans

two neurons can communicate either by means of electrical signals,

which are propagated through synapses and neuronal dendrites, or

by means of the diffusion of ions and small molecules, which travel

through intercellular channels called gap junctions. The two types of

communication are encoded in the two layers of a multiplex network.

those already appeared in the recent literature [14–16,28], also

showing that some well-known networks, such as the neural

system of the C. elegans and the collaboration network of

movie actors, can indeed be better represented as multiplex

networks. Basic characteristics of the networks we have

constructed, such as number of nodes N , number of layers

M , and average number of active nodes per layer 〈N [α]〉, are

shown in Table I. Additional details about the original data sets

and the procedure used to construct the networks can be found

in the Appendix. All the data sets are available for download

at [62].

Before moving to the main topic of our work and to the

various ways of formalizing and measuring correlations in

a multiplex network, we focus in this section on what we

gain by studying a system as a multiplex network, instead

of aggregating together its different layers. We do this by

considering two of the real-world multiplex networks we

have introduced, namely, the two two-layer biological systems

reported in Table II: the C. elegans neural system and the

BIOGRID protein-gene interaction network. The first thing

TABLE I. Number of nodes N , number of layers M , and average

number of active nodes 〈N [α]〉 of the multiplex networks analyzed in

this study.

Network N M 〈N [α]〉

C. elegans 281 2 267

BIOGRID 54 549 2 32 143

Airlines—Africa 235 84 9.8

Airlines—Asia 792 213 24.4

Airlines—Europe 593 175 21.8

Airlines—North America 1020 143 24.9

Airlines—Oceania 261 37 14.1

Airlines—South America 296 58 15.1

APS 170 385 10 43 188

IMDb 2 158 300 28 229 330
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TABLE II. The number of active nodes N [α], the number of edges

K [α], the average degree 〈k[α]〉, the number of components N
[α]
C , and

the size of the three largest components at the two layers of the

C. elegans neural network and at the two layers of the BIOGRID

protein interaction network. We report for reference also the values

corresponding to the networks obtained by aggregating the two layers

together.

Layer N [α] K [α] 〈k[α]〉 N
[α]
C S

[α]
1 ,S

[α]
2 ,S

[α]
3

C. elegans

Synapses 281 1962 13.9 2 279,2,–

Gap junctions 281 517 3.7 31 248,3,2

Aggregated 281 2291 16.3 2 279,2,–

BIOGRID

Genetic 12 590 203 328 32.3 163 9784, 1110, 979

Physical 51 697 299 722 11.56 664 50 213, 20, 20

Aggregated 54 549 500 239 18.34 607 52 879, 304, 20

we notice from a component analysis of such systems at the

two layers is that not all the nodes are connected in both layers.

For instance, the synaptic layer (Syn) of the C. elegans neural

network consists of two connected components of 279 and

2 nodes, while in the gap-junction layer (Gap) we observe a

large connected component containing 248 nodes, two small

components, respectively, with three and two nodes, and 28

isolated nodes. Second, the two layers of the C. elegans have

largely different densities. The synaptic layer has an average

degree equal to 〈k[Syn]〉 = 13.9, while the gap-junction layer

has 〈k[Gap]〉 = 3.7 only. Additionally, each node can play a very

different role in the two layers. As an example, we report in

Table III the list of the top ten nodes ranked by degree centrality

in each of the two layers. Despite some nodes having similar

positions in the two rankings (e.g., AVAL, AVAR, AVBR),

in general, a node with a high degree in the synaptic layer

might have just a few links in the other layer, as in the case

of node AVDR, which is ranked fourth in the synaptic layer,

TABLE III. The nodes ranked in the first ten positions according

to their degree at the synapse layer, at the gap-junction layer, and

at the single-layer network obtained by aggregating the two layers.

Notice that some neurons are present in one of the two layer-based

ranking and not in the other, e.g., PVCL and RIBR, indicating that

nodes can play different roles at the two layers. Moreover, also the

ranking based on the degree of the aggregated network is different

from the rankings at the two layers.

Rank Syn k[Syn] Gap k[Gap] Syn+Gap k

1 AVAR 85 AVAL 40 AVAL 123

2 AVAL 83 AVAR 34 AVAR 119

3 AVBL 56 AVBR 29 AVBR 80

4 AVDR 53 AVBL 24 AVBL 80

5 PVCL 52 RIBR 17 PVCR 60

6 AVBR 51 RIBL 17 PVCL 60

7 AVER 50 AVKL 14 AVDR 57

8 AVEL 50 RIGL 14 AVER 56

9 PVCR 49 VA08 11 AVEL 55

10 DVA 48 RIGR 11 DVA 53

FIG. 2. (Color online) The fraction NL of nodes which appear in

the top L positions according to degree in both layers (Phys and Gen)

of the BIOGRID network (squares) scales approximately as a power

law NL ∼ L0.56 (solid line, r2 = 0.96). In particular, fewer than 20

nodes appear in both rankings up to L ≃ 300, meaning that there is

almost no correlation between the degrees of the a node at the two

layers and that it is very unlikely that a node is a hub on both Gen

and Phys.

with 53 edges, but has only 4 edges in the gap-junction layer.

For reference, we also report in the same table the ranking

induced by the degree on the aggregated graph, which is, in

turn, different from the rankings corresponding to the two

single layers, especially from that at the gap-junctions level.

Also, the two layers of the BIOGRID network, respectively

representing physical (Phys) and genetic (Gen) interactions

among proteins, have radically different structures. First of

all, the two layers have a different number of nonisolated

nodes and a different distribution of the sizes of connected

components, with Phys having N = 51 697 nonisolated nodes,

while Gen only N = 12 590. Of these nodes, only 9738 are

nonisolated on both layers, meaning that more than 80% of

the nodes are active in just one of the two layers and not

in the other. Despite having a smaller number of nonisolated

nodes, the Gen layer is much denser than Phys, with an average

degree 〈k[Gen]〉 ≃ 32 compared to 〈k[Phys]〉 ≃ 11. Also in this

case there is no correspondence between the hubs at the two

layers, as shown by the plot in Fig. 2, which reports the fraction

NL of those nodes which are found in the top-L ranking of

both layers according to the degree. Notice that NL is much

smaller than 10% for a wide range of values of L (i.e., up to

L ≃ 600), meaning that if a node is a hub on one layer, there

is a quite small probability that it will also be a hub on the

other layer. This result is due to the fundamental difference

between physical interactions, which produce new protein

compounds, with respect to genetic interactions, which trigger

the production of other proteins.

Summing up, if we take into account the multilayered nature

of the C. elegans neuronal network and of the BIOGRID pro-

tein interaction network, we discover new structural patterns

and, in particular, a poor correspondence of the roles of a node

across layers, with a large fraction of the nodes being isolated

at least in one of the two layers. These results suggest that

representing a system as a multiplex network makes it possible

to retain important information, since multilayer real-world

systems are often characterized by nontrivial patterns of node
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involvement across layers. In the rest of the paper we propose

some metrics to quantify these patterns, and we introduce a

few models to reproduce and to assess their significance.

III. CORRELATIONS OF NODE ACTIVITY

Let us consider a multiplex network with N nodes and

M layers. Such a network can be naturally described by

giving a set of M adjacency matrices, one for each layer,

{A[1],A[2], . . . ,A[M]} ∈ R
N×N×M , so that the element a

[α]
ij = 1

if node i and j are connected at layer α, while a
[α]
ij = 0

otherwise. Notice that in this particular kind of multiplex

networks, a node i effectively consists of M replicas, one for

each layer, and interlayer connections among these replicas

have no explicit cost associated [16]. These multiplexes are

sometimes referred in the literature as colored-edge networks

[57]. In this framework, the properties of the nodes are

represented by vectorial variables. For instance, we can

associate with each node i of the multiplex a multidegree,

i.e., a M-dimensional vector,

ki =
{
k

[1]
i ,k

[2]
i , . . . ,k

[M]
i

}
, (1)

such that k
[α]
i denotes the degree of i at layer α. A node can,

in fact, participate with a different number of edges to each

layer and can also be isolated in some of the layers. Intuitively,

the presence and number of edges incident in a node is a first

indication of the activity or importance of that node at that

layer. However, there is another level of complexity, typical of

multiplex structures, which is related to the importance or role

of one layer with respect to another in terms of the fraction

of connected nodes and of the relative number of edges of a

certain kind. For example, in the APS multiplex the number of

active nodes in the two condensed matter layers (layer 6 and

layer 7) account for more than one third of the total number of

active nodes at all layers, while the number of edges connecting

authors working in general physics, particle physics, nuclear

physics, and astronomy account for more than 99% of all the

edges in the multiplex (see Table V for details). The additional

complexity added by the presence of multiple layers allows

for the exploration of several kinds of structural properties.

In particular, we are interested here in detecting, quantifying,

and modeling the existence of correlations of node activity

across layers (vertical analysis) and of correlations among

layer structures (horizontal analysis). To this aim, we define

in the following some basic quantities which characterize,

respectively, the activity of nodes and layers.

A. Node activity

We say that node i, with i = 1,2, . . . ,N , is active at layer

α if k
[α]
i > 0. We can then associate with each node i a node-

activity vector,

bi =
{
b

[1]
i ,b

[2]
i , . . . ,b

[M]
i

}
, (2)

where

b
[α]
i = 1 − δ0,k

[α]
i

;

i.e., b
[α]
i = 1 if node i has at least one edge at layer α and is

0 otherwise. We call node activity Bi of node i the number of

layers on which node i is active:

Bi =
∑

α

b
[α]
i . (3)

By definition, we have 0 � Bi � M . Notice that the node-

activity vector bi provides a compact, yet incomplete (because

it does not take into account the number of links) representation

of the involvement of node i at the different layers of

the multiplex. However, we show that it contains useful

information.

Distribution of node activity. In Fig. 3 we report the

distributions of node activity obtained for the multiplex

networks constructed from OpenFlight, APS, and IMDb.

Interestingly, in the airport networks the distributions are well

fitted by a power-law function P (Bi) ∼ B−δ
i , with exponents

δ in the range [1.8,2.4]. The values of the exponents were

obtained through the maximum-likelihood estimator [63]. The

most heterogenous distribution is that of the African airplane

multiplex network (δ ≃ 1.86), reported as black circles in

Fig. 3(a), while the two most homogeneous distributions are

those of the airline networks of South America and Oceania

(both characterized by δ ≃ 2.3). The power-law behavior of

node activity indicates that there is no meaningful typical

number of layers on which a node is active, since for δ < 3.0

the fluctuations on this number are unbound as M grows. A

scale-free distribution of node activity in the airport multiplex

FIG. 3. (Color online) Distributions of node activity for (a) the six multiplex networks of continental airlines and for (b) APS and IMDb. In

all airline networks, P (Bi) can be fitted by power laws with exponents ranging from 1.8 to 2.3 (the exponents, together with the corresponding

p-values in parentheses, are reported in the legend). This means that the typical number of layers in which a node is active is subject to

unbounded fluctuations. The plots in panel (a) have been vertically displaced to enhance readability.
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networks indicates that the majority of airports usually tend

to be connected only by a relatively small number of airlines

(between 68% and 89% of all the airports in each multiplex

are active in less than five layers), but some “outliers” exist

which are connected by a relatively large number of different

airlines (at least one airport in each multiplex is active in 10%

to 30% of the layers). Similar considerations can be made for

APS and IMDb, where the vast majority of authors and actors

are active in just one or a few layers, while a few outliers are

found active in almost all layers.

In the same spirit of what is done in single-layer networks,

where nodes having a relatively high number of connections

in a network are called hubs, we call multiactive hubs those

outlier nodes of a multiplex which are active in a large fraction

of layers. However, as we see better in Sec. V, in real-world

systems node activity is not strictly correlated to the total

number of edges incident in a node, so that a node might be

a multiactive hub without being a hub in the classical sense

(of having many links) in any of the layers. In particular, there

exist nodes having, at the same time, a large number of incident

edges and a small node activity (e.g., they might be active in

just a few layers, or even in one layer only) and also nodes

having a relatively small number of edges which are instead

active on almost all layers.

Distribution of node-activity vectors. The node activity Bi

accounts only for the number of layers at which node i is active,

discarding any information about which are these layers. As a

matter of fact, two nodes i and j might have the same value of

node activity but they can be involved in different layers. So it is

interesting to look also at how the node-activity vectors bi,i =

1,2, . . . ,N , are distributed, to see the relevant frequency of

different node-activity patterns. First of all, it is important to

notice that the actual number of distinct node-activity vectors

observed in a multiplex can, in general, be much smaller than

the total possible number of such vectors, which is equal to

2M − 1 (if we take into account only nodes that are active on at

least one layer). For instance, while in the APS multiplex we

observe 981 of the 1023 possible node-activity vectors (with an

average of 173.6 nodes having the same vector), in IMDb we

observe only around 123 000 of more than 2.6 × 108 possible

vectors (with an average of around 17.4 nodes having the same

vector).

In Fig. 4(a) we show the Zipf’s plot of the node-activity

vectors for the APS and IMDb multiplex networks. In both

cases the distribution of bi is a power law (with a clear

exponential cutoff in the case of APS), with an exponent

respectively equal to 1.53 and 1.2. This means that the majority

of the nodes have similar activity patterns, with the highest

values of P (bi) always corresponding to nodes active on just

one or two layers, while some other node-activity vectors are

more rare. This result is also confirmed by Figs. 4(b) and 4(c),

where we report, respectively, for APS and IMDb, the rank

distributions, i.e., the Zipf’s plots of the probability P (bi |Bi)

of node-activity vectors bi restricted to nodes active on exactly

Bi layers, as a function of the rank R(bi |Bi).

The various curves correspond to different values of Bi .

Notice that, in general, P (bi |Bi) is heterogeneous and is a

power-law for the large majority of values of Bi . This means

that a large fraction of the nodes having the same value of node

activity share also the same activity pattern across layers, while

FIG. 4. (Color online) (a) The Zipf’s plot of the node-activity

vectors is a power law, both for APS and for IMDb. Also the rank

distribution P (bi |Bi) restricted to nodes having a given value of

node activity Bi , for (b) APS and (c) IMDb, are power laws with

exponential cutoff. The exponents of the power laws range between

0.5 (dot-dashed blue line) and 1.0 (dashed black line).

some outlier nodes have quite peculiar activity patterns. In the

case of IMDb, for instance, of all the actors who have worked

on exactly two genres, around 20% are specialized in short and

drama (layers 23 and 9) or short and comedy (layers 23 and 6),

while only one actor has acted both on fantasy and war movies

(respectively, layers 11 and 27) and only two have acted both

in an adult movie and in a family movie.

B. Layer activity

The activity of a given layer α, with α = 1,2, . . . ,M ,

depends on the patterns of node activities at that layer, and
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FIG. 5. (Color online) Distribution of layer activity for the con-

tinental airline networks, APS, and IMDb. In the six multiplex of

continental airlines, which consist of O(102) layers, P (Nα) has a

clear power-law shape. A somehow heterogeneous behavior is also

observed for IMDb, although the number of layers is not large enough

to allow a meaningful fit. The plots were vertically displaced to

enhance readability.

can be represented by the layer-activity vector:

d[α] =
{
b

[α]
1 ,b

[α]
2 , . . . ,b

[α]
N

}
. (4)

We define the layer activity of layer α as the number N [α] of

active nodes in α, which is equal to the number of nonzero

elements of d[α]:

N [α] =
∑

i

b
[α]
i . (5)

By definition we have 0 � N [α] � N .

Distribution of layer activity. In Fig. 5 we show the

distributions of N [α] for all the multiplex networks with

more than two layers. Interestingly, as found for Bi , also

the distribution of N [α] is heterogeneous and has a marked

power-law behavior for the continental airlines networks,

which have a larger number of layers. This confirms that not

only the activity of nodes across layers is heterogeneous, but

also that not all layers have the same importance in the overall

organization of the system. For instance, a large fraction of all

the layers of the continental airlines multiplexes have no more

than N [α] = 10 active nodes. However, some layers contain up

to a few hundred active nodes (which account for 10% up to

30% of all the nodes). This means that, on average, the removal

of one layer at random from the system, i.e., the removal of

all the routes operated by one airline company, will cause only

minor disruptions, but in some specific cases such a removal

might break the system apart.

Correlations of layer activity. We define here some simple

measures to detect and characterize the correlations among

layer activities. The first measure we propose is the pairwise

multiplexity Qα,β of two layers α and β defined as

Qα,β =
1

N

∑

i

b
[α]
i b

[β]
i . (6)

Notice that this quantity is equal to the fraction of nodes of

the multiplex which are active on both layers α and β and

therefore takes values in the range [0,1]. The more similar

the activity pattern of the nodes at two layers, the higher is

the multiplexity of two layers. The distribution of the values

of the pairwise multiplexity P (Qα,β ) among all the possible

pairs of layers α and β is reported in Figs. 6(a) and 6(b),

respectively, for the continental airports networks and for APS

and IMDb. We first notice that in all the multiplex networks

considered, only a relatively small fraction of nodes are active

at the same time on at least two layers. In particular, in the case

of continental airlines the multiplexity has a broad distribution,

so that the majority of couples of layers have less than 1% of

the nodes in common, while in a few cases the multiplexity

can be as high as 20%. Also, in APS and IMDb the values of

pairwise multiplexity are usually below 20%, but in this case

the distributions exhibit an exponential decay, indicating that

there exists a typical scale of pairwise layer multiplexity.

The different behavior of P (Qα,β ) in the airport networks,

with respect to the collaboration networks, is probably due to

the different meaning of activity at each layer and also to the

different dynamics of node activation in the two cases. In par-

ticular, for the airport network, we expect that the competition

between airlines operating in the same area produces a small

overlap in the activity pattern of the corresponding layers.

This is clearly shown in Fig. 6(c), where we report the graph

representing relationships among the first 20 airlines in Europe

operating in the largest number of airports. In this graph each

node represents a layer of the original multiplex network, its

FIG. 6. (Color online) The pairwise multiplexity has a power-law behavior in (a) airline networks, while it is exponential in (b) APS and

IMDb. In panel (c) we report a graph of the first 20 airlines in Europe by number of covered airports. Each node of this graph represents a layer

of the original multiplex network, while the weight of the edge connecting two nodes is proportional to the fraction of nodes present in both

layers. The size of a node is proportional to the number of airports in which the corresponding company operates, while the color (from yellow

to red) corresponds to the node strength, which in this case is proportional to the total node overlap with other airlines.
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FIG. 7. (Color online) The distribution of the normalized Ham-

ming distance Hα,β between all the possible pairs of layers on various

multiplex networks. Notice that P (Hα,β ) increases exponentially for

the continental airlines networks.

size is proportional to the corresponding value N [α], the width

of an edge is proportional to the pairwise multiplexity of the

corresponding layers, i.e., the fraction of nodes active on both

layers, and the color of nodes indicates the total multiplexity,

i.e., the sum of the values of pairwise multiplexity incident

on a node (red is maximum; yellow is minimum). Notice that

national companies, like Lufthansa, Alitalia, and Air France,

tend to have a large overlap with other airlines, i.e., to serve

similar sets of airports, while low-cost airlines, like easyJet,

Ryanair, Wizz Air, and Flybee, systematically tend to avoid

overlaps with other companies. The relatively small values

of pairwise multiplexity found in these real-world multiplex

networks may have an impact on the dynamics of processes

occurring over them, such as opinion formation, epidemic

spreading, percolation, or immunization [52,56]. Indeed, since

only a relatively small fraction of nodes are active on two layers

at the same time, then the removal of just a few of these nodes

might result in a massive disruption of the multiplex network

and can thus slow down dramatically either the spreading of

an epidemic or the diffusion of information. This aspect has

to be properly taken into account when considering dynamical

processes on multiplex networks.

Another measure to quantify the relative overlap between

two layers at the level of node activity is the normalized

Hamming distance between the two corresponding layer-

activity vectors:

Hα,β =

∑
i b

[α]
i

(
1 − b

[β]
i

)
+

(
1 − b

[α]
i

)
b

[β]
i

min(N [α] + N [β],N )
. (7)

Hα,β is equal to the number of differences in the activities of the

two layers divided by the maximum possible number of such

differences and takes values in [0,1]. In particular, Hα,β = 0 if

d[α] = d[β], while Hα,β = 1 when all the active nodes at layer

α are not active at layer β. In Fig. 7 we report the distributions

of Hα,β for the continental airlines, for APS, and for IMDb.

In all the networks considered, the measured values of Hα,β

are distributed throughout the whole [0,1] range. However, in

the continental networks the distributions have an increasing

exponential behavior, meaning that the normalized Hamming

distance is quite large for the vast majority of layer pairs, in

accordance with the observation that airports generally have

small node activity [Fig. 5(a)]. Conversely, for APS and IMDb

the distributions are more homogeneous. It is interesting to

notice that in all the systems around 1% of the layer pairs

have a normalized distance smaller than 0.05, corresponding

to large overlaps of node activity.

IV. MODELS OF NODE AND LAYER ACTIVITY

The empirical results of Sec. III suggest that the patterns

of node and layer activity in real-world multiplex networks

can be quite heterogeneous. In general, real-world multiplex

systems tend to be quite sparse, meaning that the majority

of nodes participate to only a small subset of all the layers,

and given two layers only a small fraction of their nodes are

active on both. It is therefore natural to ask whether similar

patterns might naturally arise from a random distribution of

node activity across layers or not, or, in other words, if there

is anything special at all in the power-law distributions of

node-activity, node-activity vectors, and layer activity, and

if the observed behavior of multiplexity and normalized

Hamming distance among layers can be just the result of

the juxtaposition of independent layers. We propose here

four different multiplex network models and we compare the

correlations in node and layer activity observed in real-world

multiplexes with those produced by those models. The first

three models are null models to assess the significance of

the heterogeneity of the distributions P (N [α]), P (Bi), and

P (bi). The fourth model is instead a generative model which

proposes a possible explanation for the observed distributions

of pairwise multiplexity and normalized Hamming distance

among layers. A software implementation of the four models

is available for download at [62].

Hypergeometric model (HM). In this model we fix the

numbers N [α] of active nodes at each layer α to be equal

to those observed in the original multiplex network. The N [α]

nodes to be activated at each layer α are then randomly sampled

with a uniform probability from the N nodes of the graph. In

this way, the activity of a node at a given layer is uncorrelated

from its activity at another layer and, given two layers α and

β, with N [α] active at the first layer and N [β] active at the

second layer, the probability p(m; N,N [α],N [β]) that exactly

m nodes, with m = 0, . . . , min(N [α],N [β]), are active at both

layers follows a hypergeometric distribution:

p(m; N,N [α],N [β]) =

(
N [α]

m

)(
N−N [α]

N [β]−m

)
(

N

N [β]

) . (8)

Consequently, the average number of nodes active at both

layers is equal to N [α]N [β]/N , and the expected pairwise

multiplexity of the two layers is

Q̃α,β =
N [α]N [β]

N2
. (9)

Similarly, the expected value of the normalized Hamming

distance between two layers α and β is equal to

H̃α,β =

∑N [β]

m=0(N [α] + N [β] − 2m)p(m; N,N [α],N [β])

min(N,N [α] + N [β])
.

(10)
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FIG. 8. (Color online) Distribution of pairwise multiplexity (a) and Zipf’s plot of node activity (b) for the European airlines multiplex

network (solid black line) and the corresponding synthetic networks obtained by four different models, namely, HM (red circles), MDM (orange

squares), MSM (green diamonds), and LGM (blue triangles). Notice that LGM fits well the distribution of pairwise multiplexity and performs

better than HM in reproducing the rank distribution of node activity. The shape of P (Bi) in MDM and MSM is identical to that of the original

multiplex by construction.

Multiactivity deterministic model (MDM). In this model

we construct networks with the same number of layers M and

the same number of active nodes N as in a given real-world

multiplex network. We consider a node active if it is active at

at least one of the M layers of the original network. Then we

assign to each active node i a node-activity vector sampled at

random among the (
M

Bi
) M-dimensional binary vectors having

exactly Bi nonzero entries, where Bi is the number of layers

in which node i is active in the original network. We name the

model multiactivity deterministic model, since the distribution

of Bi of the original multiplex is preserved, although the

correlations in layer activity and the distribution of node-

activity vectors are destroyed. The uniform assignment of

node-activity vectors also implies that all the layers will

have, on average, the same number of active nodes, since the

probability that a given node i is active on a given layer α is

equal to Bi/M and does not depend on α. In particular, the

expected number of active nodes at layer α is

Ñ [α] =
1

M

∑

i

Bi, ∀ α. (11)

Multiactivity stochastic model (MSM). In this model, we

activate node i at layer α with probability Bi = Bi/M , where

Bi is the node activity of i in the original network. Also in this

case the expected activity of each layer is equal to M−1
∑

i Bi ,

but the node activity of each node i is a binomially distributed

random variable centered around Bi , so that, differently from

MDM, the node-activity distribution is not preserved.

Layer growth with preferential activation model (LGM).

This model takes into account the fact that real-world multiplex

networks exhibit fat-tailed distributions of layer activity and

aims at explaining the power-law distribution of node activity

reported in Fig. 3. The main assumption of the model which

is certainly valid for some networks such as the continental

airlines, is that a multiplex network grows through the addition

of entire layers, each arriving with a certain number of nodes

to be activated. Then, each node i of a newly arrived layer

is activated (at that layer) with a probability that increases

linearly with the number of other layers in which i is already

active. From an operational point of view, we start from a

multiplex consisting of N nodes (either active or inactive) and

M0 layers and we add a layer at each time step. Therefore,

at time t the multiplex has M0 + t layers. We assume that in

the newly arrived layer α there are N [α] nodes to be activated,

where N [α] is set equal to the number of active nodes at layer

α observed in the original multiplex. Then we consider all the

nodes and activate each node i with probability

Pi(t) ∝ A + Bi(t), (12)

where A > 0 is a tunable real-valued parameter and Bi(t)

is the number of layers (among the M0 + t existing ones)

in which node i is already active. The parameter A is an

intrinsic attractiveness which guarantees that also nodes not

yet active in the existing layers have a nonzero probability of

being activated at a new layer.

In Figs. 8 and 9 we compare the results of the models with

some measured quantities in real-world multiplex networks.

In particular, in Fig. 8(a) we show the distribution of pairwise

multiplexity for the European continental airlines and those

obtained with the four synthetic models. Remarkably, the

distribution of multiplexity of the real system is pretty different

from those obtained through HM, MDM, and MSM. In

FIG. 9. (Color online) The rank distribution of node-activity vec-

tors in APS (a) and IMDb (b), compared with those of synthetic

multiplex networks generated using MDM and MSM.
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particular, both MDM and MSM produce multiplex networks

with an exponential-like distribution of multiplexity, while in

the original system Qα,β is a power law. HM can somehow

reproduce the heterogeneity of P (Qα,β), even if the typical

values of Qα,β are much smaller than those observed in the

European airline network. The best approximation is obtained

through the LGM, which reproduces quite accurately both

the shape and the slope of P (Qα,β). Similarly, in Fig. 8(b)

we show the distribution P (Bi) of node activity for the

original European airlines multiplex and the corresponding

synthetic networks. Taking aside MDM and MSM, for which

the distribution of node activity is equal to that of the original

network by construction, also in this case LGM is the model

which better approximates P (Bi).

Finally, in Fig. 9 we compare the rank distribution of

node-activity vectors in APS and IMDb with those obtained

through MDM and MSM (we did not consider LGM since

these multiplex have a relatively small number of layers).

We notice that the Zipf’s plots of the distributions produced

by both MDM and MSM are stepwise constant functions, in

which each step corresponds to node-activity vectors having

the same value of non-null entries (i.e., of node activity Bi).

This is due to the fact that in MDM and MSM the probability

for a certain node-activity vector to be produced depends only

on the corresponding node-activity value Bi .

The results shown in Fig. 9 suggest that the pattern of

node activity across layers in real-world multiplex networks

can be quite heterogeneous and that indeed the activity of

a node at a certain layer is often highly correlated with its

activity (and inactivity) at other layers. This means that by

studying the properties of each layer separately, or, even

worse, by aggregating all layers in a single graph, one obtains

only a partial picture of the system, while a comprehensive

understanding of a multilayer system requires to take into

account the different layers altogether.

V. CORRELATION BETWEEN ACTIVITY AND DEGREE

In this section we investigate the existence of correlations

between the activity of a node and its multidegree, i.e., the

number of edges incident in the node at each layer. To a first

approximation, the information contained in the multidegree

of a node is well described by only two quantities, the

overlapping degree and the participation coefficient of a node

[16]. Following the definition given in [16], we denote the

overlapping degree of node i as

oi =
∑

α

k
[α]
i , (13)

which is the total number of edges incident on i. Notice that

oi is sometimes called the total degree of node i. As the

degree is a proxy for the importance of a node in a single-layer

network, the overlapping degree of i is a proxy for the overall

involvement of node i in the multiplex network. However,

the overlapping degree measures only an aspect of the role

played by a node in a multiplex system. In fact, if we consider

two nodes i and j , so that i is active in all the M layers and

has m links on each of them, while j is active only on one

layer with m × M links, then we will have oi = oj = m × M .

Nevertheless, i and j have quite different roles in the multiplex,

since the removal of node j from the system will directly

affect the structure of just one layer (namely, the only layer in

which j is active), while the removal of i will potentially cause

disruptions at all layers. In order to quantify the heterogeneity

of the distribution of the links of a node across the layers, one

can make use of the multiplex participation coefficient [16],

Pi =
M

M − 1

[
1 −

M∑

α=1

(
k

[α]
i

oi

)2
]
, (14)

which takes values in [0,1], is equal to 0 if node i is active

in exactly one layer, and tends to 1 only if the edges of

i are equally distributed across all the layers. It has been

shown in Refs. [16,31] that important information on the

node properties of a multiplex can be obtained by a scatter

plot or a density plot of the participation coefficient as a

function of overlapping degree. Such diagrams have been

called multiplex cartography diagrams. In Figs. 10(a) and

10(d) we plot the multiplex cartography diagrams for APS and

IMDb. According to the values of the participation coefficient,

nodes can be divided into focused (Pi < 1/3), mixed (1/3 <

Pi < 2/3), and truly multiplex (2/3 < Pi � 1). It is worth

noticing that this classification of nodes according to the value

of their participation coefficient is in line with the definition

of network cartography originally proposed in Ref. [64] to

characterize the role played by single nodes in the organization

in communities and was adapted to multiplex networks in

Ref. [16]. More principled ways to define the boundaries of

the three regions might be based, for instance, on the selection

of percentiles of the distribution of participation coefficients,

e.g., by setting the boundary between focused and mixed

at the 50th percentile and the boundary between mixed and

multiplex at the 95th or 99th percentile. However, such a choice

would make difficult the comparison of multiplex cartography

diagrams associated to distinct multiplex networks.

Nodes with relatively high values of oi are considered

hubs. By construction, we do not expect a correlation between

oi and Pi , since the two quantities identify two different

aspects of node connectivity. In fact, the diagrams shown in

Fig. 10 exhibit a large variety of patterns. For instance, APS

is characterized by a relatively large fraction of mixed hubs

(nodes with high oi and intermediate values of Pi), while

almost all the hubs in the IMDb data set are truly multiplex

(high values of Pi).

In a similar way, we can quantify the existence of corre-

lations between the node activity Bi of a node i and the cor-

responding values of overlapping degree oi and participation

coefficient Pi . In Figs. 10(b) and 10(e) we report the density

plots of node activity and overlapping degree, respectively, for

APS and IMDb. As expected, we observe positive correlations

between the two quantities Bi and oi , so that nodes with many

links tend to be active on more layers. This is reasonable

because a node with a small number of edges cannot be

active on a large number of layers. However, the fluctuations

around the average value of node activity for a certain value

of overlapping degree (marked by the black solid line in the

plots) are quite large. Similar relationships exist between node

activity and participation coefficient as shown in Figs. 10(c)

and 10(f), despite the existence of large fluctuations. Namely,

nodes having a higher value of participation coefficient usually
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FIG. 10. (Color online) Density plots of overlapping degree, participation coefficient, and node activity for APS (top panels) and IMDb

(bottom panels). On average, node activity is positively correlated with both overlapping degree and participation coefficient (the solid line

shows the average 〈Bi〉 computed over all the nodes having a certain value of oi). However, the fluctuations in the values of Bi are quite large

in all the cases.

are active on more layers than nodes having small values of Pi .

This is indeed not surprising, since the edges of a node with

a higher value of participation coefficient are more uniformly

distributed across layers; hence, the node will be active on

more layers.

VI. INTERLAYER DEGREE CORRELATIONS

It has been extensively shown in the literature that single-

layer networks are characterized by the presence of degree-

degree correlations, meaning that nodes having a certain de-

gree are preferentially connected to other nodes having similar

(assortative correlations) or dissimilar degree (disassortative

correlations). Social and communication networks are the

most remarkable examples of assortative networks, while the

vast majority of technological and biological networks exhibit

disassortative degree correlations. In addition to the classical

intralayer degree-degree correlations, in a multiplex network

we can also define the concept of interlayer degree-degree

correlations.

A. Interlayer correlation coefficients

A compact way to quantify the presence of interlayer degree

correlations is to make use of one of the standard correlation

coefficients to measure how the degree sequences of two

layers are correlated. One possibility is the Pearson’s linear

correlation coefficient [31,46,60,61]. If we denote as k
[α]
i and

k
[β]
i the degrees of node i respectively at layer α and layer β, the

Pearson’s correlation coefficient of the two degree sequences

is defined as

rα,β =

〈
k

[α]
i k

[β]
i

〉
−

〈
k

[α]
i

〉〈
k

[β]
i

〉

σk[α]σk[β]

. (15)

To avoid the bias due to the relatively small multiplexity of

real-world systems, the averages are taken over all the nodes

which are active on both layers. Another possibility is to use

the Spearman’s rank correlation coefficient ρ [31],

ρα,β =

∑
i

(
R

[α]
i − R[α]

)(
R

[β]
i − R[β]

)
√∑

i

(
R

[α]
i − R[α]

)2 ∑
j

(
R

[β]
j − R[β]

)2
, (16)

where R
[α]
i is the rank of node i due to its degree on layer α

and R[α] and R[β] are the average ranks of nodes respectively

at layer α and layer β. Also in this case, only nodes active on

both layers are considered in the computation of ρα,β . A third

option is to use the Kendall’s τ rank correlation coefficient

[31],

τα,β =
n

α,β
c − n

α,β

d√
(n0 − nα)(n0 − nβ)

, (17)

where n0 = 1/2 × NQα,β(NQα,β − 1), and n
α,β
c and n

α,β

d are,

respectively, the number of concordant pairs and the number of

discordant pairs in the two rankings. We say that the two nodes

i and j are a concordant pair if the ranks of the two nodes at

the two layers agree, i.e., if both R
[α]
i > R

[α]
j and R

[β]
i > R

[β]
j

or both R
[α]
i < R

[α]
j and R

[β]
i < R

[β]
j . If a pair of nodes is not

concordant, then it is said to be discordant. Finally, nα and nβ

account for the number of rank ties in the two layers.
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FIG. 11. (Color online) Different degree correlation coefficients, namely (a) Pearson’s r , (b) Spearman’s ρ, and (c) Kendall’s τ for different

couples of layers, and the corresponding distributions (d) are reported for the APS and show that interlayer correlations in this system tend to

be assortative. A similar pattern is observed in IMDb [panels (e)–(h)]. However, some movie genres, like adult and talk show (respectively

corresponding to layers number 2 and number 25 in the diagram) have marked negative interlayer correlations with almost all the other layers.

We have computed the three above pairwise correlation

coefficients for the APS and for the IMDb multiplex networks.

The results are shown in Fig. 11. We notice that each of

the three coefficients shows a slightly different behavior.

Nevertheless, it is clear from the figure that interlayer

correlations in APS are exclusively assortative, while in IMDb

we can observe both positive and negative correlations. In

particular, the degree of nodes at layer 2 (adult movies) and at

layer 25 (talk shows) are negatively correlated with the degree

on all the other layers, while being positively correlated

to each other. These results indicate that it is pretty

uncommon—even if not impossible—for an actor of adult

movies to take part in a family movie or in a thriller. In

addition to this, the large majority of actors usually prefer

to avoid talk shows, the main exception being porn stars.

The presence of negative interlayer degree correlations in the

IMDb multiplex network is highlighted in the distributions

of the three correlation coefficients reported in panel (h). It is

interesting that, in most of the cases, also the interlayer degree

correlations in multiplex social networks are assortative. This

is in agreement with the common belief that intralayer degree-

degree correlations in single-layer social systems are always

of the assortative type. However, cases such as the IMDb are

an example that disassortativity is possible in social networks

when they are not aggregated, and treated as multiplex

networks.

It is important to stress that, although the Spearman’s and

Kendall’s rank correlation coefficients are able to capture, at

least to some extent, the presence of nonlinear correlations in

the rankings induced by two degree distributions, the choice

of which coefficient is more appropriate to quantify interlayer

correlations might, in general, depend on the actual system

under study. As we see in the following, a more accurate way

of measuring such correlations is by means of interlayer degree

correlation functions.

B. Interlayer correlation functions

The complete information on degree correlations in single-

layer networks is contained in the joint degree distribution

function P (k,k′) or, equivalently, in the conditional degree

distribution P (k′|k), which respectively denote the probability

that a randomly chosen link connects a node of degree k to

a node of degree k′ and the probability that a link from a

node of degree k connects a node of degree k′. A convenient

quantity that is commonly used to detect degree correlations is

the degree correlation function, defined as the average degree

of the first neighbors of a node having a certain degree k:

knn(k) = k′(k) =
∑

k′

k′P (k′|k).

In fact, in single-layer networks with assortative degree

correlations knn(k) will be an increasing function of k, while

in disassortative networks knn(k) will decrease with k. An

interesting result is that in many cases of real-world complex

networks we have knn(k) ∼ kν , so that the correlation exponent

ν can be used to quantify the sign and intensity of degree-

degree correlations [6,7].

In a multiplex network the complete information about

interlayer correlations is contained in the joint probability

P (k[1], . . . ,k[M]), which represents the probability that a

randomly chosen node has degree k[1] at layer 1, degree k[2] at

layer 2, and so on, and is nothing other than the multidegree

distribution of the system P (k). As an example, we report

in Fig. 12 the Zipf’s plot of the distribution of multidegree

for APS and IMDb. Interestingly, both distributions exhibit a
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FIG. 12. (Color online) The Zipf’s plots of the distribution of

multidegree in (a) APS and (b) IMDb have a power-law tail with

exponent close to 1.0. However, the multidegree distribution might

be affected by large fluctuations. In fact, in both cases around 90%

of the multidegree vectors are present only once, and more than 95%

are observed fewer than four times.

power-law behavior with a negative exponent around −1.0.

The interlayer correlations between layers α and β can be

studied by constructing the pairwise joint and conditional

probability distributions

P (k[α],k[β]) and P (k[β]|k[α]).

The first quantity denotes the probability that a randomly

chosen node has degree k[α] at layer α and degree k[β] at

layer β, while the latter denotes the probability that a node

having a given degree k[α] at layer α has degree k[β] at layer

β. In the same spirit of the degree correlation function defined

for single-layer networks, given two layers α and β we can

define the two interlayer degree correlation functions:

k[β](k[α]) =
∑

k[β]

k[β]P (k[β]|k[α]) (18)

and

k[α](k[β]) =
∑

k[α]

k[α]P (k[α]|k[β]). (19)

These two quantities quantify the average degree at layer

β (respectively α) of a node having a degree equal to

k[α] (respectively k[β]) at layer α (respectively β). Being

average quantities, we expect smaller fluctuations than if we

directly plotted the two-dimensional functions P (k[α],k[β]) and

P (k[β]|k[α]). Again, the idea is that an increase (decrease)

of k[β](k[α]) as a function of k[α] is a sign of the presence

of assortative (disassortative) interlayer degree correlations

between α and β.

In Fig. 13 we show some typical examples of pairwise in-

terlayer degree correlation functions in C. elegans, BIOGRID,

APS, and IMDb. Both in the two biological networks and

in APS we observe an increasing behavior of k[β](k[α]) as a

function of k[α], denoting the presence of assortative interlayer

degree correlations. For the multiplex network of movie actor

collaborations we find instead pairs of layers with assortative

or disassortative interlayer degree correlations and also pairs

of uncorrelated layers. As an example of positively correlated

genres in the IMDb we report the couple drama-western. The

couple adult-western is instead negatively correlated, while

drama movies are not correlated with game show, as witnessed

by the fact that k[β](k[α]) shows no dependence on k[α]. It is

worth noticing that also interlayer correlation functions can

be well fitted, in most of the cases, by power laws in the

form k[β](k[α]) ∼ (k[α])μ, so that for each network, and for

each ordered pair of layers (α,β), it is possible to extract the

interlayer correlation exponent μ. We can therefore say that

we observe assortative, neutral, or disassortative correlations,

depending on the fact that the sign of μ is respectively

positive, null, or negative. The absolute value of μ then gives

information on the intensity of the correlations. Notice that, in

general, according to the definition of k[α](k[β]), the exponent

of k[β](k[α]) might be different from the exponent of k[α](k[β]),

as happens, for instance, in Fig. 13(a) for the layers of C.

elegans and BIOGRID.

In Fig. 14 we report a graphical representation of the

interlayer degree correlation patterns in APS and in IMDb

and we also show the corresponding distribution of interlayer

correlation exponents observed in the two systems. Each node

of the graphs shown in Figs. 14(a) and 14(b) corresponds to

a layer of the multiplex, and the color of a link represents

the sign and magnitude of the exponent of the interlayer

correlation function between two layers (red for negative

exponents and blue for positive ones). It is evident that while

in APS interlayer degree correlations are always positive, in

IMDb they might be either positive or negative. Notice also that

the only layers in IMDb having negative degree correlations

FIG. 13. (Color online) The interlayer pairwise degree correlation function k[β](k[α]) is shown for (a) C. elegans and BIOGRID and for

various couples of layers α and β, respectively, in (b) APS and (c) IMDb. The lines reported are fit obtained by a power law of the form

k[β](k[α]) ∼ (k[α])μ. The plots are vertically displaced to enhance readability.
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FIG. 14. (Color online) The interlayer correlation pattern of (a) APS and (b) IMDb is evident by considering a graph whose nodes

correspond to layers and the weight of the edges is the value of the interlayer correlation exponent μ. In the figure blue weights correspond to

positive correlations, while red weights correspond to negative ones. (c) The distribution of the values of the interlayer correlation exponent μ

in APS (solid black line) and in IMDb (dashed red line). Notice that while interlayer degree correlations are always positive in APS, the layers

of IMDb might be either positively or negatively correlated.

with the others are those corresponding to adult movies and talk

shows.

VII. MODELS OF INTERLAYER DEGREE

CORRELATIONS

We propose here two different models to reproduce the

observed patterns of pairwise interlayer degree correlations.

The first model is based on the tuning of the Spearman rank cor-

relation coefficient ρα,β , while the second one makes it possible

to obtain an interlayer correlation function k[β](k[α]) ∼ (k[α])μ,

with a prescribed value of the correlation exponent μ. Both

models are based on simulated annealing.

A. Model for ρ

Let us consider two graphs with the same number of nodes

N . If we want to construct a two-layer multiplex network

using the two graphs respectively as layer α and layer β of the

multiplex, we need to couple the nodes of the two graphs in

such a way that each node of layer α is connected with exactly

one node on the other layer β. Such a coupling can be realized

in many different ways, and in particular it can be chosen in

order to obtain a given level of interlayer degree correlation,

for instance, a given value of the Spearman rank correlation

coefficient ρα,β . The coupling and/or correspondence between

the nodes of the two graphs can be described by a N × N

matrix S = {sij } that we call assignment. Entry sij = 1 if node

i in layer α corresponds to node j in layer β. Since we have

a one-to-one correspondence between the nodes of the two

graphs, we have to impose
∑

j sij = 1, ∀ i. For simplicity in

the notation, let us denote by xi the rank of node i in layer α,

as induced by the degree sequence {k
[α]
i } and by yi the rank

of node i in layer β, as induced by {k
[β]
i }. In this case, the

Spearman’s rank correlation coefficient corresponding to the

assignment S can be written as

ρ =

∑
i,j sij (xi − x̄)(yj − ȳ)

√∑
i(xi − x̄)2

∑
j (yj − ȳ)2

. (20)

This equation can be also expressed in the form

∑
ij sijxiyj + C

D
, (21)

where

C = Nx̄ȳ − ȳ
∑

i

xi − x̄
∑

i

yi (22)

and

D =

√∑

i

(xi − x̄)2
∑

j

(yj − ȳ)2 (23)

are two constants which depend only on the two rankings

{xi} and {yi} and not on the actual assignment S. Therefore,

the Spearman’s correlation coefficient is uniquely determined

by the term
∑

i,j sijxiyj , i.e., by the adjacency matrix S.

Consequently, one should, in principle, be able to obtain

any prescribed value ρ∗ of the Spearman rank correlation

coefficient by appropriately changing the assignment, i.e., by

finding a matrix S∗ = {s∗
ij } so that

∑
i,j s∗

ijxiyj + C

D
= ρ∗. (24)

For a generic assignment S we have

∑
i,j sijxiyj + C

D
= ρS �= ρ∗,

which is associated to the cost function F (S) = |ρS − ρ∗|.

The basic idea is then to subsequently modify the structure

of the assignment in order to minimize F (S). We make use

of a simulated annealing algorithm, which works as follows.

We start from an initial random assignment S and we compute

its associated cost function F (S). Then we select two edges

e1 = (i,j ) and e2 = (k,ℓ) of S uniformly at random so that

e1 �= e2, and we consider the adjacency matrix associated with

the assignment S ′ obtained from S by replacing e1 and e2 with

e′
1 = (i,ℓ) and e′

2 = (k,j ). We compute F (S ′), and we accept
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Algorithm 1 Simulated annealing for ρ∗

Require: {ki}, S = {sij }, ρ∗, ε

Ensure: S ′ = {s ′
ij } so that ρ = ρ∗

1: compute ρS
2: F (S) ← |ρS − ρ∗|

3: WhileF (S) > ε do

4: select two interlayer edges, (i,j ) and (k,ℓ), at random

5: replace (i,j ) with (i,ℓ) and (k,ℓ) with (k,j )

6: compute ρS ′

7: F (S ′) ← |ρS ′ − ρ∗|

8: if F (S ′) < F (S) then

9: S ← S ′

10: else

11: swap F (S) and F (S ′) with probability p = e−(F (S ′)−F (S))/γ

12: end if

13: F (S) ← |ρS − ρ∗|

14: end while

15: return S

the new assignment S ′ with a probability

p =

{
1 if F (S ′) < F (S),

e
−

F (S′ )−F (S)
γ otherwise,

(25)

where γ is a parameter. This scheme, whose pseudocode is

reported in Algorithm 1, favors changes to the adjacency

matrix which contribute to minimize the function F , but it also

allows to explore ergodically all the possible configurations of

S, by accepting unfavorable changes with a finite probability.

Notice that, due to the discrete nature of the assignment

problem and depending on the characteristics of the two

rankings under consideration, it might happen that there exists

no assignment which produces exactly the desired value ρ∗.

Consequently, the algorithm will stop when F (S) < ε, where

ε is a threshold set by the user. Moreover, in order to avoid

any bias due to the relatively small multiplexity of real-world

systems (i.e., to the relatively small fraction of nodes which

are active on both α and β, for any choice of α and β), it is

usually better to run the algorithm only on the nodes which are

active on both of the layers considered. In the generic case of

M-layer multiplex networks one can iterate this algorithm in

order to set the values of ρα,β for up to M − 1 pairs of layers.

As an example, we report in Fig. 15 the values of ρα,β

measured for the APS and for the IMDb, together with those

obtained in the synthetic multiplex networks constructed by

using the proposed algorithm. Each synthetic network was

constructed by keeping the distribution of node-activity vectors

of the original multiplex, and by reassigning at random the

degrees of the active nodes at each layer, sampling them

from the same distribution observed in the real multiplex.

We considered the M − 1 pairs of layers having consecutive

IDs [e.g., couples of layers (α,β) such that β = α + 1,

for instance (0,1), (1,2) and so on], and we measured the

observed interlayer rank correlation coefficients ρα,β . Then, we

iterated Algorithm 1, starting from the first two layers, setting

FIG. 15. (Color online) The values of the Spearman correlation coefficient in the original multiplex (left panels) and in that obtained

through Algorithm 1 (middle panels), respectively, for APS (top) and IMDb (bottom). In the rightmost panel of each row we show the

difference between the original distribution of ρ and that obtained in the synthetic network. In both cases, the overall shape of the distribution

of interlayer correlations in the synthetic multiplex looks very similar to the original one. However, the differences in the obtained value of ρ

might be quite high. This is due to the fact that Algorithm 1 allows to set only M − 1 pairs or correlations over the total M(M − 1)/2.
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ρ∗ = ρα,β and obtaining an optimal assignment of the nodes

in α and β. Keeping this assignment fixed, we run again

Algorithm 1 on the second and the third layers of the multiplex,

and we obtained the optimal assignment between their nodes,

and so forth. By looking at Fig. 15 it is evident that there is

a qualitative correspondence between the distributions of ρ in

real and synthetic networks, mostly due to the fact that partial

ordering is a transitive relation, but, in general, the difference

between the two might be relatively high (up to 0.4 in APS

and up to 0.5 in IMDb).

It is important to stress here that Algorithm 1 can be

straightforwardly generalized to work with any node property.

In fact, the algorithm is based on the comparison of rankings

induced by node properties, independently from the fact that

these rankings are induced by degree sequences or by any

other node attribute. Consequently, the same procedure can

be employed to set the magnitude and sign of interlayer

correlations with respect to any real-valued pairs of node

properties, such as the clustering coefficient, the betweenness,

or the size of the community to which a node belongs. Notice

that it would also be possible to consider multiobjective

functions which allow to set the correlations for all the

M(M − 1)/2 pairs of layers at the same time. Such variants

of Algorithm 1 will be the subject of another work currently

in preparation. A software implementation of Algorithm 1 is

available for download at [62].

B. Model for k[β](k[α])

Analogously to what done in the previous section, here

we propose an algorithm to tune the assignment of the nodes

of two layers α and β in order to set a prescribed interlayer

degree correlation function. In particular, we assume that the

desired correlation function is a power law, i.e., k[β](k[α]) =

a(k[α])μ, as those observed in real-world multiplex networks.

To simplify the notation here we indicate as q the degree of

the node at layer β and as k the degree of the node at layer α.

Then the desired correlation function has the form q(k) = akμ,

where the value of μ is that obtained empirically for a given

real network, while a is a constant to be determined. The

algorithm is similar to that proposed for the adjustment of the

Spearman’s ρ coefficient. We start from a random assignment

of nodes S, we select two edges of S uniformly at random, and

Algorithm 2 Simulated annealing for q̄ = akμ

Require: {ki}, {qi}, {sij }, μ, ε

Ensure: {s ′
ij } so that |q̄ − akμ| < ε

1: continue ← True

2: while continue is True do

3: select two nodes, i and j , at random

4: �old
1 ← | ln(qi) − ln(a) − μ ln(ki)|

5: �old
2 ← | ln(qj ) − ln(a) − μ ln(kj )|

6: �new
1 ← | ln(qj ) − ln(a) − μ ln(ki)|

7: �new
2 ← | ln(qi) − ln(a) − μ ln(kj )|

8: Fold ← �old
1 + �old

2

9: Fnew = �new
1 + �new

2

10: if Fnew < Fold then

11: swap i and j in the second layer and obtain {s ′
ij } 12: else

12: else

13: swap i and j with probability p = e−(Fnew−Fold)/γ

14: end if

15: compute the best power-law fit a′kμ′
of q̄

16: if |μ − μ′| < ε then

17: continue ← False

18: end if

19: end while

20: return {s ′
ij }

we try to swap their end points in order to locally minimize the

difference � between the actual function q(k) and the desired

one kμ. Favorable swaps, i.e., those which produce smaller

values of �, are always accepted, while unfavorable ones, i.e.,

those which produce a local increase in �, are accepted with

a probability which decays exponentially with the difference

in �. The main steps of the procedure are summarized in

Algorithm 2. There are some technical subtleties to take

into account for the implementation of Algorithm 2. First

of all, the fact that the coefficient a which multiplies kμ is,

in general, unknown. Consequently, a is initially set to an

arbitrary positive value and then it is adaptively changed as

the algorithm proceeds, by setting it equal to the coefficient

obtained through the best power-law fit of q̄(k). Updates of a

are performed once every ta steps of the algorithm, where ta

FIG. 16. (Color online) The values of the interlayer degree correlation exponent μ in the APS multiplex (left) and in a synthetic multiplex

network generated through Algorithm 2 (middle). The rightmost panel shows the difference between the exponents observed in the original

system and those measured in the synthetic network. Although the left and the middle panels look qualitatively similar, the right panel reveals

that the difference in the actual interlayer degree correlation exponent μ of the synthetic network might be as high as 0.7.
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is a parameter set by the user. A software implementation of

Algorithm 2 is available for download at [62].

In Fig. 16 we compare the values of the interlayer degree

correlation exponent μ observed in the APS multiplex and in

the synthetic network obtained through Algorithm 2. Despite

the distribution of μ in the synthetic multiplex looks quali-

tatively similar to that of the original system, the difference

in the actual value of μ can be quite large. Remember that

by using Algorithm 2 one can set the value of μ only for

M − 1 pairs of layers, so the poor agreement of the pattern

of correlation observed in the model with that of the original

system suggests that interlayer degree correlations of the APS

multiplex network are not just due to the superposition of

pairwise interlayer correlations.

VIII. CONCLUSIONS

In the past 15 years complex networks theory has shed

new light on the structure, organization, dynamics, and

evolution of complex systems, providing a unifying framework

to characterize and model diverse natural and man-made

systems. However, a complex network is rarely an isolated

object, since its constituent nodes can belong to different

systems at the same time and can be connected through a

variety of different relationships. Despite being still in its

infancy, the multiplex network approach, which consists of

representing the different kinds of relationships among nodes

as separate layers of a multilayer graph, provides a promising

framework to understand and model the structure of multilayer

interconnected systems.

In this work we have analyzed multiplex networks obtained

from real-world biological, technological, and social systems

and spanning a wide range of sizes. We showed that real-world

multiplex networks tend to be quite sparse, meaning that only

a few nodes are active on more than one layer and that the

patterns of presence and involvement of nodes through the

layers are characterized by interlayer correlations, as clearly

shown by the heterogeneous distributions of node activity

and by the nontrivial interlayer degree correlation functions.

The observation of such nontrivial patterns indicates that a

multiplex is more than the sum of its layers and cannot be

described by a single-layer network obtained by aggregating

the layers. Recent results in the field actually confirm that

such multiplex patterns play a fundamental role in many

dynamical processes taking place on multiplex networks

and can indeed be responsible for completely new physical

phenomena, unobservable in single-layer projections [52,56].

Finally, it is interesting to notice that the large majority of

models for multiplex networks proposed so far are based on the

assumption that each node of a multiplex is active at all layers

and that all layers have the same number of nodes. In the light

of the results of this paper, these assumptions are too simplistic

for the modeling of real-world multiplex systems. Despite

some recent attempts to take into account heterogeneities of

node and layer activities [65], we believe that further research

is needed in this direction to better understand the elementary

processes which might be responsible for the formation of

such interesting structural patterns.
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APPENDIX: MULTIPLEX NETWORK DATA SETS

We provide here a detailed description of the data sets
studied in the paper, illustrating how the associated multiplex
networks were constructed. All the data sets are available
for download at [62]. Notice that, for most of the data sets
considered, it is also possible to associate a weight to each edge
of the network, measuring the strength of the corresponding
interaction. However, given that the focus of the current work
is on the characterization of correlations in the activity of nodes
and in their degrees, we have considered all these multiplexes
as unweighted. A study of the correlations between degrees
and weights in multiplex networks can be found, for instance,
in Ref. [18].

C. elegans. The C. elegans is a small nematode, the first
multicellular organism whose genome has been completely
sequenced [66]. Thanks to the fact that its body is transparent,
scientists have had the opportunity to study with unprece-
dented accuracy each and every cell of the C. elegans and,
in particular, its neural network, which is, to date, the only
fully mapped brain of a living organism [67]. The network,
consisting of 281 neurons and around 2000 connections among
them, was first analyzed as a complex network by Watts
and Strogatz in their seminal paper on small-world networks
[3] and has since then been thoroughly studied [8,68,69].
One important aspect of this network, which has been not
considered in most of the analyses so far, is that the neurons
can be connected either by a chemical link, a synapse, or
by an ionic channel, the so-called gap junction. These two
types of connection have completely different dynamics and
function. Consequently, the neural network of the C. elegans

can be naturally represented as a multiplex networks with
N = 281 nodes and two layers, respectively, for synapses and
gap junctions (see Fig. 1). Details of this multiplex, such as
the number N [α] of active nodes at each layer, i.e., nodes
with at least one link at that layer, are shown in Table II. In
this particular network we have two layers; hence, α = 1 or
α = 2.

Genetic-protein network. As another example of biological

system we considered BIOGRID [70], a public database which

collects and makes available for research genetic and protein

interaction data from several organisms, including humans.

The whole data set consists of around 500 000 registered

interactions among proteins in more than 40 different species.

At the highest possible level, such interactions may be of two

distinct types, namely physical and genetic. Two proteins A

and B are said to interact physically if they can establish

a physical contact to form a larger complex C, while they

interact genetically if one of the two proteins, say A, regulates

B, i.e., if A can trigger the activation (or repression) of the gene

responsible for the production of B. It is worth mentioning that

a more fine-grained classification of gene-protein interactions
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TABLE IV. For each of the six continental airplane multiplex

networks constructed from the OpenFlight database, we report the

number of layers M and the exponent η of the distribution P (N [α]) ∼

(N [α])−η of the number of nonisolated nodes in each layer. The values

of η and the corresponding standard deviations were determined using

the maximum-likelihood estimator for power-law distributions [63],

while the p value is based on the maximization of the Kolmogorov-

Smirnov statistics over 1000 bootstrapped realizations (higher values

of p value are more significant).

Network M η p value

Africa 84 1.64 ± 0.16 0.20

Asia 213 1.71 ± 0.12 1.00

Europe 175 1.48 ± 0.11 0.11

North America 143 1.52 ± 0.12 0.99

Oceania 37 1.37 ± 0.10 0.04

South America 58 1.58 ± 0.18 0.90

makes it possible to identify up to seven different layers, as

already shown in Refs. [28,71].

Also in this case, the research has been mostly focused

on the study of the structural properties either of physical

or of genetic interactions among proteins. We propose to

study here the protein interaction networks as a multiplex

network and, starting from the BIOGRID data set, we have

constructed a network with two undirected and unweighted

layers, corresponding, respectively, to physical and genetic

interactions among proteins. The resulting multiplex network

has N = 54 549 nodes, and the basic properties of the two

layers are summarized in Table II.

OpenFlight. Another system which has been thoroughly

investigated as a single-layer complex network is the airport

transport system [12,72]. In this case the nodes of the network

stand for airports and a link represents the existence of at

least one direct flight between two airports. More fine-grained

information about the airport transportation network has been

recently made available [14,15]. Here we use a data set of

aerial routes provided by OpenFlight [73], a collaborative free

TABLE V. The APS multiplex collaboration network consists of

ten layers, one for each field of physics. For each layer α we report

the number of active nodes N [α], the number of edges K [α], and

the average degree 〈k[α]〉. We also report for reference the number of

nodes, the number of edges, and the average degree of the single-layer

network obtained by aggregating all the layers.

Layer Field N [α] K [α] 〈k[α]〉

0 General 53 170 1 268 045 47.7

1 Particles 37 861 4 865 557 257.0

2 Nuclear 32 792 1 747 892 106.6

3 Atomic 33 649 189 674 11.27

4 Classical 40 269 222 328 11.04

5 Gases and plasmas 14 237 179 786 25.3

6 Condensed matter I 63 560 611 765 19.3

7 Condensed matter II 79 416 631 159 15.9

8 Interdisciplinary 45 385 509 058 22.4

9 Astronomy 31 540 2 467 703 156.5

Aggregated 170 397 6 950 611 81.6

TABLE VI. Basic features on each of 28 layers of the IMDb

multiplex network and of the corresponding aggregated network. In

this case, each layer corresponds to a movie genre.

Layer Genre N [α] K [α] 〈k[α]〉

1 Action 330 333 11 800 436 71.4

2 Adult 66 756 1 691 208 50.7

3 Adventure 210 293 7 390 148 70.3

4 Animation 55 376 1 120 523 40.5

5 Biography 128 552 4 272 197 66.5

6 Comedy 810 693 30 118 775 74.3

7 Crime 297 554 10 051 325 67.6

8 Documentary 313 019 6 850 670 43.8

9 Drama 1 091 789 43 352 371 79.4

10 Family 198 301 5 432 262 54.8

11 Fantasy 176 080 5 096 872 57.9

12 Film noir 7035 399 548 113.6

13 Game show 15 222 282 942 37.2

14 History 124 803 4 137 162 66.3

15 Horror 263 290 5 428 250 41.2

16 Musical 121 471 4 118 346 67.8

17 Music 165 110 4 977 063 60.3

18 Mystery 168 898 4 226 618 50.0

19 News 21 530 406 166 37.7

20 Reality TV 29 112 465 244 32.0

21 Romance 364 042 13 325 687 73.2

22 Sci-Fi 164 468 4 147 689 50.4

23 Short 64 4430 5 117 780 15.9

24 Sport 101 006 3 643 330 72.1

25 Talk show 19 700 516 943 52.5

26 Thriller 356776 10 757 551 60.3

27 War 118 960 3 967 033 66.7

28 Western 56 638 2 101 057 74.2

Aggregated 2 158 300 ∼1.2 × 108 ∼100

online tool which makes it possible to map flights all around the

world. Registered users of the Web site can upload information

about their trips and share this information with friends. The

maintainers of the Web site made available a dump of the data

set which contains information about 59 036 routes between

3209 airports operated by 531 different airlines spanning the

whole globe. For each route we have information about the

start point, the end point and the company which operates the

flight. Starting from this data set, we constructed six different

multiplex networks. Each multiplex network represents the

routes of a continent (Africa, Asia, Europe, North America,

Oceania, South America) and consists of as many layers as

airlines operating in that continent. The active nodes on each

layer are the airports from which the corresponding airline

company has at least one flight, and links represent the routes

provided by that airline. In Table IV we report the basic features

of each of the six continental multiplexes.

APS coauthorship. Coauthorship networks are commonly

constructed by connecting with an edge two researchers if they

have published one or more papers together. We used a data set

made available by the APS which reports information about all

the papers published in any of the journals edited by APS since

1893 and up to 2009. In this data set, each paper published

after 1975 is associated to up to four numeric codes, in the

format XX.YY.ZZ, which identify a subfield or research area
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according to the Physics and Astronomy Classification Scheme

(PACS). At the highest level, PACS codes are organized

into ten groups, respectively corresponding to subfields of

physics. Starting from this data set, we constructed a multiplex

collaboration network consisting of ten layers, in which nodes

represent authors and links connect authors having coauthored

at least one paper. Authors with identical first and last names

are considered to be the same authors. Please refer to Ref. [74]

for a more comprehensive introduction to the problem of

disambiguating authors in collaboration networks. Each layer

corresponds to the collaborations identified by papers whose

PACS codes are in one of the ten high-level categories.

In Table V we report the properties of the layers of this

network. Each layer has up to around 79 000 active nodes,

and the density varies across layers, according to the typical

publication policy of each area of physics. For instance,

papers in condensed matter and interdisciplinary physics are

usually authored by just a few authors, while papers produced

by large collaborations, including up to several hundred

authors, are typical in particle physics, nuclear physics, and

astronomy.

IMDb. The IMDb [75] is a Web site providing comprehen-

sive information about all the movie productions around the

world. The data set is maintained and updated by volunteers

and made available for research use. It contains information

about casts, producers, directors, etc., of several million

movies belonging to 30 different genres. We constructed a

multiplex network of collaborations among actors in which

nodes represent actors and an edge exists between two nodes

if the corresponding actors have coacted in at least one movie.

Each of the 30 categories represents a layer of the multiplex,

so that if two actors have played a role in the same horror

movie, they will be connected by an edge at the corresponding

layer. In Table VI we show the basic characteristics of each

layer of the multiplex. Notice that only 28 of the 30 layers are

reported, since two of the layers, namely those corresponding

to experimental and lifestyle movies, were deliberately left

out of this study, since they contained less than 20 actors each.

Notice also the wide variety of ranges in the number of active

nodes. For instance, film noir has about 7000 active nodes,

while drama has more than 106 active nodes and more than

43 × 106 edges.

[1] M. E. J. Newman, The structure and function of complex

networks, SIAM Rev. 45, 167–256 (2003).

[2] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U.

Hwang, Complex networks: Structure and dynamics, Phys. Rep.

424, 175 (2006).

[3] D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-

world’ networks, Nature (London) 393, 440 (1998).

[4] A.-L. Barabási and R. Albert, Emergence of scaling in random

networks, Science 286, 509 (1999).

[5] L. A. N. Amaral, A. Scala, M. Barthlmy, and H. E. Stanley,

Classes of small-world networks, Proc. Natl. Acad. Sci. U.S.A.

97, 11149–11152 (2000).

[6] R. Pastor-Satorras, A. Vazquez, and A. Vespignani, Dynamical

and Correlation Properties of the Internet, Phys. Rev. Lett. 87,

258701 (2001).

[7] R. Pastor-Satorras and A. Vespignani, Epidemic Spread-

ing in Scale-Free Networks, Phys. Rev. Lett. 86, 3200

(2001).

[8] V. Latora and M. Marchiori, Efficient Behavior of Small-World

Networks, Phys. Rev. Lett. 87, 198701 (2001).

[9] M. E. J. Newman, The strucrure of scientific collabo-

ration networks, Proc. Natl. Acad. Sci. USA 98, 404

(2001).

[10] M. Girvan and M. E. J. Newman, Community structure in social

and biological networks, Proc. Natl. Acad. Sci. U.S.A. 99, 7821

(2002).

[11] M. E. J. Newman, Assortative Mixing in Networks, Phys. Rev.

Lett. 89, 208701 (2002).

[12] A. Barrat, M. Barthelemy, R. Pastor-Satorras, and A. Vespig-

nani, The architecture of complex weighted networks, Proc.

Natl. Acad. Sci. U.S.A. 101, 3747 (2004).

[13] M. Szell, R. Lambiotte, and S. Thurner, Multirelational organi-

zation of large-scale social networks in an online world, Proc.

Natl. Acad. Sci. U.S.A. 107, 13636 (2010).

[14] A. Cardillo et al., Emergence of network features from multi-

plexity, Sci. Rep. 3, 1344 (2013).

[15] A. Cardillo, M. Zanin, J. Gmez-Gardeñes, M. Romance, A. J.
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