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ABSTRACT: A geofoam was produced by blending expanded polystyrene (EPS) beads 

and sands in proportions. The formed mixtures, known as EPS-sands, were 32-66% 

lighter than general earthfills (e.g., sand). Consolidated-drained (CD) triaxial 

compression tests were conducted on EPS-sand mixture specimens to observe their 

stress-strain characteristics, specifically, the stress-strain responses in relation to the EPS 

contents (0.5%, 1.5% and 2.5% by weight) used in the mixtures and confining pressures 

(100, 200, 300 to 400 kPa) loaded on the specimens. The EPS content and confining 

pressure were found to influence the stress-strain and volumetric strain behavior of the 

mixtures. Increasing EPS content led to decreased shear strength and increased 

volumetric strain. Increasing confining pressures enhanced the strength of the mixture. 

EPS-sand mixtures underwent a shear contraction throughout the CD tests. The optimum 

EPS bead content (i.e., the one reasonably balancing the unit weight, strength and 

deformation) was in the order of 0.5% by weight. EPS content dependent strain 
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increment equations were derived by compromising Cam-clay and Modified Cam-clay, 

and used to model the stress-strain characteristics of EPS-sand mixtures. The established 

equations were verified being able to depict the stress-strain observations of EPS-sand 

specimens, at least for the ranges of EPS contents and confinements considered in this 

study. 

 

Keywords: EPS beads; sands; triaxial compression; shear strength; Cam-clay; 

stress-strain behavior; lightweight fills. 

INTRODUCTION 

Geofoam has been acknowledged, relative to its low unit weight, as an attractive choice 

of substitute for earthfills in special infrastructure works, e.g., widened embankments, 

abutments or bridge approaches, retaining works and flexible pipeline backfills (Horvath 

1994; Duskov 1997; Greeley 1997). The replacements with geofoam were able to 

mitigate the vertical stresses imposed onto underlying (difficult) soils (Horvath 1994, 

1997, 2008; Doskov 1997; Snow and Nickerson 2004) or flexible utilities pipelines, as 

well as to reduce the lateral stresses loaded onto the side-way earth structures (Hazarika 

and Okuzono 2004; Horvath 2004). In practice, geofoam also demonstrated favorable 

performances in buffering mechanical impacts, e.g., swelling of expansive soil (Aytekin 

1997; Ikizler et al. 2008) and seismic vibrations (Riad and Horvath 2004; Zarnani et al. 

2009), as well as in mitigating thermal distresses in permafrost regions (Wen et al. 2008).  
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Geofoam can be either prefabricated expanded polystyrene (EPS) block (Horvath 1994, 

1997, 2008; Doskov 1997), or the mixture of soils and EPS pre-puff beads (Liu et al. 

2006; Zhu et al. 2008). Both need to be investigated with respect to measuring and 

modeling their stress-strain characteristics so as to evaluate the field design and 

construction. To date, investigations regarding EPS blocks can be reached through many 

sources, for examples, field and laboratory measurements (Doskov 1997; Fang et al. 

2006), and modeling analyses (Chun et al. 2004; Hazarika and Okuzono 2004; Wang et 

al. 2006; Wong and Leo 2006; Hazarika 2006). There were also reports in the public 

domain about the measurements of soil-EPS-cement mixtures (Liu et al. 2006; Zhu et al. 

2008)), whereas no implementation was reported on measuring and modeling the 

stress-strain behavior of soil-EPS beads mixtures.  

 

In this study, EPS beads and construction sands were blended homogeneously in 

proportions to form nonstructural granular lightweight fills, referred to as EPS-sand 

hereafter. The non-cementitious lightweight fills not only save the use of cement, but also 

were suitable for works where low strength and instant excavation were desired. The goal 

of this study was to measure the stress-strain characteristics of EPS-sand mixtures, as 

well as to model the proportion dependent stress-strain behavior of the mixtures. 

Laboratory consolidated-drained (CD) triaxial compression tests were conducted on 

EPS-sand specimens prepared at designated EPS contents and subjected to varying 

confining pressures. The stress-strain responses of the mixtures were observed, collected 

and analyzed. Proportion dependent strain increment equations were derived and verified 

to depict the strength and deformation behavior of EPS-sand. 



4 

MATERIALS AND METHODS 

Sand and EPS Bead 

The sand used in the EPS-sand matrix was general construction fine sand and supplied by 

a professional construction material company in Nanjing China. The index properties of 

the sand are presented in Table 1. The water content as-received of sand was 5%. The 

particle size distribution for the sand is shown in Fig. 1. The sand had a coefficient of 

uniformity of 6.7, a coefficient of curvature of 1.3, and was classified under the Unified 

Soil Classification System as SW (well graded sand) and under the AASHTO (American 

Association of State Highway and Transportation Officials) Soil Classification System as 

A-3 (0). It had a specific gravity of 2.62, a maximum dry unit weight of 18.9 kN/m
3
 (i.e., 

minimum void ratio of 0.39) and a minimum dry unit weight of 15.4 kN/m
3
 (i.e., 

maximum void ratio of 0.70). The friction angle of the sand was 32.6 when its relative 

density Dr was 50%. 

 

EPS bead is a super light polymer foam, pre-puffed from polystyrene resin. The EPS 

beads used in this study were provided from a professional supplier which had been 

manufacturing EPS geofoam blocks. The beads were white, even and spherical, sizing 

between 2-4 mm (Fig. 2).  

 

Determinations of the unit weight and specific gravity of the EPS beads were conducted 

by a means modified from comparable standard test method for fine aggregates (i.e., 
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ASTM C128). Beads were placed into a 1-L hydrometer until the volume of the 

hydrometer was apparently occupied. The placement was implemented without much 

compaction but light tilting effort, which basically simulated the moderate compaction 

the beads should reach. Scale and calculate the net weight of beads used to fill the 

hydrometer, and determine the unit weight through dividing the net weight by the volume 

(1 L). The unit weight obtained for EPS beads was 0.15 kN/m
3
. Next, cover the opening 

of the hydrometer with a piece of gauze, and hoop the gauze around the hydrometer with 

an O-ring. Add de-aired water volume into the hydrometer through the gauze until the 

hydrometer weight was constant. Calculate the absolute volume occupied by the beads in 

the hydrometer and determine the specific gravity of beads, which was 0.03.  

EPS-Sand Specimen Preparation 

EPS-sand specimens (Fig. 2) were formed by mixing EPS beads with sands at a dry mass 

ratio η of EPS beads over sands, which was thought as the most significant factor 

controlling the unit weight and mechanical behavior of the mixtures. Investigated ratios 

were 0.5%, 1.5% and 2.5%. Water content of 10% was controlled in each mixture to 

facilitate the compaction in the next step. For each designated mixing ratio, the 

mass-based proportions of sand, EPS bead and water were determined aforehand. The 

proportioned materials were mixed thoroughly using an air-mixing method. That is, 

mixtures were placed into an air-tight plastic bag and subjected to manual vibration 

efforts until the mixtures were homogeneous enough, normally, taking 3-5 minutes 

dependent on the mixture volume.  
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Triaxial cylindrical specimens were prepared at a diameter of 39.1 mm (1.5 in.) and a 

height of 80 mm (3.1 in.). The sample size ratio is defined as the diameter of the 

specimen divided by the maximum particle size. As the sample size ratio approached 20 

for sand and 10 for EPS bead, respectively, the effects of sample size became negligible 

(Marachi et al. 1972; Indraratna et al. 1993). Mixtures at a designated weight were placed 

into a split mold and compacted moderately by vibrating and tamping efforts until the 

desired relative density (i.e., Dr=50%) was reached. Specifically, the target relative 

density of EPS-sand matrix was achieved by quantifying the weight of proportioned EPS 

and sand mixtures to be placed within a volume (i.e., 39.180 mm). Compaction was 

completed in three increments (i.e., 30, 30 and 20 mm in sequences). Consistent 

compaction was attained by controlling the feed quantity of the portion to be placed in an 

increment. The specimen preparation procedure used in this study was implemented to 

obtain a homogeneous distribution, and no evidence of segregation was observed for any 

EPS content. Consequently, interpretation of the test results assumed homogeneity of the 

specimens.  

Triaxial Apparatus 

A standard strain-controlled triaxial apparatus was used in this investigation to test 

specimens. A schematic diagram of the triaxial cell is shown in Fig. 3. The cell consisted 

of three principal components, namely: the base, the chamber, and the top head of the cell. 

The base, i.e., the pedestal, where the specimen rested, incorporated three separate 
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inlet/outlet connections. One connection was used to supply de-aired water into the 

chamber and to pressurize the water to obtain the desired cell pressure. The other two 

connections were linked exclusively to the specimen. The bottom one was used in 

combination with a pressure transducer to measure the pore-water pressure in the 

undrained tests, and the top one was used to flush water to remove air bubbles during 

specimen preparation and drain water in shear in the drained tests. Indeed, the bottom line 

was sometimes used to apply a back pressure to saturate the specimen during specimen 

preparation. At the top part of the cell, a displacement transducer and a load ring were 

installed to obtain the deformation and force acting on the specimens. 

 

Aside from the triaxial cell, there were peripheral devices attached to the triaxial cell for 

the triaxial apparatus to implement the tests. For examples, a gear box was used to 

control the axial strain rate. A pressure meter was used to measure and maintain cell 

pressures applied during tests. Changes in water level in an attached burette were 

collected and inspected to correlate to volume changes in the specimens. The axial load 

was correlated to the system vertical compressions and ring deformations which were 

monitored through the gauges installed on the triaxial system. The details of a triaxial 

apparatus can be referred to the laboratory manual by Bowles (1992). 

TESTING PROGRAM 

The testing program is summarized in Table 2. A total of 4 series (i.e., EPS content η=0 

(pure sand), 0.5%, 1.5% and 2.5%, respectively) of CD triaxial compression tests were 
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performed as part of this investigation. Series 1 was conducted using pure sand 

specimens. Series 2 to 4 were conducted using EPS-sand specimens. Each series included 

4 cylindrical specimens, which, before shear, were subjected to 4 separate consolidation 

pressures, respectively (i.e., 100 kPa, 200 kPa, 300 kPa and 400 kPa). The unit weight of 

the EPS-sand mixture was found to be less than that of moderately compacted sand by 

about 12-32% per 0.5% EPS inclusion depending on the mixing ratio. The volumetric 

ratio of EPS over the combination of EPS and sand in the mixture, ς, was calculated 

based on the mixing ratios and specific gravities of particles for each mixture, as 

presented in Eq. 1. EPS-sand mixture prepared at EPS content η=0.5% by weight had 

approximately 30% EPS in volume. If the EPS content increased to 1.5% or above, the 

EPS volumetric ratio exceeded 57%, which substantially led to reduced sand-sand 

interactions. 

where, ς denoting the EPS volumetric percentage in the mixture, GsEPS and Gss denoting 

the specific gravities of EPS bead and sand, respectively. 

 

After placing the EPS-sand specimen (still encased in the steel mold) onto the pedestal of 

the triaxial cell, special procedures were implemented prior to taking off the mold. In 

deed, as the EPS-sand mixture was remolded and cohesionless, the specimen contained in 

the rubber membrane tended to collapse or deform by simply removing the mold. To 

ς=

sEPSss

sEPS

100

GG

G







 (1) 



9 

pre-stabilize the EPS-sand specimen, a negative pressure (suction) was supplied within 

the specimen by following procedures: 1) flush the specimen by allowing de-aired water 

to flow from the bottom of the specimen upwards to expel the majority of air bubbles out 

through the top drainage line; 2) close the valve of the top drainage line, open the valve 

of the bottom drainage line, which was connected to the barrette, and lower the water 

level in the barrette. The hydraulic gradient resulted in a negative pore water pressure 

generated in the specimen, when the mold can be taken off without excessively disturbing 

the stability of specimens. 

 

Hydraulic gradient saturation was implemented on each specimen prior to consolidation. 

After assembling the triaxial cell, it was filled with de-aired water. A small quantity of 

vaseline was dabbed on top of the cell and around the piston to reduce the piston friction 

and to seal the chamber. Pressurize the cell de-aired water constant at 20 kPa. The 

specimen was flushed again upward to expel any air bubble remained in the specimen by 

generating an around 1-m hydraulic head difference across the specimen. The saturation 

was thought completed when air bubble did not escape from the top drainage line any 

more. 

 

An isotropic consolidation stress was then applied to the specimen by increasing the cell 

pressure to the designated level. A time span of at least 2 h was allowed for any creep 

deformation to be completed. At the end of consolidation, the axial load was increased at 

a constant rate of axial strain of 0.015 mm/min or 0.019% strain/min, over which the pore 
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water pressure was controlled below 5 percent of consolidation pressure. The choice of 

the strain rate was made on the basis of 95% minimum pore-water pressure dissipation 

during loading (Head 1982). The tests were halted after the axial strain reached 15%, due 

to the difficulty of measuring large stains in the triaxial test. Beyond a 15% or higher 

strain, shape distortions of specimens were rather large due to excessive deformation and 

strain measurements became meaningless.  

 

The failure defined to determine the stress conditions was taken to correspond to the 

maximum deviatoric stress attained or the deviatoric stress at 15% axial strain, whichever 

was obtained first during a test. It should be noted that the shear strength defined for 

specimens that did not show a well-defined peak deviatoric stress was sensitive to the 

strain level used to define failure. 

 

As CD conditions were applied in triaxial compression tests, total stress responses and 

parameters were used throughout this study. Observations, as part of this investigation, 

included axial stress a , axial strain a  and volumetric strain v , which led to the 

relations of the deviatoric stress-axial strain, volumetric strain, and shear behavior of 

EPS-sand specimens. A detailed discussion regarding the effects on stress-strain 

characteristics of variables such as EPS content and confining pressures was provided in 

the following section. Special focus was placed on the evaluation of Kf lines and strength 

parameter. For each test series, two sets of shear strength parameters were estimated: a) 
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Kf line strength parameters; and b) conventional Mohr–Coulomb shear strength 

parameters.  

 

Further focus was placed on the derivation of strain increment equations that were used to 

model the stress-strain responses and to govern strength and deformation calculations of 

infrastructure works in practice. Model verifications were given based on the CD triaxial 

compression test results. 

RESULTS AND DISCUSSION 

Deviatoric stress-axial strain-volumetric strain behavior 

The deviatoric stress-strain and volumetric strain behavior of pure sand and EPS-sand 

specimens are presented in Figs. 4-7. Fig. 4 presents the stress-strain and volumetric 

strain behavior of pure sand specimens. The Figs. 5-6 present the stress-strain and 

volumetric strain behavior of EPS-sand specimens prepared with EPS contents of 0.5% 

and 1.5%, respectively. Fig. 7 presents the stress-strain behavior of EPS-sand specimens 

prepared with EPS contents of 2.5%, volumetric strain of which is not presented as the 

specimens experienced significant volumetric contraction during consolidation process 

and the volumetric strain data collected are not representative of real volumetric 

variation. 
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The deviatoric stress-strain and volumetric strain behavior observed on pure sand 

specimens show a dilatation behavior (Fig. 4). That is, pure sand at relative density of 

Dr=50% behaves as medium to dense sand do. Reasonably well defined peak shear 

strengths are indicated. The stress-strain responses are dependent on confining pressures. 

As confining pressures increase, the stress-strain curves indicate an increase in the initial 

slope and an increase in the peak strength. A clear strength jump is indicated between 

confinements of 200 kPa and 300 kPa. Volumetric strains at confining pressures (from 

100 kPa to 400 kPa) show a slight contraction followed by dilation until the end of the 

test, and as expected, the dilation tends to be weakened along with the increase of the 

confining pressure.  

 

The deviatoric stress-strain and volumetric strain behavior observed on EPS-sand 

specimens shows approximately hyperbolic stress-strain relations, as well as a fully 

contractive behavior for the different confining pressures used in this investigation (Figs. 

5-7). Such contractive behavior of EPS-sand mixtures is different from the dilatant 

behavior obtained on sand (Fig. 4) and on rubber-sand mixtures obtained in previous 

investigations (Zornberg et al. 2004). It seems to indicate that the shear behavior of 

EPS-sand specimen changes from being dense/medium sand-like to being loose sand-like 

along with the EPS content increase. The contractive volumetric strains increase steadily 

and are not likely to reach their maximum, at least for axial strain up to 15%. Also, no 

clear peak shear strength was obtained in the same axial strain range. Beyond the axial 

strain range, the volumetric compression seems to keep escalating. In this context, the 
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shear stress at 15% axial strain was used as the peak shear strength value. Also, 

increasing confinement enhanced the shear strength of EPS-sand specimen, as was the 

case for the tests on pure sand specimen.  

 

The peak shear strength obtained on EPS-sand specimen is less than the peak shear 

strength obtained on pure sand specimens all other variables maintained constant. 

Furthermore, as expected, the higher the EPS content, the lower the peak shear strength 

of the EPS-sand, which implicates that there is an optimum EPS content η balancing the 

unit weight and the shear strength desired for the mixtures. Secondly, the axial strains (up 

to 15%) at defined peak shear strengths for EPS-sand specimens (Figs. 5-7) are 

considerably higher than the axial strains (5%-7%) at peak strengths for pure sand 

specimens, all other variables maintained constant. No post-peak shear strength loss is 

shown in the test results, as all curves are strain-hardening types. Lastly, the entire 

stress-strain responses of EPS-sand specimens (series 2-4) are very similar, except for the 

magnitude of strength impairment along with EPS content variation. 

 

Investigation of volumetric responses indicates that volumetric variation was highly 

dependent on the confining pressure acted on the specimens, as well as the EPS content η 

used to prepare the specimens. For examples, the EPS-sand specimens prepared at EPS 

content η=0.5% completed substantial volumetric contraction during consolidation 

(σ3=400 kPa) and experienced distorted low contraction during shearing, which led to the 

inconsistency of its volumetric behavior with the volumetric responses of the other 
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specimens. Also, EPS-sand specimens prepared at η=1.5% or 2.5% presented similar 

volumetric responses, even under lower confinements (e.g., σ3=100 to 300 kPa). In this 

context, the EPS-sand mixtures prepared at over 0.5% EPS content were not suitable for 

deformation sensitive works subjected to high confinements (e.g., σ3>100).  

Kf Line and Strength Parameter 

Define (s, t) stress coordinate, where s=(σ1+σ3)/2, t=(σ1σ3)/2. Kf line is obtained by 

interpolation through the failure points (sf, tf), resulting in a straight line represented by 

Eq. 2, and yielding two Kf line strength parameters ( , a). Generally, Kf line intercepts 

the origin, leading to a=0. 

where, sf=(σ1f+σ3f)/2, tf=(σ1fσ3f)/2,   and a representing the slope and ordinate 

intercept of Kf line, respectively. 

 

Fig. 8 presents the Kf line approximation in s-t plane for pure sand and EPS-sand 

specimens (at EPS contents η=0.5%, 1.5% and 2.5%, respectively). Kf lines are 

approximated linearly (R
2
=0.99) for pure sand and EPS-sand (η=0.5%), as shown in 

Fig. 8(a), whereas Kf lines are reasonably approximated piecewise for EPS-sand mixtures 

prepared at η=1.5% and 2.5%. Kf line strength parameters (a,  ) are presented in 

Table 3. 

tanff sat   (2) 
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When the EPS contents are 0% (pure sand) and 0.5%, or probably range between 0% and 

0.5%, the Kf line is linearly approximated intercepting the origin for the specimens tested 

under the confining pressures considered in this investigation (Fig. 8(a)). The Kf line 

slopes   are 31.4 for the pure sand specimen and 21.3 for the EPS-sand specimen (at 

η=0.5%), respectively, which means that the inclusion of EPS beads tends to impair the 

peak shear strength of materials. 

 

When the EPS content increases to a level over 0.5% (e.g., 1.5% and 2.5%), the Kf line 

deviates from straight line correlation, and is reasonably characterized by an intercepted 

piecewise (in two segments) linear approximation (Fig. 8(b)). Such piecewise linear trend 

is approaching the shear behavior of over-consolidated soils. On top of this, two sets of 

Kf line parameters (  and a) were estimated to account for the lower and upper 

segments, respectively (Table 3). Also, it is noted that cohesive intercepts, instead of 

intercepting the origin, were obtained for Kf lines of EPS-sand specimens (at, or probably 

ranging between, η=1.5% and 2.5%). 

 

Using the geometric relation between a Mohr Coulomb envelope and a Kf line, the 

envelope shear strength parameters (c and cd) were obtained and presented in Table 3. 

As expected, the peak shear strength of EPS-sand decreases with increasing EPS content, 

although the unit weight behaves the opposite. Thus, it is not advised to use the EPS-sand 
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as structural fills where high strength is required. Indeed, as afore-commented, there is an 

optimum EPS content at which the EPS-sand is reasonably prepared by balancing the unit 

weight and shear strength of the mixture. According to the investigation, EPS-sand 

specimen prepared at η=0.5% presented reasonably acceptable performance, i.e., low unit 

weight (12.6 kN/m
3
) and competitive shear strength (cd=23). 

 

Results in Table 3 suggest that the shear mechanism in EPS-sand matrix experienced 

transition along with the increase of the EPS content. There were three principal shear 

mechanisms in terms of granular interaction types, i.e. sand-sand, sand-EPS and 

EPS-EPS. In course of increasing EPS content, shear mechanism within the EPS-sand 

matrix was governed by gradually weakening sand-sand interaction and strengthening 

sand-EPS and EPS-EPS interactions. Sand-sand shear mechanism yielded higher shear 

strength than sand-EPS and EPS-EPS mechanisms did, which was related to the particle 

rigidity difference between sands and EPS beads, as well as the packing difference 

among sand-sand, sand-EPS and EPS-EPS compositions. As such, shear mechanisms of 

sand-EPS and EPS-EPS began to govern the shear strength of the mixtures prepared at 

high EPS content (e.g., η>0.5%), however, leading to lower overall shear strength values.  

 

The cohesive intercepts observed for EPS-sands at relatively high EPS contents (i.e., 

η=1.5% and 2.5%) suggest the presence of apparent cohesion within the matrix. As 

commented, sands were much harder than EPS beads. Consequently, the shear efforts 

enforced the sands partially or even completely intruded into EPS beads. An apparent 
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cohesion was rendered within the matrix. That is, a binding force was yielded within the 

EPS-sand matrix, which may possibly relate to the cohesion values obtained for 

EPS-sand specimens (at η=1.5% and 2.5%) tested in this investigation. A second 

interpretation was related to the consolidation-hardening mechanism occurred to 

EPS-sand mixtures tested under high confining pressures. Indeed, EPS beads experienced 

substantial volumetric compression during high pressure consolidation, which densified 

the mixtures remarkable more than a low consolidation pressure did. Accordingly, a more 

compact and rigid structure led to an increased shear strength gain. 

 

Overall, the test results obtained in this study indicate that infrastructure backfilling 

works under comparatively low confining pressures (e.g., utility trench backfills) can 

benefit from the inclusion of EPS bead. From the materials and test conditions considered 

in this investigation, the optimum EPS content is in the order of 0.5%, at which the 

EPS-sand mixtures yield a reasonable combination of unit weight and shear strength. 

MODEL DERIVATION 

Notations 

In this section, the stress coordinates (p, q) were defined as follows:  

p =
3

)2( 31  
 (3) 
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where, p denoting mean stress, q denoting deviator stress, 1  and 3  denoting the 

major and minor principal stresses, respectively. 

Cam-clay and Modified Cam-clay 

Many constitutive models were proposed with regards to depicting the stress-strain 

behavior of soils. These models are largely divided into two types: elastic models and 

elasto-plastic models. The latter is more robust than the former to represent the soil 

behavior, e.g., strain hardening or softening characteristics, shear dilation and stress 

paths. One of the classical elasto-plastic models is Cam-clay. Cam-clay incorporated the 

critical state theory plus a series of plasticity concepts. In this section, the concepts and 

strain equations of Cam-clay models were briefly presented, but not deduced. A deep and 

a comprehensive review of plasticity and the deduction of Cam-clay strain equations 

should refer to the other sources, e.g., Schofield and Wroth (1968), Desai and 

Siriwardane (1984), and Ortigao (1995). 

 

A soil element starts to yield when its effective stress path touches a particular convex 

surface defined in the stress coordinate (e.g., (p, q)), known as the yield locus. The yield 

loci are presented in Fig. 9(a) for Cam-clay and Fig. 9(b) for Modified Cam-clay, 

respectively. Variable pm represents the isotropic consolidation pressure (i.e., 3 ). Kcr 

q = 1 3  (4) 
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represents the critical state line. Within the loci, all strains are assumed to be purely 

elastic. As the effective stress path touches the loci, a soil element starts to yield, and 

plastic strains will be added to the elastic strains. This study focused on the sum of elastic 

and plastic strains.  

 

In Cam-clay, the volumetric strain increment (in differentiation), vd , shear strain 

increment, sd , and axial strain increment, ad , are defined in Eqs. 5-7, respectively. 

 

 

where, e denoting initial void ratio,   denoting the absolute slope of normal 

consolidation line in pv ln  coordinate,   denoting the absolute slope of swelling 

(over-consolidation) line in pv ln  coordinate, M denoting lateral confinement 

(oedometer) modulus. 

 

Similarly, in Modified Cam-clay, ad , vd  and sd are given in Eqs. 7-9, 

respectively. Note to apply vd  and sd  from Eqs. 8-9 to obtain ad  in Eq. 7. 
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Modeling Stress-Strain Observations 

EPS-sand mixtures conforms less to the soil constitutive models than do most soils. This 

is because EPS-sand has one additional compressible inclusion (EPS beads), and the 

response of the mixture to be loaded is inherently more complex than the response of 

general soils, which complicates the constitutive law governing the behavior of the 

mixtures. The classical soil constitutive models may be weak in depicting the stress-strain 

behavior of EPS-sand mixtures. For example, as presented in Fig. 10, neither Cam-clay 

nor Modified Cam-clay was able to follow close enough the stress-strain responses of an 

EPS-sand specimen. The axial strain was either over-estimated under Cam-clay, or 

under-estimated under Modified Cam-clay.  
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Nevertheless, stress-strain observations indicate that the higher the EPS content η, the 

closer the observations approach Cam-clay modeling line; the lower the EPS content η, 

the closer the observations approach Modified Cam-clay modeling line. The stress-strain 

curves basically fluctuate between these two modeling lines depending on the EPS 

content. It was thus conceived to derive an improved model compromising Cam-clay and 

Modified Cam-clay to simulate the observations. 

 

The volume of an EPS-sand unit was presumed to be divided into two parts, denoted by 

volumes ζ(η) and (1ζ(η)), respectively. Strain increments of volume (1ζ(η)) was 

depicted by using Cam-clay (i.e., Eqs. 5-7). Strain increments of volume ζ(η) was 

depicted by using Modified Cam-clay (i.e., Eqs. 7-9). The higher the EPS content η, the 

lower the ζ(η) value, which led to more volume of the unit modeled under Cam-clay and 

less volume modeled under Modified Cam-clay, and vice versa.  

 

It was also presumed that the boundary conditions were constant in shear. Thus, the total 

strain increments ( vd , sd , ad ) were equal to the sum of the strain increments of the 

two parts, i.e., (
A

vd , 
A

sd , 
A

ad ) for volume (1ζ(η)), and ( B

vd , B

sd , B

ad ) for 

volume ζ(η), as described in Eqs. 10-12, respectively. 
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Merge Eqs. 5-7 and Eqs. 7-9, correspondingly, into Eqs. 10-12, the strain increment 

equations were expanded as follows.  
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There are four independent modeling parameters in the derived strain increment 

equations, i.e., M ,  ,   and ζ(η). Parameters M ,   and   were obtained 

according to the conventions specified in Cam-clay. Parameter ζ(η) was obtained by 

simulating the stress-strain observations through least squares method. Based on the CD 

triaxial compression test results obtained in this investigation, the parameters for 

modeling the strain increments of EPS-sand mixtures are presented in Table 4. It is seen 

that over a half volume shall be modeled under Modified Cam-clay, and less than a half 

under Cam-clay, for the EPS-sand mixtures prepared within EPS content ranges of 0.5% 

to 2.5%. 

 

The strain increment equations described in Eqs. 10-12 were proportion-dependent by 

introducing variant EPS content η. The strain increments were derived by compromising 
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Cam-clay and Modified Cam-clay, and were able to depict the complex stress-strain 

behavior of EPS-sand mixtures. Using the modeling parameters presented in Table 4, an 

improved modeling line was plotted in Fig. 10. The improved modeling line basically 

follows the observations, and is clearly superior to the modeling lines given by Cam-clay 

and Modified Cam-clay. 

MODELING VERIFICATION 

Modeling verification was implemented by plotting stress-strain increment equations 

(Eqs. 13-15) and test observations in a chart, as shown in Fig. 11 for EPS-sand mixtures 

at EPS content η=0.5% and Fig. 12 at η=1.5%. The solid lines represent the modeling 

curves, which broadly simulate the stress-strain observations, especially the deviatoric 

stress-axial strain observations, of specimens subjected to test conditions investigated in 

this study. Observations for EPS-sand mixtures prepared at η=0.5% were modeled better 

than for EPS-sand mixtures at η=1.5%. Marginal modeling deviations occurred to 

volumetric strain observations. Indeed, the deviations were either over-estimated or 

under-estimated, and no consistent deviation tendency was concluded. Notwithstanding, 

from the modeling simulations, the strain increment equations were derived favorably 

well to replicate stress-strain responses of EPS-sand mixtures, as least to model the CD 

shear behavior of specimens investigated in this study.  
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CONCLUSIONS 

A laboratory testing program was carried out to evaluate the stress-strain characteristics 

and the shear strength of pure sand and EPS-sand specimens. Stress-strain increment 

equations were derived based on Cam-clay and Modified Cam-clay to model the 

stress-strain observations. Evaluation of the experimental results and modeling derivation 

obtained in this study led to the following conclusions: 

 

(1) The CD triaxial test results of EPS-sand specimens showed an approximately 

hyperbolic stress-strain behavior and a fully contractive volumetric strain behavior. No 

clear peak strength was shown up throughout the axial strain as high as 15%. This 

response was significantly different from that of pure sand specimens, which showed a 

broadly defined peak shear strength and dilatant behavior for the relative density used in 

this study. 

 

(2) The influence of EPS content on the stress-strain behavior of EPS-sand specimens 

was significant. Specifically, EPS-sand specimens prepared at relatively high EPS 

content (η=1.5% and 2.5%) exhibited: a) substantial contraction during consolidation, b) 

a piecewise (two-segment) linear Kf line, and c) a non-negligible cohesion intercept. Pure 

sand and EPS-sand specimens of low EPS content (η=0.5%) had straight Kf lines 

intercepting the origin.  
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(3) The shear strength of EPS-sand mixtures was affected by the EPS content. The shear 

strength decreased with increasing EPS content. An EPS content in the order of 0.5% was 

suggested for producing EPS-sand mixtures, which yielded a reasonable combination of 

the unit weight and shear strength of the mixture, at least in the investigation of this study. 

Accordingly, infrastructure works subjected to comparatively low confining pressures 

(e.g. utilities trench backfills) can particularly benefit from the addition of EPS beads. 

  

(4) Strain increment equations were derived by compromising Cam-clay and Modified 

Cam-clay. The equations were proportion dependent by introducing the variant EPS 

content η. The other four model parameters can be calibrated from CD triaxial test 

results. Equations were verified as reasonably acceptable laws governing the strength and 

deformation characteristics of EPS-sand mixtures prepared at varying EPS contents, at 

least those investigated in this study.   
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Table 1: Index property of tested materials. 

Material 

Specific 

gravity 

Bulk unit  

weight (kN/m
3
) 

Effective size 

D10 (mm) 

Classification 

USCS 

Classification 

AASHTO 

Sand 2.62 15.4 (min.), 18.9 (max.) 0.1 SW A-3 (0) 

EPS bead 0.03 0.15 2.2 - - 
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Table 2: Summary of testing program. 

Series 

EPS content η 

(by weight, %) 

EPS volume 

ratio ς (%) 

Bulk unit 

weight (kN/m
3
) 

Consolidation 

pressure (kPa) 

1 0 0  17.0 100, 200, 300 and 400 

2 0.5 30  12.6 100, 200, 300 and 400 

3 1.5 57  8.2 100, 200, 300 and 400 

4 2.5 69  6.3 100, 200, 300 and 400 
 

 



33 

 

 

Table 3: Strength parameters of Kf lines and Mohr Coulomb envelopes. 

EPS content 
  (%) 

Kf line Mohr Coulomb envelope 

  () a (kPa) 2R  cd () c (kPa) 

0 31.4  0.0 0.99 37.6  0.0  

0.5 21.3  0.0 0.99 23.0  0.0  

1.5 * 9.1  40.0 0.99 9.4  41.0  

1.5 ** 18.3  0.0 0.84 19.3  0.0  

2.5 * 10.8  16.4 0.95 11.0  16.7  

2.5 ** 15.7  0.0 0.87 16.3  0.0  

*
: the lower segment of Kf line; 

**
: the upper segment of Kf line. 
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Table 4: Modeling parameters. 

  (%) M      ζ(η) 

0.5 1.47 0.035 0.087 0.81 

1.5 1.11 0.092 0.239 0.65 

2.5 0.91 0.140 0.400 0.52 
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Fig. 1: Gradation curves of sands and EPS beads. 
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Fig. 2: EPS-sand mixture. 
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Fig. 3: Schematic diagram of the triaxial cell. 
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Fig. 4: Results of tests on pure sand (series 1): (a) deviatoric stress-strain behavior; (b) 

volumetric strain behavior. 
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Fig. 5: Results of tests on EPS-sand at η=0.5% (series 2): (a) deviatoric stress-strain 

behavior; (b) volumetric strain behavior. 
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Fig. 6: Results of tests on EPS-sand at η=1.5% (series 3): (a) deviatoric stress-strain 

behavior; (b) volumetric strain behavior. 
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Fig. 7: Results of tests on EPS-sand at η=2.5% (series 4): deviatoric stress-strain 

behavior. 
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Fig. 8: Kf lines of specimens at different EPS contents: (a) η=0% (pure sand) and 0.5%; 

(b) η=1.5% and 2.5%. 
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Fig. 9: Different assumptions for yield loci: (a) Cam-clay; (b) Modified Cam-clay. 
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Fig. 10: Deviatoric stress-axial strain simulations. 
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Fig. 11: Modeling stress-strain observations for EPS-sand mixture at EPS content 

η=0.5%: (a) deviatoric stress-axial strain relation; (b) volumetric strain-axial strain 

relation. 
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Fig. 12: Modeling stress-strain observations for EPS-sand mixture at EPS content 

η=1.5%: (a) deviatoric stress-axial strain relation; (b) volumetric strain-axial strain 

relation. 


